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Introduction

The purpose of this paper is to give a method of classifying para-
hermitian symmetric spaces with semisimple automorphism groups up to
local paraholomorphic equivalence (see Definition 1.1 for local paraholo-
morphic equivalence). The outline of the classification was given in our
previous paper [1]. In \S 1 we reduce the problem to the classification
of parahermitian symmetric coset spaces of semisimple Lie groups. Prop-
osition 1.6 is the main result in \S 1. In \S 2 we consider the reduction of
the problem to the case where the groups are simple. In \S 3 we give the
main theorem (Theorem 3.4) which establishes a one-to-one correspondence
between parahermitian symmetric spaces with simple automorphism groups
and a certain class of simple graded Lie algebras which was worked out
by Kobayashi-Nagano [2]. The explicit infinitesimal forms of these spaces
are given in the previous paper [1].

The author would like to express his sincere thanks to the Department
of Mathematics, University of Massachusetts at Amherst for their warm
hospitality during the preparation of this paper.

NOTATIONS. The Lie algebra of a Lie group $G$ is denoted by the
corresponding German small letter or Lie G. $G^{0}$ denotes the identity
component of a Lie group G. $\phi_{*p}$ denotes the differential of a map $\phi$ at
$p$ . $T_{p}(M)$ denotes the tangent space to $M$ at $p$ . id denotes the identity
mapping. The Lie group homomorphism and the corresponding Lie algebra
homomorphism are denoted by the same letter unless otherwise stated.

\S 1. Some properties of the automorphism groups.

Let $(M, I)$ be an almost paracomplex manifold, and let $\tilde{M}$ be a cover-
ing manifold of $M$ and $\pi:\tilde{M}\rightarrow M$ be the natural projection.
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LEMMA 1.1. There exists an almost paracomplex structure $\tilde{I}$ on $\tilde{M}$

such that $\pi$ is an almost paraholomorphic map. Furthermore, $I\sim is$

integrable, if and only if I is integrable.

PROOF. Take a point $\tilde{p}\in\tilde{M}$ and put $\pi(\tilde{p})=p$ . Consider a tangent
vector $\tilde{X}\in T_{p}^{\sim}(\tilde{M})$ ( $=the$ tangent space of $\tilde{M}$ at $\tilde{p}$). Let us define a linear
endomorphism $ I_{p}^{\sim}\sim$ of $T_{p}^{\sim}(\tilde{M})$ by putting

$\pi_{*}p\sim(Ip\sim\tilde{X})=I_{p}\pi_{*}\sim\tilde{X}\sim p$

Then it is easily seen that the assignment $ I:\tilde{p}\rightarrow\tilde{I}_{p}^{\sim}\sim$ is smooth and that
$ I\sim$ is an almost paracomplex structure on $\tilde{M}$. For an arbitrary smooth
vector field $X$ on $M$, one can find a smooth vector field $\tilde{X}$ on $\tilde{M}$ which
is $\pi$-related to $X$. Such a vector field $\tilde{X}$ is called a projectable vector
field. Take two projectable vector fields $\tilde{X},\tilde{Y}$ on $\tilde{M}$, and denote by $f$

(resp. $T$) the torsion tensor field of $ I\sim$ (resp. $I$). Then we have $\pi_{*}\tilde{T}(\tilde{X},\tilde{Y})=$

$T(\pi_{*}\tilde{X}, \pi_{*}\tilde{Y})$ . Hence, if $I$ is integrable, then $\tilde{T}$ vanishes for any twc
projectable vector fields. But, this implies that $\tilde{T}$ is identically zero, $sinc\epsilon$

any vector field on $\tilde{M}$ can be expressed as a linear combination of pro.
jectable vector fields over the ring of smooth functions on $\tilde{M}$. This proves
that $ I\sim$ is integrable. The converse implication is also easily derived.

LEMMA 1.2. Let $(M, I, g)$ be a (almost) parahermitian (resp. para.
kahler) manifold with metric $g,\tilde{M}$ be a covering manifold of $M,$ $an\dot{0}$

$\pi:\tilde{M}\rightarrow M$ be the natural projection. Put $ g=\pi^{*}g\sim$ . Then $(\tilde{M}, Ig)\sim,\sim$ is $0$

(almost) parahermitian (resp. parakahler) manifold, where $I\sim is$ the (almost,
paracomplex structure given in Lemma 1.1.

The proof is easy and so omitted. For the definitions see [1].

LEMMA 1.3. Let $(M, I, g)$ be a parahermitian symmetric space ano
$\tilde{M}$ be the universal covering manifold of $M$ endowed with the paracomplen
structure $\tilde{I}$ and with the parahermitian metric $ g\sim$ given in Lemmas 1.1
and 1.2. Then $(\tilde{M},\tilde{I}, g\sim)$ is a parahermitian symmetric $s$pace.

PROOF. $(\tilde{M}, g\sim)$ is a simply connected affine symmetric space witf
respect to the Levi-Civita connection. Therefore one can define the sym,
metry $s_{p}^{\sim}$ at each point $\tilde{p}\in\tilde{M}$ satisfying $\pi\cdot s_{p}^{\sim}=s_{p}\cdot\pi$ , where $s_{p}$ is the
symmetry at $p\in M$ (cf. Kobayashi-Nomizu [3]). It is easy to see that
$s_{p}^{\vee}eAut(\tilde{M},\tilde{I,}g\sim)$ .

We need the following definition.

DEFINITION 1.1. Let $(M, I, g)$ and $(M‘, I^{\prime}, g’)$ be two parahermitian
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symmetric spaces. Then $(M, I, g)$ and $(M^{\prime}, I^{\prime}, g^{\prime})$ are said to be paraholo-
morphically equivalent, if there exists a diffeomorphism $\phi$ of $M$ onto $M$’

such that
(i) $\phi\cdot s_{p}=s,(p)\phi$ for

$forpeMp\in M$
,

(ii) $\phi_{*p}\cdot I_{p}=I_{\phi(p)}^{\prime}\cdot\phi_{*p}$

where $s_{p}$ and $s_{\phi(p)}$ are the symmetries of $M$ and $M^{\prime}$ at $p$ and $\phi(p)$ respec-
tively. $(M, I, g)$ and $(M’, I^{\prime}, g^{\prime})$ are said to be locally paraholomorphically
equivalent, if the universal covering manifolds (endowed with the structures
given in Lemma 1.3) of $M$ and $M^{\prime}$ are paraholomorphically equivalent.

Let $(M, g)$ be a pseudo-Riemannian symmetric space with pseudo-

Riemannian metric $g,$ $I^{0}(M, g)$ be the identity component of the isometry
group, and $L$ be the isotropy subgroup of $I^{0}(M, g)$ at a point $0\in M$. We
denote by $\sigma$ the involutive automorphism of $I^{0}(M, g)$ which is naturally

induced by the symmetry $s_{o}$ at $0$ . We denote also by $\sigma$ the corresponding
automorphism of the Lie algebra $i$ of $I^{0}(M, g)$ . Then we have the eigen-
space decomposition of $\acute{\iota}$ by $\sigma$ :

$i=I+\mathfrak{m}$ ,

where $I=LieL$ and $\mathfrak{m}$ is the $-1$-eigenspace of $\sigma$ .
LEMMA 1.4. Let $Xe\mathfrak{m}$ . For a fixed $t_{0}\in R$ , put $p=\exp t_{0}X\cdot 0,$ $p^{\prime}=$

$(\exp(t_{0}/2)X)\cdot 0$ . Then we have exp $t_{0}X=s_{p^{\prime}}\circ s_{o}$ , where $s_{q}$ denotes the symmetry

at $q\in M$.
PROOF. The proof is quite analogous to that in the Riemannian

case. Note that the linear isotropy representation of $L$ is faithful.

PROPOSITION 1.5. Let $(M, I, g)$ be a parahermitian symmetric space.
Let us denote by $Aut^{0}(M, I, g)$ the identity component of the automorphism
group $Aut(M, I, g)$ . If either one of $I^{0}(M, g)$ and $Aut^{0}(M, I, g)$ is semi-
simple, then we have $I^{0}(M, g)=Aut^{0}(M, I, g)$ .

PROOF. Suppose that $I^{0}(M, g)$ is semisimple. Take $X\in \mathfrak{m}$ . Then for
an arbitrary fixed $t\in R$ , exp $tX$ can be written as a product of two $sym$.
metries (Lemma 1.4). But symmetries are in $Aut(M, I, g)$ . So we have
exp $tX\in Aut(M, I, g)$ , which implies rnca ( $=the$ Lie algebra of $Aut(M,$ $I,$ $g)$).

Since $\mathfrak{i}$ is semisimple, one has $[\mathfrak{m}, \mathfrak{m}]=I$ , and so $1\subset \mathfrak{a}$ . Therefore we have
$\dot{\iota}=\mathfrak{a}$ . The proof in the case that $Aut^{0}(M, I, g)$ is semisimple is quite
similar to that of the next Proposition 1.6, so we can omit it.

The next proposition is an analogue to a well-known fact for a
Hermitian symmetric space.
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PROPOSITION 1.6. Let $(M, I, g)$ be a parahermitian symmetric space
Let $G$ be a connected semisimple Lie subgroup of $Aut(M, I, g)$ , and $E$

be the isotropy subgroup of $G$ at a point $oe$ M. Suppose that $G/H$ is $0$

symmetric coset space and that $M$ is represented in the form $G/H$ as $0$

symmetric coset space. Then we have $G=Aut^{0}(M, I, g)$ .
PROOF. Let $\sigma$ be the involutive automorphism of $G$ which inducef

the given symmetric space structure on $G/H$. It follows from the assump.
tion that the symmetry of $G/H$ at $0$ induced from $\sigma$ coincides with the
symmetry $s_{o}$ of $M$ at $0$ . Hence, if we denote by $\tilde{\sigma}$ the involutive auto.
morphism of $A=Aut^{0}(M, I, g)$ which is induced by $s_{o}$ , then the restriction
of $\tilde{\sigma}$ to $G$ coincides with $\sigma$ . Let $\mathfrak{a}$ and $\mathfrak{g}$ be the Lie algebras of $A$ and
$G$ , respectively. Let us denote by the same notations the involutive
automorphisms of $\mathfrak{a}$ and $\mathfrak{g}$ induced by $\tilde{\sigma}$ and $\sigma$ , respectively. Then $\mathfrak{a}$ and
$\mathfrak{g}$ can be decomposed in the form

(1.1) $\mathfrak{a}=b+\mathfrak{m}$ , $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ ,

where $\mathfrak{h}=LieH,$ $b$ is the isotropy subalgebra of $\mathfrak{a}$ at $0$ , and $\mathfrak{m}$ is the
common $-1$-eigenspace of $\tilde{\sigma}$ and $\sigma$ . Here we have

(1.2) $b\supset \mathfrak{h}$ , $[b, \mathfrak{m}]\subset \mathfrak{m}$ , $[\mathfrak{h}, \mathfrak{m}]\subset m$ .
Also we have (cf. Nomizu [4])

(1.3) $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{h}$ ,

since $G/H$ is an effective symmetric coset space with $G$ semisimple. Our
aim is to prove $b=\mathfrak{h}$ . Take Xeb. In view of (1.3) we have [X, $\mathfrak{h}$] $\subset \mathfrak{h}$ .
Hence ad $X$ leaves $\mathfrak{g}$ invariant (cf. (1.2)). Therefore $ad_{\mathfrak{g}}X$ is a derivation
of $\mathfrak{g}$ . Since $\mathfrak{g}$ is semisimple, there exists an element $X’\in \mathfrak{g}$ such that
(1.4) [X, $Y$] $=[X’, Y]$ , Ye $\mathfrak{g}$ .
We write $X^{\prime}$ in the form $X’=X_{1}^{\prime}+X_{2}^{\prime},$ $X_{1}^{\prime}\in \mathfrak{h},$ $X_{2}^{\prime}\in \mathfrak{m}$ . Then we have
[X, $\mathfrak{m}$] $=[X’, \mathfrak{m}]=[X_{1}^{\prime}, \mathfrak{m}]+[X_{2}^{\prime}, \mathfrak{m}]$ . So, from (1.2) and (1.3) it follows that
$[X_{2}^{\prime}, \mathfrak{m}]=0$ . The same argument shows that $[X_{2}^{\prime}, \mathfrak{h}]=0$ . Therefore $X_{2}=0_{l}$

since $\mathfrak{g}$ is is semisimple. So we have $X’ e\mathfrak{h}$ and consequently $X-X^{\prime}\in b$ .
On the other hand, from (1.4) we have $[X-X’, \mathfrak{m}]=0$ . Since the repre-
sentation $b\rightarrow ad.b$ is faithful, we get $X=X’\in \mathfrak{h}$ . Thus we proved $\mathfrak{g}=\mathfrak{a}$ .

Let $G$ be a connected Lie group and $H$ be a closed subgroup, $\sigma$ be
an involutive automorphism. Suppose that $(G/H, I, g)$ is a parahermitian
symmetric coset space (cf. [1]). Then the quadruple $(G, H, \sigma, I)$ is called
a parahermitian symmetric quadruple. The quadruple is called effective
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semisimple, if the pair $(G, H)$ is effective with $G$ semisimple. For a
parahermitian symmetric coset space $(G/H, I, g)$ with $G$ semisimple, the
metric $g$ is always supposed to be the one induced from the Killing form
of the Lie algebra $\mathfrak{g}$ of $G$ (cf. Proposition 3.3 [1]). We consider the
following two sets:
$ PHSS\wedge$ the set of all parahermitian symmetric spaces $(M, I, g)$ with a base

point $0\in M$, having the semisimple $Aut(M, I, g)$ ,
$ PHSQ\wedge$ the set of all effective semisimple parahermitian symmetric qua-

druples $(G, H, \sigma, I)$ .
PROPOSITION 1.7. There exists a natural bijection $\Phi_{1}$ : $ PHSS\rightarrow PHSQ\wedge$ .
PROOF. We preserve the notations in the proof of Proposition 1.6.

Take $(M, I, g)\in PHSS\wedge$ . Let $B$ be the isotropy subgroup of $A=Aut^{0}(M, I, g)$

at $oeM$. A being transitive on $M,$ $M$ can be expressed as $M=A/B$. Let
us define $\Phi_{1}$ by putting

(1.5) $\Phi_{1}((M, I, g))=(A, B,\tilde{\sigma}, I)$ .
Then $\Phi_{1}$ is obviously injective. The surjectivity of $\Phi_{1}$ follows from Prop-
osition 1.6.

\S 2. Semisimple graded Lie algebras.

DEFINITION 2.1. Let $\mathfrak{g}$ be a real semisimple Lie algebra of non-compact
type, and $Z$ be an element of $\mathfrak{g}$ . Then the pair $(\mathfrak{g}, Z)$ is called an effective
semisimple graded Lie algebra, if the following conditions are satisfied:

(i) $\mathfrak{g}$ is written as
(2.1) $\mathfrak{g}=\mathfrak{g}^{-1}+\mathfrak{g}^{0}+\mathfrak{g}^{1}$ ,

where each $\mathfrak{g}^{\lambda}$ is the N-eigenspace of ad $Z$,
(ii) the pair $(\mathfrak{g}, \mathfrak{g}^{0})$ is effective.
Two effective semisimple graded Lie algebras $(\mathfrak{g}, Z)$ and $(\mathfrak{g}^{\prime}, Z’)$ are

said to be isomorphic, if there exists an isomorphism $f$ of $\mathfrak{g}$ onto $\mathfrak{g}$

’ such
that $f(Z)=Z’$ . The following lemma is a simplification of Proposition 4.1
in [1].

LEMMA 2.1. There exists $a$ one-to-one correspondence between the
following two objects:

(i) an effective semisimple symmetric triple $(\mathfrak{g}, \mathfrak{h}, \sigma)$ satisfying $(C_{2})$

(cf. [1]);
(ii) an effective semisimple graded Lie algebra $(\mathfrak{g}, Z)$ .
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PROOF. The proof is essentially the same as in Proposition 4.1 in [1].
Let $(\mathfrak{g}, \mathfrak{h}, \sigma)$ be an effective semisimple symmetric triple satisfying $(C_{2})$ .
Then $\mathfrak{g}$ is obviously of noncompact type. By Lemmas 2.6 and 3.1 in [1],
there exists a unique element $Z^{0}\in \mathfrak{g}$ such that $(\mathfrak{g}, Z^{0})$ is an effective semi-
simple graded Lie algebra with $\mathfrak{h}=\mathfrak{g}^{0}$ .

Now let $(\mathfrak{g}, Z)$ be an effective semisimple graded Lie algebra, and let
us consider the decomposition (2.1). Then $Z$ is in the center $\int(\mathfrak{g}^{0})$ of $\mathfrak{g}^{0}$ .
Let us define a linear endomorphism $\sigma$ of $\mathfrak{g}$ by putting $\sigma|_{\mathfrak{g}^{0}}=id$ and $\sigma|_{\mathfrak{g}^{1}+\iota^{-1}}=$

-id. Then $\sigma$ is an involutive automorphism of $\mathfrak{g}$ . Let $\tau\sim$ be a Cartan
involution of $\mathfrak{g}$ satisfying $\sigma\tau=\tau\sigma\sim\sim$ , and let $\mathfrak{g}=f+\mathfrak{p}$ be the corresponding
Cartan decomposition, where $f$ and $\mathfrak{p}$ are the +1 and $-1$-eigenspaces of
$\tilde{\tau}$ , respectively. Since $\tilde{\tau}$ leaves $\mathfrak{g}^{0}$ (and consequently $8(\mathfrak{g}^{0})$) invariant, we
have $\int(\mathfrak{g}^{0})=\int(\mathfrak{g}^{0})\cap f+8(\mathfrak{g}^{0})n\mathfrak{p}$ . We can write $Z=Z^{\prime}+Z^{\prime}$ , where $Z^{\prime}e\mathfrak{z}(\mathfrak{g}^{0})\cap f$ ,
$Z‘‘\in z(\mathfrak{g}^{0})n\mathfrak{p}$ . Then, by the same argument as in the proof of Proposition
3.3 in [1], we get $Z’=0$ . Therefore $\tau\sim(Z)=-Z$ and so $\tilde{\tau}(\mathfrak{g}^{\lambda})=\mathfrak{g}^{-\lambda}$ . In par-
ticular, we have dim $\mathfrak{g}^{-1}=\dim \mathfrak{g}^{1}$ . Set $\mathfrak{m}^{\pm}=\mathfrak{g}^{f1},$ $\mathfrak{m}=\mathfrak{m}^{+}+\mathfrak{m}^{-}$ and $I_{o}=ad_{u}Z$.
Furthermore, let $\langle, \rangle$ be the restriction of the Killing form of $\mathfrak{g}$ to $\mathfrak{m}$ .
Then $(\mathfrak{g}, \mathfrak{h}, \sigma)$ satisfies $(C_{2})$ .

Let us denote by $ SGLA\wedge$ the set of all effective semisimple graded
Lie algebras $(\mathfrak{g}, Z)$ . The following lemma is well-known (cf. Proposition
3.2 in [1]).

LEMMA 2.2. Let $(\mathfrak{g}, Z)\in SGLA\wedge$ , and let $\mathfrak{g}=\mathfrak{g}_{1}+\cdots+\mathfrak{g}$. be the decom-
position into simple ideals. Let us write $Z=Z_{1}+\cdots+Z.,$ $Z\in \mathfrak{g}$ . Then
each $Z$ is non-zero, and $(\mathfrak{g}, Z)$ is the direct sum of the simple (that is,
$\mathfrak{g}_{i}$ simple) graded Lie algebras $(\mathfrak{g}_{i}, Z),$ $1\leqq i\leqq s$ .

Now let $(G, H, \sigma, I)\in PHSQ\wedge$ . Let $\mathfrak{g}$ and $\mathfrak{h}$ be the Lie algebras of $G$

and $H$, respectively. Then $(\mathfrak{g}, \mathfrak{h}, \sigma)$ satisfies $(C_{2})$ (cf. [1]). By Lemma 2.1,
there corresponds to it an effective semisimple graded Lie algebra $(\mathfrak{g}, Z)$ .
Let us define the map $\Phi_{2}:PHSQ\rightarrow SGLA\wedge\wedge$ by putting

(2.2) $\Phi_{2}((G, H, \sigma, I))=(\mathfrak{g}, Z)$ .
Suppose that $(M, I, g)ePHSS\wedge$ is simply connected, and let $\Phi_{1}((M, I, g))=$

$(A, B, \delta, I)$ (cf. (1.5)). Let $\mathfrak{a}$ and $b$ be Lie algebras of $A$ and $B$, respec-
tively. Then, by Lemmas 2.1 and 2.2, $\Phi_{2}((A, B, \theta, I))=(\mathfrak{a}, Z)$ can be
decomponsed into the direct sum of simple graded Lie algebras:

(2.3) $(\mathfrak{a}, Z)=(\mathfrak{a}_{1}, Z_{1})\oplus\cdots\oplus(\mathfrak{a}., Z.)$ .
$\tilde{\sigma}$ leaves each $\mathfrak{a}_{i}$ stable (cf. [1]). Put $\tilde{\sigma}=\sigma|_{\iota_{i}}$ and $b_{i}=b\cap \mathfrak{a}_{i}$ . Then it is
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known ([1] and Lemma 2.2) that the symmetric triple $(\mathfrak{a}, b, a)$ is the direct
sum of the symmetric triples $(\mathfrak{a}_{i}, b_{i},\tilde{\sigma}_{i})$ which satisfy $(C_{2})$ .

PROPOSITION 2.3. Suppose that $(M, I, g)\in PHSS\wedge$ is simply connected.
Then $M$ is paraholomorphically equivalent to the direct product of simply
connected parahermitian symmetric spaces with simple automorphism
groups.

PROOF. We preserve the notations above. Let $\tilde{A}$ be the universal
covering group of $A$ , and $\tilde{B}$ be the analytic subgroup of $\tilde{A}$ generated by
$b$ , the Lie algebra of $B$ . Then $M$ is written as the coset space $\tilde{A}/\tilde{B}$. Let
$\tilde{A}_{i}$ and $\tilde{B}_{i}$ be the analytic subgroups of $\tilde{A}$ generated by $\mathfrak{a}_{i}$ and $b_{i}$ , respec-
tively. Then we have

$\tilde{A}=\tilde{A}_{1}\times\cdots\times\tilde{A}_{\iota}$ ,
$\tilde{B}=\tilde{B}_{1}\times\cdots\times\tilde{B}_{s}$ .

By putting $M_{i}=\tilde{A}_{i}/\tilde{B}_{i},$ $M$ can be written as
$M=M_{1}\times\cdots\times M_{\epsilon}$ .

Since $(\mathfrak{a}_{i}, b_{i},\tilde{\sigma}_{i})$ satisfies $(C_{2})$ , and since $\tilde{B}_{i}$ is connected, the coset space
$\tilde{A}_{i}/\tilde{B}$ endowed with the metric induced from the Killing form of $\mathfrak{a}_{i}$ satisfies
the condition $(C_{1})$ in [1]. Hence $M_{i}=\tilde{A}_{i}/\tilde{B}_{i}$ is a parahermitian symmetric
space (cf. [1]). It is easy to see that the natural diffeomorphism of $M$

to $M_{1}\times\cdots\times M.$ gives a paraholomorphic equivalence.

PROPOSITION 2.4. Let $(\mathfrak{g}, Z)eSGLA\wedge$ . Let $G^{*}$ be the adjoint group
corresponding to the Lie algebra $\mathfrak{g}$ , and let $C^{*}(Z)$ be the centralizer of $Z$

in $G^{*}$ . Then $G^{*}/C^{*}(Z)$ is an effective parahermitian symmetric coset
space.

PROOF. Let $G^{c}$ be the simply connected Lie group corresponding to
the Lie algebra $\mathfrak{g}^{c}$ , the complexification of $\mathfrak{g}$ , and let $G$ be the analytic
subgroup of $G^{c}$ generated by $\mathfrak{g}$ . By Lemma 2.1, to $(\mathfrak{g}, Z)$ there corresponds
the effective symmetric triple $(\mathfrak{g}, \mathfrak{h}, \sigma)$ such that $\mathfrak{h}$ is the centralizer $c(Z)$

of $Z$. The involutive automorphism $\sigma$ here can be extended to the in-
volutive automorphism of $G$ , which is denoted by the same letter $\sigma$ . It
is known [1] that

(2.4) $C(Z)=G_{\sigma}$ ,

where $C(Z)$ denotes the centralizer of $Z$ in $G$ , and $G_{\sigma}$ denotes the a-fixed
set in $G$ . Let $\pi$ be the covering homomorphism of $G$ onto $G^{*}$ , and $\sigma^{*}$
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be the involutive automorphism of $G^{*}$ induced by $\sigma$ . Then we have

(2.5) $\sigma^{*}\cdot\pi=\pi\cdot\sigma$ .
Therefore it follows that

$C^{*}(Z)=\pi(C(Z))=\pi(G_{\sigma})\subset G_{\sigma^{*}},$

where $G_{\sigma^{*}}$ denotes the $\sigma^{*}- fixed$ set in $G^{*}$ . On the other hand (2.5) implies
that the Lie algebra of $G_{\sigma}$ is isomorphic to that of $G_{\sigma}$. under $\pi$ . Hence
we have

$(G_{\sigma}.)^{0}=\pi((G_{\sigma})^{0})=\pi(C^{0}(Z))\subset\pi(C(Z))=C^{*}(Z)$ .
Thus we have proved $(G_{\sigma}.)^{0}\subset C^{*}(Z)\subset G_{\sigma^{*}}$ . Therefore, by the same arguments
as in the proof of Theorem 3.7 [1], we conclude that $G^{*}/C^{*}(Z)$ is an effec-
tive parahermitian symmetric coset space.

\S 3. Classification theorem.

LEMMA 3.1. Let $(M, I, g),$ $(M^{\prime}, I^{\prime}, g^{\prime})\in PHSS\wedge$ , and let $\Phi_{2}\Phi_{1}((M, I, g))=$

$(\mathfrak{g}, Z)$ and $\Phi_{2}\Phi_{1}((M’, \Gamma, g’))=(\mathfrak{g}’, Z^{\prime})$ . If $(M, I, g)$ and $(M^{\prime}, \Gamma, g’)$ are locally
paraholomorphically equivalent, then $(\mathfrak{g}, Z)$ and $(\mathfrak{g}^{\prime}, Z^{\prime})$ are isomorphic.

PROOF. Without loss of generality, we can assume that $M$ and $M$’

are simply connected and that there exists a diffeomorphism $\phi$ of $M$ onto
$M$’ satisfying the conditions (i), (ii) in Definition 1.1. Let $0$ and $0^{\prime}$ be the
base points of $M$ and $M$’ respectively. Let $\Phi_{1}((M, I, g))=(A, B, \sigma, I)$ and
$\Phi_{1}((M’, I’, g^{\prime}))=(A^{\prime}, B^{\prime}, \sigma^{\prime}, I’)$ . Let us denote by $G$ and $G^{\prime}$ the universal
covering groups of $A$ and $A$’ respectively, and extend $\sigma$ and $\sigma$

’ to the
involutive automorphisms of $G$ and $G’$ , which are denoted by the same
letters. We represent $M$ and $M^{\prime}$ as $M=A/B=G/H$ and $M=A’/B’=G’/H^{\prime}$ ,
where $H$ and $H^{\prime}$ are the (connected) isotropy subgroups of $G$ and $G^{\prime}$ at
$o$ and $0’$ , respectively. Consider the eigenspace decompositions of the Lie
algebras $\mathfrak{g}=LieG$ and $\mathfrak{g}^{\prime}=LieG$

’ by $a$ and $\sigma’$ :

(3.1) $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ , $\mathfrak{g}^{\prime}=\mathfrak{h}^{\prime}+\mathfrak{m}^{\prime}$ ,

where $\mathfrak{h}=LieH$ and $\mathfrak{h}^{\prime}=LieH’$ . Since $A$ and $A$’ are semisimple, we have
(cf. (1.3))

(3.2) $[\mathfrak{m}, \mathfrak{m}]=\mathfrak{h}$ , $[\mathfrak{m}’, \mathfrak{m}^{\prime}]=\mathfrak{h}^{\prime}$ ,

From this it follows that $A$ (resp. $A’$) is generated by exp $\mathfrak{m}$ (resp. exp $\iota \mathfrak{n}^{\prime}$)
(cf. [5]). Therefore, by Lemma 1.4, every element of $A$ (resp. $A^{\prime}$) is
expressed as a product of symmetries of $M$ (resp. $M’$). By using this



PARAHERMITIAN SYMMETRIC SPACES 481

and the condition (i) of Definition 1.1, we can conclude $\phi A\phi^{-1}=A^{\prime}$ . Making
the composite of $\phi$ with an element of $A$ ’ if necessary, we can assume
further $\phi(0)=0’$ . Let us consider the isomorphism $\tilde{\phi}:A\rightarrow A$

’ defined by
$\tilde{\phi}(a)=\phi\cdot a\cdot\phi^{-1},$ $a\in A$ . By extending $\tilde{\phi}$ to an isomorphism of $G$ onto $G^{\prime}$

(denoted by the same $\tilde{\phi}$), we have the following commutative diagram

(3.3)
$\pi\downarrow G\rightarrow G^{\prime}\tilde{\phi\phi}\downarrow\pi^{\prime}$

$G/H\rightarrow G’/H$ ’

where $\pi$ and $\pi^{\prime}$ are the natural projections. Let us identify the tangent
spaces $T_{o}(G/H)$ and $T_{o^{\prime}}(G^{\prime}/H^{\prime})$ with $\mathfrak{m}$ and $m’$ , respectively. Then it is
easy to see that

(3.4) $\tilde{\phi}|_{\iota \mathfrak{n}}=\phi_{*0}$ .
Since $\phi$ is paraholomorphic, we have

(3.5) $\phi_{*0}\cdot I_{o}=I_{o}^{\prime},.\phi_{*0}$

From the equalities $I_{o}=ad_{m}Z$ and $I_{0}^{\prime},=ad_{u^{\prime}}Z^{\prime}$ , and from (3.4) and (3.5) it
follows that

(3.6) $\tilde{\phi}\cdot adZ=adZ^{\prime}\cdot\tilde{\phi}$ ,

which implies that $\tilde{\phi}(Z)=Z^{\prime}$ .
LEMMA 3.2. Let $(M, I, g)$ and $(M^{\prime}, I’, g^{\prime})$ be parahermitian symmetric

spaces with semisimple automorphism groups. Let $\Phi_{2}\Phi_{1}(M, I, g))=(\mathfrak{g}, Z)$

and $\Phi_{2}\Phi_{1}((M’, I’, g^{\prime}))=(\mathfrak{g}^{\prime}, Z^{\prime})$ . If $(\mathfrak{g}, Z)$ and $(\mathfrak{g}^{\prime}, Z^{\prime})$ are isomorphic, then
$(M, I, g)$ and $(M^{\prime}, I^{\prime}, g^{\prime})$ are locally paraholomorphically equivalent.

PROOF. $M$ and $M^{\prime}$ can be assumed to be simply connected. Let $G$

and $G^{\prime}$ be the simply connected Lie groups corresponding to $\mathfrak{g}$ and $\mathfrak{g}^{\prime}$ ,
respectively. By the assumption, there exists a graded isomorphism $\tilde{\phi}$ of
$\mathfrak{g}$ onto $\mathfrak{g}$

’ which can be extended to the isomorphism of $G$ onto $G’$ , which
is denoted by the same $\tilde{\phi}$ . Consider the subalgebras $\mathfrak{h}=\mathfrak{g}^{0}\subset \mathfrak{g}$ and $\mathfrak{h}’=\mathfrak{g}^{\prime 0}\subset$

$\mathfrak{g}^{\prime}$ . Let us denote by $H$ and $H$’ the analytic subgroups of $G$ and $G$ ’

generated by $\mathfrak{h}$ and $\mathfrak{h}^{\prime}$ , respectively. Then $M$ and $M^{\prime}$ can be written as
$M=G/H$ and $M’=G^{\prime}/H$ . On the other hand we have $\tilde{\phi}(\mathfrak{h})=\mathfrak{h}^{\prime}$ , which
implies $\tilde{\phi}(H)=H^{\prime}$ . So $\tilde{\phi}$ induces a diffeomorphism $\phi$ of $G/H$ onto $G^{\prime}/H$

’

for which the diagram (3.3) is valid. $\tilde{\phi}$ being a graded isomorphism, the
relation (3.6) is valid. So (3.5) is valid. Therefore, from the invariance
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of $I$ and $I^{\prime}$ under $G$ and $G^{\prime}$ , it follows that $\phi_{*p}\cdot I_{p}=I_{(p)}^{\prime}\cdot\phi_{*p}$ for each
$p\in M$.

Let $0\in M$ and $0^{\prime}\in M$’ be the base points, and let $\sigma$ and $\sigma$

’ be the
involutive automorphisms of $G$ and $G$‘, respectively. Then, considering
the gradations of $\mathfrak{g}$ and $\mathfrak{g}$‘, we have $\tilde{\phi}\cdot\sigma=\sigma’\cdot\tilde{\phi}$, from which it follows
that $\phi$ satisfies the condition (i) in Definition 1.1.

Thus we have the following classification theorem.

THEOREM 3.4. Let PHSS be the set of local paraholomorphic equiva-
lence classes of all parahermitian symmetric spaces with semisimple
automorphism groups, and let SGLA be the set of all isomorphism classes
of noncompact semisimple graded Lie algebras (in the sense of Definition
2.1). Then there exists a bijection $\Phi$ of PHSS onto SGLA.

PROOF. Take $(M, I, g)\in PHSS\wedge$ and consider the equivalence class
$[(M, I, g)]\in$ PHSS. Let $\Phi_{2}\Phi_{1}((M, I, g))=(\mathfrak{g}, Z)$ , and let $[(\mathfrak{g}, Z)]$ be the cor-
responding isomorphism class in SGLA. We define $\Phi$ by putting

$\Phi([(M, I, g)])=[(\mathfrak{g}, Z)]$ .
Then $\Phi$ is well-defined by Lemma 3.1, and is one-to-one by Lemma 3.2.
Propositions 1.6 and 2.4 imply that $\Phi$ is surjective.

The set SGLA was determined by Kobayashi-Nagano [2] and we get
the table of classification of parahermitian symmetric spaces with simple
automorphism groups, which was already given in [1].
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