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Introduction

Let $M$ be a smooth manifold. A splitting of the tangent bundle
$T(M)$ of $M$ into the Whitney sum of two subbundles $T^{\pm}(M)$ is called an
almost paracomplex structure on $M$, if $T^{\pm}(M)$ have the same fiber
dimension. This is characterized by a $(1, 1)$-tensor field $I$ satisfying the
conditions: $I^{2}=id$ , and $\pm 1$-eigenspaces of $I_{p}(peM)$ are the fibers of
$T^{\pm}(M)$ over $p$ . If the distributions on $M$ defined by $T^{\pm}(M)$ are both
completely integrable, then the almost paracomplex structure is called a
paracomplex structure. These two structures were originally introduced
by $P$. Libermann in 1952 ([5], [6]), in analogy with almost complex
or complex structures. Libermann also introduced, although in somewhat
vague fashion, the notions of parahermitian metrics and parakahler
metrics, which are the paracomplex analogues of hermitian and K\"ahler
metrics. It should be noted that a parakahler manifold has naturally a
symplectic structure. The main interest is thus to what extent one can
develop the theory of paracomplex manifolds in parallel with the theory
of complex manifolds.

In this article, we introduce a class of affine symmetric spaces, called
parahermitian symmetric spaces, a paracomplex analogue of hermitian
symmetric spaces. \S 1 is devoted to some definitions and basic properties
on paracomplex structures. In \S 2 we give the definition of parahermitian
symmetric spaces and include Lie algebraic considerations. In \S 3 we
give a group-theoretic characterization for an affine symmetric coset space
$G/H$ with $G$ semisimple to be parahermitian symmetric (cf. Theorems 3.6
and 3.7). In \S 4 we consider a relation between parahermitian symmetric
spaces of semisimple Lie groups and symmetric R-spaces (cf. Proposition
4.1 and Theorem 4.3). Finally we give the infinitesimal classification of
parahermitian symmetric spaces with semisimple automorphism groups,
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up to paraholomorphic equivalence.
The authors would like to express their gratitude to N. Tanaka for

stimulating conversations on product structures.

NOTATIONS. The following notations will be used throughout this
paper:

$G^{0}$ the identity component of a Lie group $G$ ,
Lie $G$ the Lie algebra of a Lie group $G$

$C_{a}(Z)=$ {$aeG$ : (Ad $a)Z=Z$ } the centralizer of $Ze$ Lie $G$ in $G$,
$H$ the quaternion number field,
$O$ the octanion number field,
$\mathfrak{g}^{c}$ the complexification of a Lie algebra $\mathfrak{g}$ ,
$G_{\sigma}$ the totality of the elements in a group $G$ left fixed by an

automorphism $\sigma$ ,
$c_{\mathfrak{g}}(Z)$ the centralizer of the element $Z$, in $\mathfrak{g}$ ,

id the identity mapping.

\S 1. Paracomplex structures.

Let $M$ be a $2n$-dimensional real smooth manifold and $\mathfrak{X}(M)$ be the
Lie algebra of smooth vector fields on $M$. A smooth $(1, 1)$-tensor field $I$

on $M$ is called an almost paracomplex structure ([6]), if the following

conditions are satisfied:
AP i) $I^{2}=id$ ,
AP ii) for each point $peM$, the $\pm 1$-eigenspaces $T_{p}^{f}(M)$ of $I_{p}(=the$

value of $I$ at p) are both n-dimensional subspaces of the tangent space
$T_{p}(M)$ at $p$ .

In this case, the pair $(M, I)$ is called an almost paracomplex manifold.
On an almost paracomplex manifold $(M, I)$ we define the tensor field $T$,
called the torsion tensor field of $I$, by putting ([13])

(1.1) $T(X, Y)=$ [$IX,$ I $Y$] $-I[IX, Y]-I$[$X,$ I $Y$] $+[X, Y]$

for $X$, Ye $\mathfrak{X}(M)$ . If $T$ vanishes identically on $M$, then $I$ is called a para-
complex structure ([6]), and $(M, I)$ is called a paracomplex manifold.
The following proposition was proved by Yano [13] and Walker [12] for
almost product structures, making use of tensor calculus.

PROPOSITION 1.1. Let $(M, I)$ be an almost paracomplex manifold.
Then I is paracomplex if and only if the distribution $\ovalbox{\tt\small REJECT}^{-\pm}:p\mapsto T_{p}^{\pm}(M)$ ,
$p\in M$ are both completely integrable.

The proof of 1.1 can be done by applying the Frobenius theorem to
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vector fields of the form $X\pm IX(X\in \mathfrak{X}(M))$ , which belong to the distribu-
tions $\mathscr{F}^{\pm}$ .

PROPOSITION 1.2. Let $(M, I)$ be a $2n$-dimensional paracomplex mani-
fold. Then $M$ has an atlas $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha eA}$ with $U_{a}$ open and $\varphi_{\alpha}=(x_{1}^{\alpha},$

$\cdots,$
$x_{n}^{\alpha}$ ,

$y_{1}^{\alpha},$

$\cdots,$
$y_{n}^{\alpha}$) coordinate map satisfying the condition; if $ U_{\alpha}\cap U_{\beta}\neq\emptyset$ then

the following para-Cauchy-Riemann equation

(1.2) $\left\{\begin{array}{l}\frac{\partial x_{i}^{\beta}}{\partial x_{j}^{\alpha}}=\frac{\partial y_{l}^{\beta}}{\partial y_{\dot{f}}^{\alpha}}\\\frac{\partial x_{i}^{\beta}}{\partial y_{\dot{f}}^{\alpha}}=\frac{\partial y_{i}^{\beta}}{\partial x_{j}^{\alpha}}\end{array}\right.$ $(1\leqq i, j\leqq n;\alpha, \beta\in A)$

is satisfied. In this case, on each $U_{\alpha},$ I is given by

(1.3) $I(\frac{\partial}{\partial x_{i}^{\alpha}})=\frac{\partial}{\partial y_{i}^{\alpha}}$ , $I(\frac{\partial}{\partial y_{i}^{\alpha}})=\frac{\partial}{\partial x_{i}^{\alpha}}$ .

Conversely, suppose that $M$ has an atlas $\{(U_{\alpha}, \varphi_{\alpha})\}$ satisfying (1.2). Then,
if we define I on $U_{\alpha}$ by (1.3), then I is globally defined on $M$, and $(M, I)$

is a paracomplex manifold.
PROOF. Suppose that $(M, I)$ is a paracomplex manifold. Then $M$ is

covered by coordinate neighborhoods $U_{\alpha}(\alpha\in A)$ with coordinate map
$\psi_{\alpha}=(u_{1}^{\alpha}, \cdots, u_{n}^{\alpha}, v_{1}^{\alpha}, \cdots, v_{n}^{\alpha})$ such that the distribution $\mathscr{F}^{+}$ is spanned by
$(\partial/\partial u_{1}^{\alpha}),$

$\cdots,$
$(\partial/\partial u_{n}^{\alpha})$ and that $\ovalbox{\tt\small REJECT}^{--}$ is spanned by $(\partial/\partial v_{1}^{\alpha}),$

$\cdots,$
$(\partial/\partial v_{n}^{\alpha})$ . The

coordinate system $(x_{1}^{\alpha}, \cdots, x_{n}^{\alpha}, y_{1}^{\alpha}, \cdots, y_{n}^{\alpha})$ on $U_{a}$ defined by $x^{\alpha}=u^{\alpha}+v_{i}^{\alpha}$ ,
$y_{i}^{\alpha}=u_{i}^{\alpha}-v_{i}^{\alpha}$ is the desired one. The proposition is proved by straightfor-
ward computations.

Let $(M, I)$ and $(M’, I’)$ be (almost) paracomplex manifolds. Then a
smooth map $f$ of $M$ to $M$’ is called a (almost) paraholomorphic map, if
the relation

(1.4) $f_{*}I=I_{f(p)}f_{\ell_{p}}$

is satisfied for each point $p\in M$, where $f_{p}$ is the differential of $f$ at $p$ .
If there is a paraholomorphic diffeomorphism of $M$ onto $M^{\prime}$ , then $(M, I)$

and $(M^{\prime}, I)$ are said to be $p$araholomorphically equivalent. A paraholo-
morphic diffeomorphism of $M$ onto itself is called a paraholomorphic
transformation of $M$. The distributions $\ovalbox{\tt\small REJECT}^{-\pm}$ are invariant by paraholo-
morphic transformations. We denote by Aut $(M, I)$ the group of all
paraholomorphic transformations of $(M, I)$ .
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EXAMPLE. Let $(x_{1}, \cdots, x_{n}, y_{1}, \cdots, y_{n})$ be the natural coordinate on
$R^{2n}$ . Let us consider the following two kinds of foliations;

$x_{i}+y_{i}=const$ $1\leqq i\leqq n$ ,
$x_{i}-y_{i}=const$ $1\leqq i\leqq n$ ,

which define a paracomplex structure on $R^{2n}$ . Then the above foliations
are both invariant under the translations by the lattice $Z^{2n}$ of all integral
points in $R^{2}$“. So, they naturally induce a paracomplex structure on the
torus $R^{2n}/Z^{2n}$ . The canonical projection $\pi$ of $R^{2n}$ onto the torus is para-
holomorphic.

Now let $(M, I)$ be a (almost) paracomplex manifold, and $g$ be a pseudo-
Riemannian metric of $M$. If the equality

(1.5) $g(IX, Y)+g$ ($X,$ I $Y$) $=0$ $X$, Ye $\mathfrak{X}(M)$

is satisfied, then $g$ is called a (almost) parahermitian metric ([6]), and
$(M, I, g)$ is called a (almost) parahermitian manifold. In this case we
can consider a 2-form $\omega$ defined by

(1.6) $\omega(X, Y)=g$ ($X,$ $I$Y) $X$, Ye $\mathfrak{X}(M)$ .
Note that an almost parahermitian manifold is orientable. If $\omega$ is closed,
then $g$ is called a (almost) parakahler metric ([6]), and $(M, I, g)$ is then
called a (almost) parakahler manifold. It should be noted that if
$(M, I, g)$ is almost parak\"ahler, then $\omega$ is a symplectic 2-form on $M$, and
consequently $M$ has an almost complex structure. Given a connected
(almost) parahermitian or parakahler manifold $(M, I, g)$ and denoting by
$I(M, g)$ the isometry group of $M$ with respect to $g$ , the automorphism
group of $(M, I, g)$ is defined by putting

Aut $(M, I, g)=Aut(M, I)\cap I(M, g)$ ,

which is a closed subgroup of $I(M, g)$ , and consequently a Lie transforma-
tion group of $M$. If Aut $(M, I, g)$ acts transitively on $M$, then $(M, I, g)$

is called a homogeneous (almost) parahermitian or parakahler manifold,
according as it is (almost) parahermitian or parakahler. Note that a
homogeneous almost parak\"ahler manifold is a homogeneous symplectic
manifold with respect to $\omega$ and Aut $(M, I, g)$ .

REMARK. In defining parahermitian metrics, one need not to assume
AP ii). From (1.5) it follows that the eigenspaces $T_{p}^{\pm}(M)$ of $I_{p}$ are
maximal totally isotropic subspaces with respect to $g_{p}$ . This can be
shown without using the assumption AP ii). The decomposition $T_{p}(M)=$
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$T_{p}^{+}(M)+T_{p}^{-}(M)$ is then the Witt decomposition, which implies that two
maximal totally isotropic subspaces $T_{p}^{\pm}(M)$ are equidimensional. We have
then that the signature of $g$ is $(n, n)$ and that $M$ must be even
dimensional.

PROPOSITION 1.3. Let $(M, I, g)$ be an almost parahermitian manifold,
and $\nabla$ be the Levi-Civita connection of $g$ . Then we have, for
$X,$ $Y,$ $Z\in \mathfrak{X}(M)$ ,

(1.7) $2g((\nabla_{X}I)Y, Z)+3d\omega(X, IY, IZ)+3d\omega(X, Y, Z)$

$=-g(IX, T(Y, Z))$ .
PROOF. We proceed in the similar way as in the complex structure

(cf. Kobayashi-Nomizu [3]). We have

$2g((\nabla_{X}I)Y, Z)=2g(\nabla_{X}(IY), Z)+2g(\nabla_{X}Y, IZ)$

$=IY(g(X, Z))-Z(g(X, IY))+Y(g(X, IZ))-IZ(g(X, Y))$

$+g([X, IY], Z)+g$( $[Z,$ $X],$ I $Y$) $-g(IX, I[Z, IY])$

$+g([X, Y], IZ)+g([IZ, X], Y)-g(IX, I[IZ, Y])$ ,

$3d\omega(X, IY, IZ)=X(g(IY, Z))-IY(g(X, Z))+IZ(g(X, Y))$

$-g([X, IY], Z)+g([X, IZ], Y)-g([IY, IZ], IX)$ ,

$3d\omega(X, Y, Z)=X(g(Y, IZ))-Y(g(X, IZ))+Z(g(X, IY))$

$-g([X, Y], IZ)+g$ ($[X,$ $Z],$ I $Y$) $-g([Y, Z], IX)$ .
From these equalities we get (1.7) by direct calculations.

COROLLARY 1.4. Let $(M, I, g)$ and V be as in 1.3. Then $(M, I, g)$ is
parakahler if and only if $\nabla I=0$ .

PROOF. The equality $\nabla I=0$ implies $\nabla\omega=0$ . This means $d\omega=0$ , since
$\nabla$ is torsionfree. So, by (1.7) and 1.1, we conclude that $I$ is paracomplex,
and $(M, I, g)$ is parak\"ahler. The converse is also easily seen by 1.3.

LEMMA 1.5. Let $(M, I, g)$ be parakahler and $R$ be the curvature
tensor field of the Levi-Civita connection. Then we have

$R(IX, Y)+R$($X,$ I $Y$) $=0$ $X$, Ye $k(M)$ .
PROOF. By 1.4, we see $[\nabla_{X}, I]=0$ ; so, from the definition of the

curvature tensor field, we have $[R(X, Y), I]=0$ . Hence it follows that,
for $X,$ $Y,$ $U,$ $V\in \mathfrak{X}(M)$ ,
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$g(R(IX, Y)V,$ $U$) $=g(R(U, V)Y,$ $IX$ )

$=-g(IR(U, V)Y,$ $X$) $=-g(R(U, V)IY,$ $X$)

$=-g(R(X, IY)V,$ $U$),

which proves the lemma.

\S 2. Parahermitian symmetric spaces.

DEFINITION 2.1. A connected almost parahermitian manifold $(M, I, g)$

is called a parahermitian symmetric space, if for each point $peM$ there
exists an almost paraholomorphic isometry $s_{p}e$ Aut $(M, I, g)$ , called the
symmetry at $p$ , such that

i) $s_{p}^{2}=id$ ,
ii) $p$ is an isolated fixed point of $s_{p}$ .
LEMMA 2.1. Let $(M, I, g)$ be a parahermitian symmetric space. Then

Aut $(M, I, g)$ acts transitively on $M$.
PROOF. $M$ is affine symmetric with respect to the Levi-Civita con-

nection; so, the proof is done by the same arguments as in Kobayashi-

Nomizu [3, II, p. 223].

PROPOSITION 2.2. A parahermitian symmetric space $(M, I, g)$ is
homogeneous parakahler, and hence homogeneous symplectic.

PROOF. We denote by $G$ the identity component of Aut $(M, I, g)$ .
Take a point $oeM$. Then the mapping $\sigma$ sending $a\in G$ to $s_{\Phi}as_{o}$ is an
involutive automorphism of $G$ . Let us denote by $G_{\sigma}$ the subgroup of all
a-fixed elements in $G$ , and let $H$ be the isotropy subgroup of $G$ at $0$ .
Then we have

(2.1) $G_{\sigma}^{0}\subset H\subset G_{\sigma}$ ,

where $G_{\sigma}^{0}$ is the identity component of $G_{\sigma}$ . And $M=G/H$ is a symmetric
homogeneous space and the Levi-Civita connection coincides with the
canonical connection (cf. Nomizu [8]). $I$ being G-invariant, we have
$\nabla I=0$ ([8]). So, by 1.4 and 2.1, $(M, I, g)$ is homogeneous parak\"ahler.

DEFINITION 2.2. Let $G$ be a connected Lie group and $H$ be a closed
subgroup of $G$ . The coset space $M=G/H$ is called a parahermitian
symmetric coset space if the following three conditions are satisfied:

i) $(G, H, \sigma)$ is a symmetric triple, that is, $\sigma$ is an involutive auto.
morphism satisfying (2.1),
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ii) there exist a $(1, 1)$-tensor field $I$ and a pseudo-Riemannian metric
$g$ on $M$ such that $(M, I, g)$ is almost parahermitian,

iii) $I$ and $g$ are both G-invariant.

$LfMMA2.3$ . A parahermitian symmetric space can be represented
as a parahermitian symmetric coset space. Conversely a parahermitian
symmetric coset space is a parahermitian symmetric space.

PROOF. The first assertion was proved in the proof of 2.2. Let
$(G/H, I, g)$ be a parahermitian symmetric coset space, and $\pi$ be the
projection of $G$ onto $G/H$. The symmetry $s_{\Phi}$ at $0$ is given by

$s_{o}(\pi(a))=\pi(\sigma(a))$ , a $eG$ .
Then, by the same way as in the hermitian symmetric case, one can
deduce that $s_{o}$ is an almost paraholomorphic isometry (cf. Helgason [1]).
So the symmetry $s_{p}$ at any point $p\in G/H$ is also an almost paraholomor-
phic isometry.

Later on we shall be mainly concerned with parahermitian symmetric
coset spaces. Let $\mathfrak{g}$ be a real Lie algebra, $\mathfrak{h}$ a subalgebra of $\mathfrak{g}$ and $\sigma$

be an involutive automorphism of $\mathfrak{g}$ . If $\mathfrak{h}$ is the fixed set in 9 by $\sigma$ ,
then $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ is called a symmetric triple. Let $G$ be a connected Lie
group with Lie $G=\mathfrak{g}$ , and $H$ be a closed subgroup of $G$ with Lie $H=\mathfrak{h}$ .
Then we say that the coset space $G/H$ is associated with $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ if $\sigma$

can be extended to an involutive automorphism (denoted by the same
letter $\sigma$) of $G$ and if (2.1) is satisfied.

PROPOSITION 2.4. Let $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ be a symmetric triple, and

(2.2) $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$

be the eigenspace decomposition by $\sigma$ . Suppose that a coset space $G/H$ is
associated with $\{\mathfrak{g}, \mathfrak{y}, \sigma\}$ . $The/hG/H$ is a parahermitian symmetric coset
space, if and only if the following condition $(C_{1})$ is satisfied:

(C) There exists a linear endomorphism $I_{o}$ on $\mathfrak{m}$ and a non-degenerate
symmetric bilinear form $\langle, \rangle$ on $\mathfrak{m}$ such that

(C-1) $I_{o}^{2}=id$ ,
(C-2) [I,, $Ad_{u},$ $H$] $=0$ ,
(C-3) $\langle I_{0}X, Y\rangle+\langle X, I_{o}Y\rangle=0,$ $X,$ $Y\in \mathfrak{m}$ ,
(C-4) $\langle(Ad_{n}h)X, (Ad_{u}, h)Y\rangle=\langle X, Y\rangle,$ $X$, Ye $\mathfrak{m},$ $h\in H$.
PROOF. Suppose that $G/H$ is parahermitian symmetric. Let us

identify $\mathfrak{m}$ with the tangent space $T_{o}(M)$ at the origin $o$ ( $=the$ coset $H$),
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and choose the symmetric bilinear form $\langle, \rangle$ to be $g_{0}(, )$ . Then $(C_{1})$ is
satisfied. Conversely, suppose that $(C_{1})$ holds. Then the quite analogous
procedure as in the hermitian symmetric case shows that $I_{o}$ and $\langle, \rangle$

can be extended to the G-invariant tensor fields on the whole $M$. So,
the lemma follows.

DEFINITION 2.3. Let $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ be a symmetric triple and $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ be
the eigenspace decomposition by $\sigma$ . Suppose that $\{\mathfrak{g}, \mathfrak{y}, \sigma\}$ satisfies the
following condition $(C_{2})$ :

(C) There exist a linear endomorphism $I_{\Phi}$ on $\mathfrak{m}$ and a non-degenerate
symmetric bilinear form $\langle, \rangle$ on $\mathfrak{m}$ such that

(C-1) $I_{o}^{2}=id$ ,
(C-2) $[I_{\Phi}, ad_{\alpha}\mathfrak{h}]=0$ ,
(C-3) $\langle I_{o}X, Y\rangle+\langle X, I_{\Phi}Y\rangle=0,$ $X$, Ye $\mathfrak{m}$ ,
(C-4) $\langle(adX)Y_{1}, Y_{2}\rangle+$ \langle $Y_{1}$ , (ad $ X)Y_{2}\rangle$ $=0,$ $Xe\mathfrak{h},$ $Y_{1},$ $Y_{2}e\mathfrak{m}$ .

Then $\{\mathfrak{g}, \mathfrak{h}, \sigma, I_{o}, \langle, \rangle\}$ is called a parahermitian symmetric system. Fur-
thermore if the pair $\{\mathfrak{g}, \mathfrak{h}\}$ is effective, then it is called an effective
parahermitian symmetric system.

LEMAA 2.5. Let $\{\mathfrak{g}, \mathfrak{h}, \sigma, I_{\Phi}, \langle, \rangle\}$ be an efective parahermitian sym-
metric system, and let us define a linear endomorphism $ I_{o}\sim$ of $\mathfrak{g}$ by
putting $\mathcal{T}_{o}|_{\mathfrak{y}}=0$ , and $T_{\Phi}|_{\varpi}=I_{\Phi}$ . Then $ I_{\Phi}\sim$ is a derivation of $\mathfrak{g}$ .

PROOF. We have to prove the equality

(2.3) $ f_{o}[X, Y]=[\tilde{I^{\backslash }}_{o}X, Y]+[X, I_{o}Y]\sim$ $X$, Ye $\mathfrak{g}$ .
For the case where $Xe\mathfrak{h}$ , Ye $\mathfrak{m}$ , the condition $(C_{2}-2)$ implies (2.3). Let
us consider the case where $X$, Ye $\mathfrak{m}$ . The left-hand side of (2.3) is zero
in this case, since $[\mathfrak{m}, 2\mathfrak{n}]\subset \mathfrak{h}$ . For $X$, Ye $\mathfrak{h}$ , (2.3) is trivially satisfied.
Let $G/H$ be a coset space associated with $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ . Then, from 2.4, it is
seen that $G/H^{0}$ is a parahermitian symmetric coset space corresponding
to $\{\mathfrak{g}, \mathfrak{h}, \sigma, I_{o}, \langle, \rangle\}$ . Applying 1.5 to $G/H^{0(}$ we get

$ad_{u}[I_{\Phi}X, Y]=-R_{o}(I_{o}X, Y)=R_{o}(X, I_{o}Y)$

$=-ad_{u\prime}[X, I_{\sigma}Y]$ .
The linear isotropy representation of $\mathfrak{h}$ on $\mathfrak{m}$ is faithful for the almost
effective affine symmetric space $G/H^{0}$ . Hence we obtain $[I_{\Phi}X, Y]=$

$-$ [$X$, I. $Y$], which proves the proposition.

The following lemma is an easy consequence of 2.5 and $(C_{2}-2)$ .
LEMMA 2.6. Let $\{\mathfrak{g}, \mathfrak{h}, \sigma, I_{o}, \langle, \rangle\}$ be an efective parahermitian sym-



PARACOMPLfX STRUCTURES AND AFFINf SYMMETRIC SPACfS 89

metric system, and $\mathfrak{m}^{\pm}$ be the $\pm 1$-eigenspaces of $I_{0}$ in $\mathfrak{m}$ . Put $\mathfrak{g}_{\pm 1}=\mathfrak{m}^{\pm}$ ,
$\mathfrak{g}_{0}=\mathfrak{h}$ . Then the decomposition $\mathfrak{g}=\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}$ satisfies

$[\mathfrak{g}_{\lambda}, \mathfrak{g}_{\mu}]\subset \mathfrak{g}_{\lambda+\mu}$ .
REMARK. For an almost effective parahermitian symmetric coset

space $G/H$, the distribution $\ovalbox{\tt\small REJECT}^{-\pm}$ defined by $I$ coincides with the G-
invariant distributions obtained from $\mathfrak{m}^{\pm}$ . The leaves of $\ovalbox{\tt\small REJECT}^{-\pm}$ are flat
totally geodesic submanifolds of $G/H$.

\S 3. Semisimple parahermitian symmetric coset spaces.

LEMMA 3.1. Let $\{\mathfrak{g}, \mathfrak{h}, \sigma, I_{0}, \langle, \rangle\}$ be an effective semisimple (that is,
$\mathfrak{g}$ semisimple) parahermitian symmetric system. Then there exists a
unique element $Z^{0}\in \mathfrak{h}$ such that $\mathfrak{h}$ is the centralizer $c(Z^{0})$ of $Z^{0}$ in $\mathfrak{g}$ and
that $I_{o}=ad_{u}Z^{0}$ .

PROOF. Let $\tilde{I}_{o}$ be as in 2.5. It follows from 2.5 that there exists
an element $Z^{0}\in \mathfrak{g}$ such that $\tilde{I}_{0}=adZ^{0}$ , since $\mathfrak{g}$ is semisimple. $\mathfrak{h}$ is con-
tained in $c(Z^{0})$ , since $I_{0}|_{\mathfrak{y}}=0$ . Take $X\in c(Z^{0})$ and put $X=X_{1}+X_{2}$ , where
$ X_{1}\in$ , $X_{2}\in \mathfrak{m}$ . Then we have $0=[Z^{0}, X]=[Z^{0}, X_{2}]$ , and so $X_{2}=I_{0}^{2}X_{2}=$

$[Z^{0}, [Z^{0}, X_{2}]]=0$ , which implies $Xeb$ and $\mathfrak{h}=c(Z^{0})$ . $\{\mathfrak{g}, \mathfrak{h}\}$ being effective,
$ad_{t\mathfrak{n}}X=0$ $(X\in \mathfrak{h})$ implies $X=0$ . Hence we get the uniqueness of the
element $Z^{0}$ .

Let $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ be an effective semisimple symmetric triple. We need
here the following assumption $(C_{3})$ .

(C) There exists an element $Z\in \mathfrak{g}$ such that ad $Z$ is a semisimple
operator having real eigenvalues only and that $\mathfrak{h}=c_{6}(Z)$ .

PROPOSITION 3.2. Let $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ be an effective semisimple symmetric
triple, and $\mathfrak{g}=\mathfrak{g}_{1}+\cdots+\mathfrak{g}_{\epsilon}$ be the decomposition into simple ideals. Sup-
pose that $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ satisfies $(C_{3})$ . Then i) $\mathfrak{g}_{i}(1\leqq i\leqq s)$ is stable under $\sigma$ , ii)
denoting by $\sigma_{i}$ the restriction of $a$ to $\mathfrak{g}_{i}$ and putting $\mathfrak{h}_{i}=\mathfrak{g}_{i}\cap \mathfrak{h}$ , the triple
$\{\mathfrak{g}_{i}, \mathfrak{h}_{i}, \sigma_{i}\}$ is an effective simple (that is, $\mathfrak{g}_{i}$ simple) symmetric triple
satisfying $(C_{3})$ . In other word $s,$ $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ is the direct sum of $\{\mathfrak{g}_{i}, \mathfrak{h}_{\iota}, \sigma_{i}\}$

satisfying $(C_{s})$ .
PROOF. We write $Z$ in the form $Z=Z_{1}+\cdots+Z_{\epsilon},$ $Z_{i}eg_{i}$ . Then it is

easily seen that $\mathfrak{h}_{i}$ coincides with the centralizer $c_{\mathfrak{g}_{i}}(Z_{i})$ of $Z_{i}$ in $\mathfrak{g}_{t}$ , since
$\mathfrak{h}=c_{\mathfrak{g}}(Z)$ holds. Hence we have $\mathfrak{h}=\mathfrak{h}_{1}+\cdots+\mathfrak{h}_{\epsilon}$ . Each $Z_{i}(1\leqq i\leqq s)$ is not
zero. In fact, if $Z_{i}=0$ , then we get $\mathfrak{h}_{i}=\mathfrak{g}_{i}$ , which contradicts to the
effectivity of $\{\mathfrak{g}, \mathfrak{h}\}$ . $\sigma(\mathfrak{g}_{i})$ is a simple ideal of $\mathfrak{g}$ and so, there exists a
$j(1\leqq j\leqq s)$ such that $\sigma(g_{i})=\mathfrak{g}_{j}$ . Suppose that $j\neq i$ . Then we have $\mathfrak{g}_{j}\supset$
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$\sigma(\mathfrak{h})=\mathfrak{h}\subset \mathfrak{g}$ , which is a contradiction. So $\mathfrak{g}_{i}$ is stable under $\sigma$ . Now it
is easily seen that $\{\mathfrak{g}_{i}, \mathfrak{h}_{i}, \sigma\}$ is an effective symmetric triple. The
operator ad $Z$ is the direct sum of the operators ad $Z_{i}$ : hence the triple
$\{\mathfrak{g}, \mathfrak{h}_{i}, \sigma_{i}\}$ satisfies $(C_{s})$ with respect to $Z_{i}e\mathfrak{g}$ .

Let $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ be an effective semisimple symmetric triple. Then, from
3.1 it follows that $(C_{2})$ implies $(C_{8})$ . The following proposition shows the
converse implication: $(C_{8})\Rightarrow(C_{2})$ . Let $\tau$ be a Cartan involution of $\mathfrak{g}$ which
commutes with $\sigma$ , and $\mathfrak{g}=f+\mathfrak{p}$ be the Cartan decomposition with respect
to $\tau$ , where $f$ and $\mathfrak{p}$ are $+1$ and $-1$ eigenspaces of $\tau$ , respectively. Then
we have

PROPOSITION 3.3. Let $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ be an efective semisimple symmetric
triple, satisfying $(C_{\epsilon})$ . Then there exists an element $Z^{0}e\mathfrak{h}\cap \mathfrak{p}$ such that
$\{\mathfrak{g}, \mathfrak{h}, \sigma, I_{o}, \langle, \rangle\}$ is a parahermitian symmetric system, where $I_{o}=ad_{u}Z^{0}$

and $\langle, \rangle$ denotes the restriction of the Killing form of $\mathfrak{g}$ to the $-1-$

eigenspace $\mathfrak{m}$ of $a$ in $\mathfrak{g}$ .
PROOF. We will preserve the notations in the proof of 3.2. Putting

$\mathfrak{m}=\mathfrak{m}\cap \mathfrak{g}_{i}$ , we have the decomposition $\mathfrak{g}=\mathfrak{h}_{i}+\iota \mathfrak{n}$ , which is also the $\pm 1$

eigenspace decomposition under $\sigma_{i}$ . It is easily seen that each $\mathfrak{g}$ is stable
under $\tau$ . We denote by $\tau$ the restriction of $\tau$ to $g_{t}$ . Putting $f=f\cap \mathfrak{g}$

and $\mathfrak{p}_{i}=\mathfrak{p}\cap \mathfrak{g}_{i}$ , we have $\mathfrak{g}_{i}=f+\mathfrak{p}$ , which is the $\pm 1$ eigenspace decomposi-
tion by $\tau_{i}$ . By the choice of $\tau$ , we have $\tau\sigma_{i}=\sigma\tau$ . So $\mathfrak{h}_{i}$ and hence the
center $\delta(\mathfrak{h}_{i})$ of $\mathfrak{h}_{i}$ are stable under $\tau$ . Hence we have

$8(\mathfrak{h}_{i})=\int(\mathfrak{h}_{i})\cap f+\int(\mathfrak{h})\cap \mathfrak{p}_{i}$ .
Since $Z_{i}$ is in $\delta(\mathfrak{h})$ , one can write $Z_{i}$ in the form $Z=Z_{i}^{\prime}+Z^{\prime\prime}(1\leqq i\leqq s)$ ,
where $Z_{i}^{\prime}\in 8(\mathfrak{h}_{i})\cap f,$ $Z_{i}^{\prime\prime}e\mathfrak{z}(\mathfrak{h})n\mathfrak{p}_{i}$ . Then we have ad $Z_{i}=adZ_{i}^{\prime}+adZ^{\prime\prime}$ .
Eigenvalues of the semisimple operators ad $Z^{\prime}$ and ad $Z_{i}^{\prime\prime}$ are all purely
imaginary and all real, respectively. On the other hand, the operator
ad $Z_{i}$ is semisimple with real eigenvalues only. So we get ad $Z_{i}^{\prime}=0$ and
consequently $Z^{\prime}=0$ , which implies $Z_{i}e8(\mathfrak{h}_{i})n\mathfrak{p}_{i}$ . Hence, by a result of $S$ .
Koh [4], the eigenvalues of $ad_{\alpha}Z_{i}$ should be $\pm\lambda_{i}(\lambda_{i}>0)$ . Let us put
$Z^{0}=\lambda_{1}^{-1}Z_{1}+\cdots+x^{-1}Z.\in \mathfrak{y}n\mathfrak{p}$ . Then ad $Z^{0}$ is a semisimple operator; one
has ad $Z^{0}|_{\mathfrak{y}}=0$ and the eigenvalues of ad $Z^{0}|_{\varpi}$ are $\pm 1$ . Therefore $I_{o}=ad_{u},$ $Z^{0}$

satisfies $(C_{1}-1)$ and $(C_{2}-2)$ . Since $\langle, \rangle$ is the restriction of the Killing
form of $\mathfrak{g}$ , it is non-degenerate and the conditions $(C_{1}-3)$ , $(C_{2}-4)$ are
satisfied.

LEMMA 3.4. Let $G$ be a connected Lie group and $C(Z)$ be the



PARACOMPLEX STRUCTURfS AND AFFINf SYMMfTRIC SPACES 91

centralizer in $G$ of an element $Z\in \mathfrak{g}(=LieG)$ . Let $\tilde{G}$ be a covering group
of $G$ and $\tilde{C}(Z)$ be the centralizer of $Z$ in G. Then we have $G/C(Z)=$
$\tilde{G}/\tilde{C}(Z)$ as coset spaces.

The proof is easy and so omitted.

Let $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ be an effective semisimple symmetric triple satisfying
(C)

$,$

$\mathfrak{g}^{c}$ be the complexification of $\mathfrak{g}$ , and $\hat{G}^{c}$ be the simply connected
Lie group with Lie $\hat{G}^{c}=\mathfrak{g}^{c}$ . $\sigma$ is extended to an involutive automorphism
(denoted by the same letter) of $\mathfrak{g}^{c}$ . Let us denote by $\theta$ the conjugation
of $\mathfrak{g}^{c}$ with repect to $\mathfrak{g}$ . $\sigma$ and $\theta$ can be extended to involutive automor-
phisms of $\hat{G}^{c}$ , which are denoted by the same letters.

LEMMA 3.5. Let $\hat{G}$ be the analytic subgroup of $\hat{G}^{c}$ with $Lie\hat{G}=\mathfrak{g}$ ,
$\hat{C}(Z)$ the centralizer of $Z$ in $\hat{G}$ , and $\hat{G}_{\sigma}$ be the set of fixed points of $a$ in
$\hat{G}$ . Th en we have $\hat{G}_{\sigma}=\hat{C}(Z)$ .

PROOF. The set of $\theta- fixed$ points in $\hat{G}^{c}$ , denoted by $(\hat{G}^{c})_{\theta}$ , is connected,
since $\hat{G}^{c}$ is simply connected (cf. Koh [4]). Hence we get $(\hat{G}^{c})_{\theta}=\hat{G}$ . If
we denote by $\hat{C}_{c}(Z)$ (resp. $\hat{C}_{c}(iZ)$ ) the centralizer of $Z$ (resp. $iZ$ ) in $\hat{G}^{c}$ ,
then we have

$\hat{C}_{c}(Z)=\hat{C}_{c}(iZ)$ ;

the group in the right-hand side is connected by R. A. Shapiro [9].
Noting that $\mathfrak{h}^{c}=c_{\mathfrak{g}}(Z)^{C}=c_{6}c(Z)$ , it follows that $\hat{C}_{c}(Z)$ is the analytic sub-
group of $\hat{G}^{c}$ corresponding to the complexification $\mathfrak{h}^{c}$ . And $\mathfrak{h}^{c}$ is the $\sigma-$

fixed set in $\mathfrak{g}^{c}$ . So, denoting by $(\hat{G}^{c})_{\sigma}$ the a-fixed set in $\hat{G}^{c}$ , we have
$(\hat{G}^{c})_{\sigma}=\hat{C}_{c}(Z)$ , since $\hat{G}^{c}$ is simply connected ([4]). Therefore we have

$(\hat{C}_{c}(Z))_{\theta}=((\hat{G}^{c})_{\sigma})_{\theta}=(\hat{G}^{c})_{\sigma}\cap\hat{G}=\hat{G}_{\sigma}$ .
On the other hand, one has $(\hat{C}_{c}(Z))_{\theta}=\hat{C}_{c}(Z)\cap\hat{G}=\hat{C}(Z)$ . q.e.d.

THEOREM 3.6. Let $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ be an effective semisimple symmetric
triple, and $G/H$ be a coset space associated with the triple. Suppose
that $G/H$ is a parahermitian symmetric coset space. Then $\{\mathfrak{g}, \mathfrak{h}, a\}$

satisfies $(C_{3})$ , and $H$ is an open subgroup of the centralizer $C(Z)$ in $G$ .
PROOF. By 2.4 and 3.1, $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ satisfies $(C_{3})$ . The identity com-

ponents of $H$ and of $C(Z)$ coincide. We will next show $H\subset C(Z)$ . Take
an element $h\in H$. Then, by $(C_{1}-2)$ and 3.1 we have $[Ad_{u}, h, ad_{u}, Z]=0$ ,
which implies [Ad $h$ , ad $Z$ ] $=0$ on $\mathfrak{g}$ . So, for an element $Xe\mathfrak{g}$ ,

[$Z$, (Ad $h$) $X$] $=(Adh)[Z, X]=$ [$(Adh)Z$, (Ad $h)X$ ]
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is valid. This shows (Ad $h$)$Z=Z$, since $\mathfrak{g}$ is semisimple.

Conversely we have

THEOREM 3.7. Let $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ be an effective semisimple symmetric
triple satisfying $(C_{3})$ . Then there exists a connected Lie group $G$ with
Lie $G=\mathfrak{g}$ such that the coset space $G/C(Z)$ is associated with $\{\mathfrak{g}, \mathfrak{h}, a\}$ ,
where $C(Z)$ is the centralizer of $Z$ in G. Furthermore, for an arbitrary
open subgroup $H$ of $C(Z)$ , the coset space $G/H$ is a parahermitian sym-
metric space.

PROOF. If we regard $\hat{G}$ in 3.5 as $G$ here, the first assertion follows
from 3.5. We will use the notations in the proof of 3.2 and 3.3. From
3.3, $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ has the structure of a parahermitian symmetric system
$\{\mathfrak{g}, \mathfrak{h}, \sigma, adZ^{0}, \langle, \rangle\}$ . In order to apply 2.4, one has only to verify $(C_{1}-2)$ ,
(C-4). Take an element $h\in H$. Then (Ad $h$)$Z=Z$ holds. We write $Z$ in
the form $Z=Z_{1}+\cdots+Z.$ , where $Ze\mathfrak{g}_{i}$ . So we have $(Adh)Z_{i}=Z$ ; this
implies (Ad $h$)$Z^{0}=Z^{0}$ . Hence we have [Ad $h$ , ad $Z^{0}$] $=0$ . So we see that
$I_{\Phi}=ad_{\mathfrak{w}}Z^{0}$ satisfies $(C_{1}-2)$ . $(C_{1}-4)$ is also satisfied, since $\langle, \rangle$ is the restric-
tion of the Killing form of $\mathfrak{g}$ . Thus, by 2.4, $G/H$ is a parahermitian
symmetric coset space.

EXAMPLE. Let $F$ be the field $R,$ $C$ or $H$, and let us consider the
Lie algebra $\mathfrak{g}=e\downarrow(p+q, F)$ , and the subalgebra $\mathfrak{h}=\S(\mathfrak{g}I(p, F)+\mathfrak{g}I(q, F))$

consisting of all elements of the form

$\left(\begin{array}{ll}X_{1} & 0\\0 & X_{2}\end{array}\right)$

in $\mathfrak{g}$ , where $X_{1}\in \mathfrak{g}I(p, F)$ and $X_{2}\in \mathfrak{g}I(q, F)$ . Define the involutive auto-
morphism $\sigma$ of $\mathfrak{g}$ by putting

$a(X)={}^{t}I_{p,q}XI_{p.q}$ , $Xe\mathfrak{g}$ ,

where $I_{p,q}=diag(E_{p}, -E_{q}),$ $E_{j}$ being the unit matrix of degree $j$ . Then
it is easily verified that $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ is an effective symmetric triple. We
define the element $Z\in \mathfrak{g}$ to be

$Z=\left(\begin{array}{ll}aE_{p} & 0\\0 & bE_{q}\end{array}\right)$ , $(a=-q/(p+q), b=p/(p+q))$ .

Then it follows that $\mathfrak{g}$ is decomposed by ad $Z$ into eigenspaces correspond-
ing to the eigenvalues $0,$ $\pm 1$ , and that $c_{\mathfrak{g}}(Z)=\mathfrak{h}$ . Therefore $(C_{\epsilon})$ is valid
in this case. The simply connected Lie group $\hat{G}^{c}$ generated by $\mathfrak{g}^{c}$ is
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A $eGL(p, F),$ $B\in GL(q, F)$ $(\det A)(\det B)=1\}$

$SL(p+q, C)$ , $SL(p+q, C)\times SL(p+q, C)$ or $SL(2p+2q, C)$ according as
$F=R,$ $C$ or $H$, respectively. The analytic subgroup $\hat{G}$ of $\hat{G}^{c}$ correspond-
ing to $\mathfrak{g}$ is $SL(p+q, F)$ . And the centralizer $\hat{C}(Z)$ of $Z$ in $\hat{G}$ is given by

$\hat{C}(Z)=S(GL(p, F)\times GL(q, F))$

$=\{\left(\begin{array}{ll}A & 0\\0 & B\end{array}\right)$ :

$It\wedge\wedge can$ be verified by direct calculations or by 3.5 that $\hat{G}_{\sigma}=\hat{C}(Z)$ . So
$G/C(Z)=SL(p+q, F)/S(GL(p, F)\wedge\times GL(q, F))$ is a parahermitian symmetric
coset space. $C(Z)$ has two connected components if $F=R$ ; otherwise itis connected.

i) The case $F=R$ .
If $(p,q)\wedge\wedge\neq(1,1)$ , then we have $\pi_{1}(\hat{G}/\hat{C}(Z))\cong Z_{2}$ . The coset space $\hat{G}/\hat{C}(Z)$

(resp. $G/C^{0}(Z)$) is the cotangent bundle of the real (resp. oriented real)
Grassmann manifold (cf. \S 4). If $(p, q)=(1,1)$ , then we have

$\hat{G}/\hat{C}(Z)=SL(2, R)/R^{\times}=SO^{0}(2,1)/SO^{0}(1,1)$ ,

which is realized as the hyperboloid $H^{2}$ of one sheet
$\{(x_{1}, x_{2}, x_{3})eR^{\theta}:x_{1}^{2}+x_{2}^{2}-x_{3}^{2}=1\}$ .

The distributions $\ovalbox{\tt\small REJECT}^{-\pm}$ on $SO^{0}(2,1)/SO^{0}(1,1)$ are realized on $H^{2}$ as two
families of generating lines through each point of $H^{2}$ .

ii) The case $F=C$ or $H$.
In this case, we have $\hat{G}=SL(p+q, C)$ or $SL(p+q, H)$ , which is

simply connected. Consequently, $\hat{G}/\hat{C}(Z)$ is simply connected, and is the
cotangent bundle of the complex or quaternion Grassmann manifold,
according as $F=C$ or $H$.

\S 4. Locally isomorphic parahermitian symmetric spaces.

DEFINITION 4.1. Let $\{\mathfrak{g}, \mathfrak{h}, \sigma, I_{\Phi}, \langle, \rangle\}$ and $\{\mathfrak{g}^{\prime}, \mathfrak{h}^{\prime}, \sigma’, I_{0}^{\prime}, \langle, \rangle\}$ be two
effective semisimple parahermitian symmetric systems. Then they are
said to be isomorphic if there exists an isomorphism $f$ of $\mathfrak{g}$ onto $\mathfrak{g}$

’ such
that $f\cdot\sigma=\sigma^{\prime}\cdot f$ and $f\cdot I_{o}=I_{o}\cdot f$ are valid.

DEFINITION 4.2. Let $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ and $\{\mathfrak{g}’, \mathfrak{h}^{\prime}, \sigma^{\prime}\}$ be effective semisimple
symmetric triples satisfying $(C_{3})$ , and $Z^{0}\in \mathfrak{h},$ $Z^{0}\in \mathfrak{h}^{\prime}$ be the elements in
3.3. Then $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ and $\{\mathfrak{g}’, \mathfrak{h}^{\prime}, \sigma’\}$ are said to be isomorphic if there
exists an isomorphism $f$ of $\mathfrak{g}$ onto $\mathfrak{g}$

’ such that $f\cdot\sigma=\sigma^{\prime}\cdot f$ and $f(Z^{0})=Z^{0}$ .
Let $\mathfrak{g}$ be a real semisimple Lie algebra and $\tau$ be a Cartan involution
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of $\mathfrak{g}$ . Then the pair $\{\mathfrak{g}, \tau\}$ is called a positive definite symmetric graded
Lie algebra if the following conditions are satisfied (cf. Takeuchi [11]):

i) $\mathfrak{g}$ is a graded Lie algebra $\mathfrak{g}=\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}$ with $\mathfrak{g}_{-1}\neq(0)$ , ii) the represen-
tation $\mathfrak{g}_{0}\rightarrow ad_{-1}\mathfrak{g}_{0}$ is faithful, iii) $\tau(\mathfrak{g}_{\lambda})=\mathfrak{g}_{-\lambda}$ $(\lambda=0, \pm 1)$ . Two positive
definite symmetric graded Lie algebras are said to be isomorphic if they

are isomorphic as graded Lie algebras.

PROPOSITION 4.1. There exist one-to-one correspondences between the
following three objects:

a) an effective semisimple symmetric triple satisfying $(C_{2})$ ,
b) an effective semisimple symmetric triple satisfying $(C_{s})$ ,
c) a positive definite symmetr’ic graded Lie algebra.

PROOF. For an effective semisimple symmetric triple $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ , we
consider the following three conditions: i) $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ satisfies $(C_{2})$ : ii) $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$

satisfies $(C_{3})$ : iii) $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ has a structure of a positive definite symmetric
graded Lie algebra. We will first prove that these three conditions are
mutually equivalent. By 3.1 and 3.3, i) and ii) are equivalent. We will
show that ii) implies iii). Let us take $Z^{0}e\mathfrak{h}\cap \mathfrak{p}$ in 3.3 instead of $Z$. Let
$\mathfrak{g}_{0}$ be $\mathfrak{h}$ , and $\mathfrak{g}_{\pm 1}$ be the $\pm 1$-eigenspaces of ad $Z^{0}$ in the $-1$-eigenspace $\mathfrak{m}$

of $\sigma$ in $\mathfrak{g}$ . Then we have $\mathfrak{g}=\mathfrak{g}_{-1}+\mathfrak{g}_{0}+\mathfrak{g}_{1}$ , which is the decomposition into
graded subspaces. Since $\tau$ sends $Z^{0}$ to $-Z^{0}$ , we have $\tau(\mathfrak{g}_{\lambda})=\mathfrak{g}_{-\lambda}(\lambda=0, \pm 1)$ .
Take an element $X\in \mathfrak{g}_{0}$ , and suppose [X, $\mathfrak{g}_{-1}$] $=0$ . Then, by using the fact
that the Killing form of $\mathfrak{g}$ is non-degenerate on $\mathfrak{g}_{-1}\times \mathfrak{g}_{1}$ , we can easily

see that [X, $\mathfrak{g}_{1}$] $=0$ . So we have [X, $\mathfrak{m}$] $=0$ . Therefore, by the effectivity

of $\{\mathfrak{g}, \mathfrak{h}\}$ , we conclude $X=0$ . Thus we have proved that ii) implies iii).

In order to show that iii) implies i), we first define $\sigma$ to be

$\sigma=\left\{\begin{array}{ll}id & on \mathfrak{h}=\mathfrak{g}_{0}\\- id & on \mathfrak{m}=\mathfrak{g}_{-1}+\mathfrak{g}_{1}.\end{array}\right.$

Then $\sigma$ is an involutive automorphism of $\mathfrak{g}$ , which commutes with $\tau$ .
Let $n$ be an ideal of $\mathfrak{g}$ contained in $\mathfrak{h}$ , and take an element $Xe\mathfrak{n}$ . Then
we have [X, $\mathfrak{m}$] $\subset \mathfrak{m}\cap \mathfrak{n}=(0)$ , that is, $ad_{\varpi}X=0$ . Since the representation ad.
of $\mathfrak{h}$ is faithful, we get $X=0$ . Thus $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ is an effective semisimple
symmetric triple. Next we define the linear endomorphism $ I_{\Phi}\sim$ on $\mathfrak{g}$ by

puting $ I_{o}=\lambda(id)\sim$ on $\mathfrak{g}_{\lambda},$
$\lambda=0,$ $\pm 1$ . Then there exists an element $Z^{0}\in f$

such that $\tilde{I}_{\Phi}=adZ^{0}$ (cf. 3.1 and 3.3). Put $I_{\Phi}=ad_{u}Z^{0}$ , and let $\langle, \rangle$ be the
restriction of the Killing form of $\mathfrak{g}$ to $\mathfrak{m}$ . The condition $(C_{2})$ is then
satisfied.

From these arguments it follows that the three objects in 4.1 are in
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one-to-one correspondence. It is easy to see that the above corre-
spondences are compatible with isomorphisms between respective objects.

q.e. $d$ .
Let $\{\mathfrak{g}, \mathfrak{h}, a\}$ be an effective semisimple symmetric triple with $(C_{3})$ ,

and $Z^{0}$ be the element of $\mathfrak{h}$ given in 3.3. And let $G^{*}$ be the adjoint
group corresponding to $\mathfrak{g},$ $U^{*}=N^{*}(u)$ be the normalizer in $G^{*}$ of $u=\mathfrak{h}+$

$\mathfrak{m}^{+}=\mathfrak{g}_{0}+\mathfrak{g}_{1}$ , and $K^{*}$ be the analytic subgroup of $G^{*}$ corresponding to the
maximal compact subalgebra $f$ . Put $K_{0^{*}}=U^{*}\cap K^{*}$ . Then the followings
are known ([7], [10]):

(A) The coset space $M_{0}^{*}=G^{*}/U^{*}=K^{*}/K_{0}^{*}$ is a symmetric R-space,
(B) $u$ is the Lie algebra of $U^{*}$ ,
(C) the subgroup $M^{+}=\exp \mathfrak{m}^{+}$ of $G^{*}$ is simply connected,
(D) $U^{*}=M^{+}\cdot C^{*}(Z^{0})$ (semidirect), where $C^{*}(Z^{0})$ being the centralizer

of $Z^{0}$ in $G^{*}$ ,
(E) $K_{0}^{*}=C^{*}(Z^{0})\cap K^{*}$ ,
(F) $M^{*}=G^{*}/C^{*}(Z^{0})$ is diffeomorphic to the cotangent bundle of $M_{0}^{*}$ .

By using these facts, we can prove the following theorem about the
structure of semisimple parahermitian symmetric spaces.

THEOREM 4.3. Let $\{\mathfrak{g}, \mathfrak{h}, a\}$ be an effective semisimple symmetric
triple satisfying $(C_{3})$ , and let $M=G/H$ be a parahermitian symmetric
coset space associated with $\{\mathfrak{g}, \mathfrak{h}, \sigma\}$ . Then there exists a covering mani-
fold $M_{0}$ of the symmetric R-space $M_{0}^{*}=G^{*}/U^{*}such$ that $M$ is diffeomorphic
to the cotangent bundle $T^{*}(M_{0})$ of $M_{0}$ .

PROOF. Let $U$ be the normalizer of $u$ in $G$ , and $C(Z)$ be the
centralizer of $Z$ in $G$ . Note that $C(Z)=C(Z^{0})$ (cf. the proof of 3.3). Then
$H$ is an open subgroup of $C(Z)$ . From (F) we have $U=M^{+}\cdot C(Z)$ (semi-
direct), where $M^{+}=\exp_{0}\mathfrak{m}^{+}$ . Furthermore we have (cf. 3.4 and $(B)$)
$M^{*}=G^{*}/C^{*}(Z)=G/C(Z)$ and $M_{0}^{*}=G^{*}/U^{*}=G/U=G/M^{+}\cdot C(Z)$ . We define
$M_{0}=G/M^{+}\cdot H$. Then we have the following commutative diagram of the
natural mappings:

$M=G/H-\rightarrow M^{*}=G/C(Z)$

$ M_{0}=G/M^{+}\cdot H\downarrow\rightarrow M_{0}^{*}=G/M^{+}\cdot C(Z)\downarrow$

Let $K$ be the analytic subgroup of $G$ corresponding to $f$ , and $\tilde{K}$ be the
universal covering group of $K$. Since $M_{0}^{*}$ is represented as the coset
space of $\tilde{K}$, so is $M_{0}$ . From this, it follows that $K$ acts transitively
on $M_{0}$ . Putting $K_{0}=K\cap M^{+}\cdot H$, we have $M_{0}=K/K_{0}$ . Also we have
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$K_{0}=K\cap H’$. In fact, let $\pi$ be the natural projection of $G$ onto $G^{*}$ , and
take an element $k=mheK_{0}$ , where $meM^{+}$ , $heH$. We have then
$\pi(k)=\pi(m)\pi(h)$ , where $\pi(k)\in K^{*},$ $\pi(m)eM^{+}$ and $\pi(h)eC^{*}(Z)$ . So, by

the arguments in [10], $\pi(m)$ is the identity, which implies that $m$ is
the identity (cf. $(C)$). Hence we have $k=heH$. Using this and (E), we
can prove by the same arguments as in the proof of (G) (cf. [7], [10])

that the fiber bundle $M\rightarrow M_{0}$ is the associated bundle of the principal
bundle $K\rightarrow K/K_{0}$ with Ad $K_{0}$-module $\mathfrak{m}^{+}$ as the standard fiber, which is
diffeomorphic to the cotangent bundle of $M_{0}$ .

PROPOSITION 4.4. Let $G/H$ be an affine symmetric coset space.
Suppose that $G$ is simple. Then G-invariant paracomplex structures are
unique up to sign.

PROOF. The natural G-invariant paracomplex structure $I_{\Phi}$ on $G/H$ is
given by $ad_{n}Z^{0}$ , where $Z^{0}$ is the one given in 3.3. Let $I$ be an arbitrary

G-invariant paracomplex structure on $G/H$. Then we have

(4.1) $[Ad_{u}H, I]=0$ .
From this it follows that [$Ad_{u}$ exp $tZ^{0},$ $I$] $=0$ , and consequently $[ad_{u\iota}Z^{0}, I]=0$ .
Hence $\pm 1$-eigenspaces $\mathfrak{m}^{\pm}$ of $I_{o}$ are stable by $I$. On the other hand, $\mathfrak{m}$

‘

are irreducible invariant subspaces under $Ad_{u}H$ (cf. Koh [4]). Therefore,
by (4.1), the operators $ I|_{\varpi}\pm$ commute with each operator in $Ad_{r}\pm H$. So,
by Kobayashi-Nomizu [3], we conclude that $ I|_{u}\pm$ are scalar matrices or
the matrices of the form $\lambda(id)+\mu J$, where $J^{2}=-id,$ $x,$ $\mu eR$ . From this
it follows that $I|_{\varpi^{f}}=\pm(id)$ or $\mp(id)$ .

Now we would like to consider the problem: Classify all para-
hermitian symmetric spaces $(M, I, g)$ with $Aut(M, I, g)$ semisimple, up to
paraholomorphic equivalence. Denoting by $G$ the identity component of
$Aut(M, I, g),$ $M$ is represented as the semisimple affine symmetric coset
space $G/H$. It can be proved that there exists a one-to-one correspon-
dence between parahermitian symmetric spaces $(M, I, g)$ with $G=$

$Aut^{0}(M, I, g)$ semisimple and effective semisimple parahermitian symmetric
coset spaces. Therefore, in view of 3.6 and 3.7, in order to classify

parahermitian symmetric spaces with $G$ semisimple up to local para-
holomorphic equivalence, it is enough to classify effective semisimple
symmetric triples satisfying $(C_{\theta})$ . And, by 3.2, this problem is reduced
to classifying simple symmetric triples satisfying $(C_{\epsilon})$ . Furthermore the
last problem is equivalent to classifying simple positive definite symmetric
graded Lie algebras (cf. 4.1). This has been done by Kobayashi-Nagano
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[2]. Taking 4.4 into account, that is enough.
The following is the list of simple symmetric Lie algebras $\{\mathfrak{g}, \mathfrak{h}\}$ ,

which correspond to local paraholomorphic equivalence classes of all para-
hermitian symmetric spaces with $G$ simple. These are taken from
Kobayashi-Nagano [2] and Takeuchi [11].

$\{\mathfrak{g}, \mathfrak{h}\}$
$M_{0}^{*}$

(@I(p+q, $R),$ $6I(p,$ $R)+8I(q,$ $R)+R$) $G_{p,q}(R)$

$(8u^{*}(2p+2q), 8u^{*}(2p)+@u^{*}(2q)+R)$ $G_{p,q}(H)$

$(8I(p+q, C),$ @I(p, $C$) $+6I(q, C)+C)$ $G_{p,q}(C)$

(@u(n, $n$), @I(n, $C)+R$) $U(n)$

$(80(n, n),$ $8I(n, R)+R)$ $SO(n)$

$(@\mathfrak{v}^{*}(4n), \mathcal{B}\iota\iota^{*}(2n)+R)$ $U(2n)/Sp(n)$

(@o(2n, $C),$ @I(n, $C)+C$) $SO(2n)/U(n)$

$(\mathcal{B}\mathfrak{v}(p+1, q+1),$ $\Phi(p, q)+R)$ $Q_{p+1,q+1}(R)$

$(\omega(n+2, C),$ @o(n, $C$ ) $+C$ ) $Q_{n}(C)$

(\S p(n, $R),$ \S I(n, $R)+R$) $U(n)/O(n)$

$(\epsilon \mathfrak{p}(n, n),$ $@u^{*}(2n)+R)$

(@p(n, $C),$ @I(n, $C)+C$ )
$(E_{6}^{1}, @\mathfrak{v}(5, 5)+R)$

$(E_{6},80(1,9)+R)$

$(E_{6}^{c}, @0(10, C)+C)$

$(E_{7}^{1}, E_{6}^{1}+R)$

$(E_{7}^{\$}, E_{6}^{4}+R)$

$(E_{7}^{c}, E_{6}^{c}+C)$

$Sp(n)$

$Sp(n)/U(n)$

$G_{2,2}(H)/Z_{2}$

$P_{2}(O)$

$E_{6}/Spin(10)\cdot T^{1}$

$SU(8)/Sp(4)\cdot Z_{2}$

$T^{1}\cdot E_{6}/F_{4}$

$E_{7}/E_{6}\cdot T^{1}$

In the above list, $G_{p,q}(F)$ denotes the Grassmann manifold of p-planes
in $F^{p+q}$ , where $F=R,$ $C$ or H. $Q_{p,q}(R)$ denotes the real quadric in $P_{p+q-1}(R)$

defined by the quadratic form of signature $(p, q)$ . $Q_{n}(C)$ denotes the
complex quadric in $P_{n+1}(C)$ . $P_{2}(O)$ denotes the octanion projective plane.
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