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Introduction

Let X be a real Banach space and X’ be its dual space. In this
paper, we characterize the (maximal) cyclical monotonicity of a w*-
Gateaux differentiable (nonlinear) operator: X— X’, by means of the
Gateaux derivative. Our result is a nonlinear version of the well-known
proposition; A linear and densely defined maximal monotone operator in
a Hilbert space is cyclically monotone if and only if it is self-adjoint.

We give an equivalent condition for a w*-Giteaux differentiable
operator from X to X’ to be cyclically monotone, under some assumptions.
Furthermore we give sufficient conditions for a (w-)Gateaux differentiable
operator in a Hilbert space to be maximal cyclically monotone. For
instance, our Corollary 1 says that an operator A in a Hilbert space is
maximal cyclically monotone, if §A(x), the minimal closed extension of the
Gateaux derivative of A at x, is positive self-adjoint for each x in the
domain of A, under a suitable assumption.

§1. Preliminaries.

Throughout this paper we use the following notations and definitions.

X denotes a real Banach space with norm || |, and X’ denotes its
dual space. We denote by (x, f) the pairing between x€ X and fe X'.
Especially if X is a real Hilbert space, (, ) is the inner product and we
use the notation H instead of X.

For a subset S of X, S denotes the closure of S in X.

Let A be an operator from X to X’. D(A) denotes the domain of
A and R(A) denotes the range of A. We denote the minimal closed
extension of A by A.
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Let A be a linear operator from X to X’. A is said to be symmetric
if (x, Ay)=(y, Ax) for every x and y in D(A). A is said to be positive
if (x, Ax)=0 for every x in D(A).

A (multi-valued) operator A in H is said to be monotone if (x,—z,,
x;—2;)=0 whenever x;¢c Ax,, 1=1, 2. A monotone operator A is said to
be maximal monotone if it has no monotone extensions in H. It is well-
known that a monotone operator A in H is maximal monotone if and
only if R(I+nA)=H for some \>0.

A (multi-valued) operator A: X— X’ is said to be cyclically monotone
if >, (x,—2,_, 2)=0 whenever z;¢ Ax, 2,=2x, z,=x,. A cyclically
monotone operator A is said to be maximal cyclically monotone if it has
no cyclically monotone extensions from X to X'.

Let ¢: X—(— oo, oo] be a convex functional. Also assume that ¢ is
proper, i.e. that its effective domain D(g)={x € X; ¢(x)< =} is nonempty.
Then the subdifferential of ¢ is defined by

0p(x)={z € X'; o(w)—d(x)=(w—=, z) for all we X}.

0¢: X— X' is cyclically monotone. Furthermore, it holds that an operator
A: X— X' is maximal cyclically monotone if and only if A=0d¢ for some
lower-semicontinuous proper convex functional ¢.

DEFINITION. Let A: X— X’ be a single-valued operator with convex
domain. We shall say that A is Gdateaux differentiable on D(A) if there
is a linear operator dA(x): X— X' such that

(1) lim LiA@+ay)—An) =A@y for Yye X' with z+ye D(A),

z+1y e D(4)

for every x e D(A). Furthermore, dA(x) is called the Gdteauxr derivative
of A at x. If the convergence in (1.1) is in the weak (resp. w*)-
topology, we say that A is w (resp. w*)-Gdteaux differentiable.

§2. Theorem and proof.

THEOREM. Let A: X— X' be a w*-Gateaux differentiable operator on
convex domain D(A) and w*-continuous on every 2-dimensional subset in
D(A). Then the following three conditions are equivalent.

1°) A: X— X' is cyclically monotone.

2°) 8A(x): X— X' s cyclically monotone for each x € D(A).

3°) 0A(z): X— X' is positive symmetric for each x¢c D(A).
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REMARK 1. Let A be an operator in a Hilbert space H. Suppose
that there is a dense Banach space Y such that YCH=H'cY’, and
A: Y—Y’ such that A=A, (the restriction of A to D(A,)={x; Ax e H}).
If A: Y—Y' is cyclically monotone, then A is cyelically monotone in H.
Hence, if A satisfies the hypothesis of Theorem and the condition 2°) or
3°), then A is cyclically monotone.

To prove Theorem, we shall show the following lemmas.

LEMMA 1. Let A: X— X' be an operator with convex domain, and
be w*-continuous on every l-dimensional subset in D(A). Suppose that
there is x,€ D(A) such that

2.1) | @, A +sunds+| @ AG+y+sods

={ w+e A@+s+2)ds
Jor every y, ze X with x,+y, x,+y+zeDA). If ¢ is defined by
(2.2) o(x)= S: (x— 20, A2y +s(x—2,)))ds Jor xeD(A),

then for each x, y € D(A), the function tro(x+t(y—x)) is differentiable
on [0, 1] and

L atty—a)=—= A@w+ty—a) for 0=tsl.

PrROOF. Let u and v be any elements of D(A). We put v,=v—u.
Taking y=u—x,+tv,, z=hv, (0=¢, t+h<1) in (2.1), we have

s(u+tv,)+ Sl (hv,, A(u+tv,+shv,))ds
0
=g¢(u+tv,+hv,) .

Hence, we have that
2.3) T+ (E+ o) — $lu-+ b))
=Sl (v, A(u+tv,+shv))ds .

Since (v,, A(u+tv,+shv,)) is continuous in k, by letting A — 0, the right-
hand side of (2.3) converges to (v,, A(u+tv,)). Thus the assertion holds.



250 TAEKO SHIGETA

LEMMA 2. Let A: X— X' be a cyclically monotone operator with
convex domain, and be w*-continuous on every l-dimenstonal subset in
D(A). Then A satisfies the hypothesis of Lemma 1.

ProOOF. Let z, x4y and x2+y+2 be any elements of D(A). We set
a:,=a:+-3’—y, y,-=ac+y+l—z ) z,,=x+ﬁ(y+z)
n n n
for ¢, 7, k=0,1, ---, ». From the covexity of D(A) we have
Ty Yi 2 € D(A)

for 4, 7, k=0,1, ---, n. From the definition of x, ¥; and z,, we have
To— &= 1/0)Y, Yin—¥;i=A/n)2, 2,—2,=—QA/n)y+2) for 4,75, k=0,
1, -+, n—1. Thus, for the cyclical sequence {x=2x, %, *+*, T,=T+ Y=Y,
Y * oy Yn=B+Y+2=2, Zy_y, ***» Ze=T=12%,}, We use the cyclical mono-
tonicity of A to have

n—1 1 n 1 n 1
(2.4) 5 (Lw+2), 42)=3 (20, an)+ 35 (2 4vy) -

k=0 \ N =1\ §=1 n

Similarly, for {2z, 2, ***) 2a=Ym Yn-1 ** s Y= Tp_yy ***, Lc=2o}, W€ USE
the eyclical monotonicity of A to have

2.5) Py (%(y +2), Az,)2 5, (%y, Az,) +z;‘, (%L-z Ay,) .

=1

Letting n— o in (2.4), we get
S (Y+z, A@x+t(y+2)))dt
< So (y, A+ ty))dt+ S: (2, A(x+y+t2))dt .

Letting n— o in (2.5), the reverse inequality holds in the above. Hence
we obtain (2.1) for any « € D(A).

LEMMA 3. Let u(t, s) and v(t, s) be partially differentiable and con-
tinuous real-valued functions on a simply connected domain DC R? and

suppose that (0u/ot)=(0v/os) on D. Then SQ (uds+vdt)=0 for every
polygon Q in D.

PrROOF. If w and v are C‘'-class functions on D, we have the con-
clusion by Green’s theorem. Thus the assertion of Lemma 3 follows by
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using the mollifier.

LEMMA 4. Let A: X— X' be a w*-Gdteaux differentiable operator on
convex domain D(A) and w*-continuous on every 2-dimensional subset in
D(A). If 6A(x) is symmetric for each xe D(A), then A satisfies the
assumption of Lemma 1.

PrROOF. Let 2, ¥ and 2z be elements of X with #, z+y and z+y+
z€D(A). We set

P= S: (y, A(x+sy))ds+ S: (2, A(x+y+sz))ds
| Wtz A@+sw+ands .

We have only to prove that P=0. If y and z are linearly dependent,
this is trivial from the definition of the integral. Hence, we may assume
that ¥ and 2z are linearly independent. We set '

9(t, 8)=(y, Alx+ty+sz))
h’(t’ s)=(z, A(x+ty+sz)) .

Since D(A(x)) D> D(A)—x for every x e D(A), D(A) is convex and A is w*-
continuous on every 2-dimensional subset in D(A), we easily see that g
and h are partially differentiable and continuous on domain D>{(, s);
0<s<t<1}). Moreover we have

%—g(t, 8)=(y, 0A(x+ty+82)z)

_(%_h(t, 8)=(z, 0A@@+ty+s2)y) .

Noting that dA(x+ty+sz) is symmetric, these imply that

0 0
—g(t, 8)=—n(t, D.
asg( s) o (¢, 8) on

Hence, applying Lemma 38 to u=h, v=g and Q={{ 0);0=t<1}U
{1, 5); 0=s=1}U{(®, t); 0=t=<1}, we obtain that

P=SQ (9(t, 8)dt+h(t, 8)ds)=0 .

Now we ‘shall prove Theorem.
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PROOF OF THEOREM. “8°) implies 1°).” Suppose that 3°) holds. Then
it holds by Lemma 4 that A satisfies the hypothesis of Lemma 1. Let
¢ be the functional on D(A), defined by (2.2), which satisfies the conclu-
sion of Lemma 1. We extend ¢ on X, (which denotes the same ¢) as
follows: ¢(x)=co for x ¢ D(A). We devide the proof of 3°)=1°) into the
following two steps.

1) We shall show that ¢: X—(— o, ] is convex and proper. Since
D(A)# @, ¢ is proper. Thus we only need to prove the convexity of ¢,
i.e.,

tp(x) + (1 —t)p(y) 2 p{tz + (1 — )y}

for x,ye X, 0<t<1l. Since D(A) is convex and ¢(x)=c for x¢ D(A),
the last inequality is trivial when z or y ¢ D(A). Thus we have only to
show that ¢ is convex on D(A). Let x and y be any elements of D(A).
Then, for 0<t<1, we have

dz o @ -

(2.6) EZ;¢(x+t(y x))= 7 (y—=, Alx+t(y—x)))
=(y—2, 0A@+t(y—x))(y—x))
=0.

At the last inequality of (2.6), we used the positivity of dA(x+i(y—=x)).
(2.6) implies that ¢ is convex on D(A).

2) We shall show that Acadg. Let x, y € D(A), and £t€(0,1). From
1), we have

p@+t(y—x)=¢((l—t)x+iy) =AU —t)¢(x) +ts(¥y) .

Therefore,
—1—{¢(w+t(y—x))—¢(x)}§¢(y)—¢($) :

Letting ¢|0, it follows from the property of ¢ that
(y—=, Ax)=¢(y)—o(x) .

This inequality is obviously true for y which is not in D(A). Therefore,
x € D(0g) and AxCog(x) if x € D(A). This implies that Acodg. Hence, A
is cyclically monotone.

“1°) imples 2°).” Suppose that 1°) is satisfied. Let x be any fixed
element of D(A). We must show that 6A(x): X— X’ is cyclically monotone.
Let z, x, -+, x,=%,€ D(0A(x)). Then there is an 7>0 such that
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x+te, e D(A) for |tl<y (=1, «--,m).

Since A is cyclically monotone, we have

n

> (ta,—xy), Alx+1tx,))=0 .

i=1

Therefore,
3t Alw+tz)— A@) 20 .
Dividing this inequality by #*(>0), and letting ¢|0, we obtain
g (@0, —,_1y SA@)L)=0 .

This implies that 6A(x) is cyclically monotone.

“2°) implies 3°)”. Suppose that 2°) holds. Let x be any fixed element
of D(A). We must show that dA(x) is positive symmetric. We set B=
0A(x). The monotonicity of B means that B is positive. Thus, we have
only to show that (y, Bz)=(z, By) for Yy, vz € D(B). Applying Lemmas 1, 2
with A=B and z,=0, we have

-;—ttﬁ(y +12) ;== (2, BY) ,

where ¢(w)=S: (w, B(tw))dt=(1/2)(w, Bw) for weD(B). Therefore we
obtain that

(2, By)=lim <-p(y +t2)—$(0)}
=1§£€‘ —2};{(?/+tz, B(y+tz))—(y, By)}
—-—%(y, Bz>+%<z, By) .

This yields that (2, By)=(y, Bz), and the proof is complete.

From the next two theorems and our Theorem, we get a sufficient
condition for the maximal ecyclical monotonicity.

THEOREM A (see [4]). Let B: H—H be a positive definite (i.e.,
inf, 55 11s11=1 (&, Bx)>0), self-adjoint operator. Then R(B)=H.

THEOREM B (see F. E. Browder [2] Corollary 2 to Theorem 2). Let
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A be a Gdateaux differentiable operater im H with convex domain and
closed range. If R(6A(x)) is dense in H for every x € D(A), then R(A)=H.

COROLLARY 1. Let A be a Gateaux differentiable closed operator in
H with convex domain, and suppose that A is w-continuous on every two
dimensional subset in D(A). If 0A(x) is positive self-adjoint for each
x € D(A), then A is maximal cyclically monotone, i.e., there is a proper
lower-semicontinuous convex functional ¢: H—(— oo, co] such that A=0op.

ProOF. By Theorem, we have that A is cyclically monotone. Thus
it suffices to show that R(I+A)=H. Since I+0A(x) is a positive definite,
self-adjoint operator in H, it follows from Theorem A that R(I+dA(x))=H,
which implies that R(I+0A(x)) is dense in H. From the monotonicity
and the closedness of A, it is easily seen that R(I4+ A) is closed in H.
Therefore, we apply Theorem B to an operator I+ A to get R(I+ A)=H.

REMARK 2. Let z, be an element of D(A). If we define ¢ as

S (@—0, A@wo—t@—z))dt  for «eD(A),
#(x)=1{ lim inf ¢(¥) for e D(A)\D(A),

y—z,y € D(4)

oo for x¢ D(A),

then ¢ satisfies the conclusion of Corollary 1.

In fact, from the proof of Theorem, ¢: H—(— o, o] is proper, convex
and Acog. Hence ¢(y)=d¢(x)+(y—=, Ax) for x, y € D(A), which implies
that liminf, ., ,cps ¢(¥)=¢(x) for x € D(A). Thus ¢ is lower-semicontinu-
ous, and the maximal monotonicity of A implies that A=0d¢.

The next corollary also follows from Theorem.

COROLLARY 2. Let Y be a reflexive Banach space such that YCHCY’
with the continuous and dense inclusion. Let A: Y—Y' be an operator
which ts everywhere defined on Y, coercive, w-Gateaux differentiable and
w-continuous on every 2-dimensional subset of Y. If 6A(x): Y—Y' is a
positive symmetric operator for each xc Y, then A=A, (see Remark 1)
18 maximal cyclically monotone operator im H, i.e., there is a proper
lower-semicontinuous convex functional ¢: H—(— co, o] such that A=0as.

PROOF. A is a cyclically monotone operator in H, by Remark 1. On
the assumption of this corollary, A is maximal monotone in H (see [1,
Example 2.3.7]). Hence, A is maximal cyclically monotone in H.
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REMARK 3. The functional ¢: H—(— o, o] defined in Remark 2
satisfies the conclusion of Corollary 2 also.

In fact, the functional ¢g: Y —(—o, ] defined by ¢&)=
1 ~
S (x—x, A(x,—t(x—ux,)))dt for x e Y is proper, convex and A=dg in Y X Y,
0
from the proof of Theorem. Hence, we easily have that A=d¢ in Hx H
and ¢ is a proper lower-semicontinuous convex functional from H to

(—' oo, oo],

§3. Example.

In this section, we give an example of Corollary 2.

Let 2CR" be a bounded damain with smooth boundary 02. (9/ox,),
t=1, -++, n, denote distributional derivatives. ﬁl(g) is the usual Sobolev
space which consists of {u € L*(Q); (8/ox)u € L*(R2) 1=1, +--, n, u=0 on 92}.
H(R2) denotes the dual space of ﬁl(!)). Let A: I%I(Q)—>H'1(Q) be an
operator such that

Au'-:—i 0 a’j(w’ WUy un) (ueﬁl(ﬂ)) ’

i=1 0X;
where
u,=-£::u , =1, , Ty

ai®, Uy <00y W)t (Uyy * o0, U,) € (LA(Q2)— LHD) ,
3.1 a;x, +, +++, -)eC(R™ for each fixed z€92,
(3.2) ai,, a;= a‘ij a(=ag) ,
(3.3) lap(@, Y+« Y)ISM for Yxe®, Vy,eR (i=1, :--,n),
(3.4) ; Gtz S & (Ga>0) (uniformly elliptic) .

3yk=1 Jj=1

A=A4,: LX(2)— L¥Q) is an operator defined by
D(A)={ue H(Q); Aue L}Q)}, Au=ZAu for ueD(A).
Then A is a maximal cyclically monotone operator in H.

PrROOF. We set H=L*Q) with norm ||-||=]+|lz20, and Y=I-°I‘(Q) with
norm |||-|]|=]|*|lz1e- We have only to show that the hypothesis of
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Corollary 2 are satisfied. We put ou=(u, -+, u,). It is well-known
that Y is reflexive.

1) First, we show that A is w-Fréchet differentiable on Y (and
therefore A is w-Gateaux differentiable and w-continuous on Y) with

3E(u)v= - > —a—'(ajk(x’ o)) -
ik=1 0 ;
Let u, we Y be any fixed elements. It suffices to show that

I[lv lll(w’ Atut+v)—Au+ Z —-(a,k(x, ou)v,)) —0

as |||v]|| 0. By (3.1), it holds that

(w, Au+v)—Au)=3, (w;, a;(x, 0(u+0))—ay(x, o))

n L
= Z Wi,
=1 auk

k=1

6u+0,,,av)v,,)
for some 4, , with 0<6,,<1. Hence we have that

o ”l(w, A(u+v)— Au+ z. -—(a,,,(x, au)'v,,))

=m2(w,, {asu(x, du+0,,,00)—au(x, ou)lv.)

(o
g_z;, lw{a(x, du-+0, ,00)—a;(x, ou)} .

Ve o (a,u(, DU+0,,,90)— au(®, au)})

We put g, .(2)=wiau, ou+0,,00)—a;(x, ou)}. Then we only need to
show that ||gj./|l— 0 as |||v|l|—0 for j, k=1, ---, n. If not, for some
j, k, there are a sequence {v'}CY and an >0 such that

(3.5) llv"™|||—0 as m——>c and
(3.6) gallZe&

where g,=gj,.,m. By (3.3), it holds that

3.7 |gm(@)| S2M |w;(x)| .

(3.5) implies that

lof™||—0 as m—o, i=1, .., m.
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Thus we can extract a subsequence {v*} of {v'™} such that

v (x)—0 a.e.xon Q2as l—>so0, 4=1, .-, m.
By (38.1), this convergence yields that
(3.8) 9it,o (@) —>0 ae.xonQas l—>o, 4,k=1,---,m.

From (3.7) and (3.8), we have by Lebesgue’s convergence theorem that
llg:]l =0 as [— o, which contradicts (3.5).
2) Secondly, we prove that A: Y—Y’ is coercive. Let wc Y. Then

we have
(u, Au— A0) =§_1, Sgu,-(aj(x, u)—a;(z, 0))dx
=5,ké=1 SQ a;n(, 0, ou)u,ud ,
for somé 6,.. with 0<4,,<1, by (3.1). Thus we have by (8.4) that
(w, Au-A0za 3 | wdszaciulr

for some constant C>0. In the last inequality, we used Poincaré’s
inequality, since £ is bounded. Therefore we have that

1w, Auyz=—L (u, 20)+aC||jull|= — | 40|+ aC||lull| -
Mell] el

This yields that lim.i-e (1/[[lu]l)(%, Au)=oo, i.e., A is coercive.
3) Finally we show that 0A(u) is positive symmetric for each uc Y.
Let u, v, w be any elements of Y. Then

(w, 5Z(u)v)=(w, — ﬁ 52—_(00,%(90, au)vk))

= g

= Zn, S a ;i (%, ou)w v de .
jk=1J@2
Hence, by (3.2), we have that (w, 0A(u)v)=w, dAm)w), i.e., dA(u) is
symmetric. And positivity follows from (3.4).
Consequently, A satisfies the hypothesis of Corollary 2, and hence A
is a maximal cyclically monotone operator in H.

REMARK 4. This example is dealt with by Y. Komura and Y. Konishi
[8] without proof.
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