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Introduction

In [6], the intermediate value theorem for fuzzy spaces was proved.
These spaces were considered as an alternative of topological spaces.
Hazy spaces were devised in [2] as an extension for fuzzy spaces.
Neighbourhood spaces were considered in [3] as a generalization of hazy
spaces. In this note an intermediate value theorem for neighbourhood
maps on any connected neighbourhood space with its values on the standard
neighbourhood space is given.

\S 1. Preliminaries.

We fix our terminology as in the following, for the detail of which
one can see $[3, 4]$ .

DEFINITION. A hazy space is a pair (X, $\tau$), where $\tau$ , the haze, is a
reflexive and symmetric relation from the non-empty set $X$ to its set of
all subsets, Sub $X$. That is, $\tau\subseteqq X\times SubX$, with for all $x,$ $y\in X$

(i) $x\in\tau(x)=\bigcup_{(x,A)er}A$

(ii) $x\in\tau(y)$ iff $y\in\tau(x)$ .
$\tau(x)$ is called the neighbourhood (abbr. to $nbd$) of $x$ .

The set $Z$ of all integers with standard haze,

$u=\{(k, \{k, k-1\}), (k, \{k, k+1\});k\in Z\}$

plays a role in hazy spaces corresponding to that of the Euclidean 1-
dimensional space $R$ in topological spaces. The observation that the
nbds $\tau(x)$ play a much more prominent role than the subsets $A$ was the
motivation to develop the neighbourhood spaces in [3]. Structures of
this kind were also introduced in [1] as neighbourhood systems.
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DEFINITION. A neighbourhood space (abbr. to nbd-space) is a pair
(X, $\tau$), where $\tau$ is a reflexive and symmetric map from the non-empty
set $X$ to the set of all subsets of $X$, Sub $X$. That is, for all $x,$ $y\in X$

(i) $x\in\tau(x)$

(ii) $x\in\tau(y)$ iff $ye\tau(x)$ .
The standard nbd-structure on $Z$ is denoted by $u$ and is given by

$u:Z\rightarrow SubZ:k-\{k-1, k, k+1\}$ .
If (X, $\tau$) is an nbd-space and $A$ is a subset of $X$, then the map

$\tau\cap A:A\rightarrow sub$ $A$ defined by $(\tau\cap A)(x)=\tau(x)\cap A$ for any $x\in A$ induces an
nbd-structure on $A$ and $(A, \tau\cap A)$ is called an nbd-subspace of (X, $\tau$).

We shall denote by $[i, j]$ , called an interval, the set $\{i, i+1, \cdots, j\}$

considered as an nbd-subspace of $(Z, u)$ , where $i,$ $j\in Z$ and $i\leqq j$ .
DEFINITION. A neighbourhood map (abbr. to nbd-map) $f$ between

nbd-spaces (X, $\tau$) and $(Y, \sigma)$ is any set-valued map $f:X\rightarrow subY$ such that
for all $xeX,$ $f(\tau(x))\subseteqq\sigma(y)$ for some $y\in f(x)$ , where $f(\tau(x))=\bigcup_{g^{\prime}e\tau(ae)}f(x^{\prime})$ ,
and is denoted by $f:(X, \tau)\rightarrow(Y, \sigma)$ .

The composition go $f$ of two nbd-maps $f:(X, \tau)\rightarrow(Y, \sigma)$ and $ g:(Y, \sigma)\rightarrow$

$(W, \delta)$ is the map $g\circ f:x\mapsto\bigcup_{ye(x)}g(y)$ , such composition is indeed an nbd-
map. We denote the identity nbd-map on an nbd-space (X, $\tau$) by $I_{X}$ ,
induced by the usual identity map on $X$.

DEFINITION. Let (X, $\tau$) and $(Y, \sigma)$ be nbd-spaces. An nbd-map
$f:(X, \tau)\rightarrow(Y, \sigma)$ is called an isomorphism if there is an nbd-map
$g:(Y, \sigma)\rightarrow(X, \tau)$ with go $f=I_{X},$ $f\circ g=I_{Y}$ . In this case (X, $\tau$) and $(Y, \sigma)$

are said to be isomorphic.

DEFINITION. An l-path or a path of length $l$ in an nbd-space (X, $\tau$)
is an nbd-map $p:[0, l]\rightarrow(X, \tau)$ . Moreover we say that $p$ is an l-path

from about $x$ to about $y$ if $x\in p(O),$ $y\in p(l)$ and is denoted by $\sim x\rightarrow\sim y(l)p$ .
DEFINITION. An nbd-space (X, $\tau$) is path-connected if for all $x,$ $y\in X$,

there is a path $\sim x\rightarrow(l)p\sim y$ .
Let (X, $\tau$) be the product nbd-space of nbd-spaces $(X_{i}, \tau)$ for $i=1,2$ ;

i.e., $X=X_{1}\times X_{2}$ and for $x=(x_{1}, x_{2})\in X,$ $\tau(x)=\tau_{1}(x_{1})\times\tau_{2}(x_{2})$ . Then we have,

THEOREM 1.1 (\S 2.5 of [4]). (X, $\tau$) is the largest nbd-space such that the
set-theoretic projection map $\pi_{i}$ is an nbd-map for $i=1,2$ . Moreover for
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any nbd-space $(Y, \sigma)$ the set-theoretic map $f:X\rightarrow SubY$ is an nbd-map
iff $\pi\circ f$ nbd-map for $i=1,2$ .

DEFINITION. A non-empty subset $A$ in an nbd-space (X, $\tau$) is said
to be open if $(\tau\cap A)(x)=\tau(x)$ , for all $x\in A$ . An nbd-space (X, $\tau$) is con-
nected if it is not the union of disjoint non-empty open subsets.

THEOREM 1.2 (\S 1.8 of [5]). An nbd-space is path-connected iff it is
connected.

Since for any $k\in Z$, nbds $u(k)$ are the same for the hazy space $(Z, u)$

and nbd-space $(Z, u)$ , by \S 5.4 of [4] we have the following:

THEOREM 1.3. $(Z, u)$ is a path-connected nbd-space and its only path-
connected subsets are intervals.

\S 2. Intermediate Value Theorem (I.V.T.).

THEOREM 2.1 (Intermediate Value Theorem). Suppose $i,$ $j\in Z$ and
$f:[i, j]\rightarrow(Z, u)$ be an nbd-map. If min $f([i, j])\times\max f([i, j])<0$ , then
there is at least one $k\in[i, j]$ such that $O\in f(k)$ and moreover $f(k)\subseteqq u(O)$ .

In order to prove I.V.T. we need the following lemma. Note that
connectedness and path-connectedness are equal conditions by Theorem
1.2, therefore for simplicity we only use the term connectedness in the
sequel.

LEMMA 2.1. The nbd-map image of a connected nbd-space is con-
nected.

PROOF. Let $f:(X, \tau)\rightarrow(Y, \sigma)$ be a nbd-map. If $y_{1},$ $y_{2}\in f(X)$ , then
$y_{i}\in f(x_{i})$ , for some $x_{i}\in X,$ $i=1,2$ . Suppose (X, $\tau$) is connected, then there
is a path $\sim x_{1}\rightarrow(l)p\sim x_{2}$ such that $x_{1}\in p(0)$ and $x_{2}\in p(l)$ . Hence $ y_{1}ef(x_{1})\subseteqq$

$f\circ p(O)$ and $y_{2}\in f(x_{2})\subseteqq f\circ p(l)$ . Since the composition fop of two nbd-maps
$f$ ane $p$ is also an nbd-map, therefore we have the path $\sim y_{1}\rightarrow\sim y_{2}f^{0}p(l)$ in
$f(X)$ , thereby $(f(X), f(X)\cap\sigma)$ is connected.

PROOF OF THEOREA 2.1. Let $m=\min f([i, j])$ and $M=\max f([i, j])$ .
Since $[i, j]$ is an interval, by Theorem 1.3 it is connected. Therefore
by Lemma 2.1, $f([i, j])$ is a connected nbd-subspace of $(Z, u)$ . Hence, by
Theorem 1.3, it is the interval $[m, M]$ . Since $m<0<M$, $O\in f([i, j])$ .
Thereby there is $k\in[i, j]$ such that $O\in f(k)$ .

To prove the existence of $k$ such that $0\in f(k)\subseteqq u(O)$ , we suppose the
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contrary, that is, we assume that $f(k)\not\leqq u(O)$ for all $k\in[i, j]$ such that
$O\in f(k)$ . Then $f(k)\subseteqq u(1)=\{0,1,2\}$ or $f(k)\subseteqq u(-1)=\{-2, -1,0\}$ . The cases
$f(k)=\{0\},$ $f(k)=\{0,1\}$ or $f(k)=\{-1,0\}$ can not occur, since otherwise we
get a contradiction to our assumption. The cases $f(k)=\{0,2\}$ or $f(k)=$

$\{-2,0\}$ can not also occur, because $\{k\}$ is connected and by Lemma 2.1
$f(k)$ must be connected; i.e., an interval. Therefore we have only one
of the cases (a): $f(k)=\{0,1,2\}$ or (b) $f(k)=\{-2, -1,0\}$ .

(a) In this case by checking the definition of an nbd-map at $k$ , if
$f(u(k))\subseteqq u(O)$ or $f(u(k))\subseteqq u(2)$ we get a contradiction to our assumption or
to the fact that $O\not\in u(2)$ , respectively. Hence $f(u(k))\subseteqq u(1)$ and therefore
$f(k\pm 1)\subseteqq\{0,1,2\}$ . Now by induction on $n$ we show that for all $n\in Z^{+}$

such that $k\pm n\in[i, j]$ , then $f(k\pm n)\subset Z^{+}$ , where $Z^{+}$ is the set of all
non-negative integers. If $n=1$ , then already we proved $f(k\pm 1)\subseteqq\{0,1,2\}$ .
Suppose $f(k\pm(n-1))\subset Z^{+}$ , if $f(u(k\pm(n-1)))\subseteqq u(O)$ , and $0ef(k\pm(n-1))$ , in
this case $0ef(k\pm(n-1))\subseteqq u(O)$ is a contradiction to our assmuption. Hence
$f(u(k\pm(n-1)))\subseteqq u(c)$ , for some $c,$ $1\leqq cef(k\pm(n-1))$ . Therefore $f(k\pm n)\subset Z^{+}$ .
So, for all $d\in[i, j],$ $f(d)\subset Z^{+}$ . Thereby we have $m\geqq 0$ , which is a con-
tradiction to the fact $m<0$ .

(b) In this case one can use the same argument as in case (a) to
get for all $de[i, j],$ $f(d)\subset\{c\in Z, c\leqq 0\}$ . Thereby we have $M\leqq 0$ , which
is a contradiction to the fact that $M>0$ .

The following corollary is a generalization of I.V.T. $\cdot$

COROLLARY 2.1. Suppose $i,$ $j\in Z$ and $f:[i, j]\rightarrow(Z, u)$ be an nbd-map.
If $m=\min f([i, j])$ and $M=\max f([i, j])$ , then for all $d,$ $m<d<M$, there
is at least one $k\in[i, j]$ such that $def(k)\subseteqq u(d)$ .

PROOF. The proof follows from the fact that for any a $eZ$, the
translation $t_{a}:(Z, u)\rightarrow(Z, u)$ defined by $t_{a}(m)=\{m+a\}$ is an isomorphism.

It is possible to extend Corollary 2.1 to the following:

COROLLARY 2.2. Let (X, $\tau$) be a connected nbd-space, and $ f:(X, \tau)\rightarrow$

$(Z, u)$ an nbd-map. If $M=\sup f(X)$ and $m=\inf f(X)$ , then for all $d$ ,
$m<d<M$, there is at least one $x\in X$ such that $d\in f(x)\subseteqq u(d)$ .

PROOF. Since $M=\sup f(X)$ and $m=\inf f(X)$ , therefore $Mef(x_{M})$ ,
$mef(x.)$ for some $x_{r}$ and $x_{n}$ in $X$. Connectedness of (X, $\tau$) implies that
there is a path $\sim x_{n}\rightarrow(l)p\sim x_{r}$ such that $x.ep(O)$ and $x_{r}ep(l)$ . Since
$f\circ p:[0, l]\rightarrow(Z, 0)$ is an nbd-map such that $d\in[m, M]\subseteqq f\circ p([0, l])$ . There-
fore by Corollary 2.1 there is a $k^{\prime}e[0, l]$ such that $def\circ p(k^{\prime})\underline{\subseteq}o(d)$ .
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Hence for some $x\in p(k^{\prime}),$ $d\in f(x)\subseteqq u(d)$ .
Let $I_{k}=[i_{k}, j_{k}]$ be an interval of $(Z, u)$ , and $I^{n}=\times_{1\leqq k\leqq n}I_{k}$ the product

nbd-subspace of $(Z^{n}, u^{n})$ . We apply Corollary 2.2 to extend the I.V.T. to
the following:

COROLLARY 2.3. Let $f:I^{n}\rightarrow(Z, u)$ be an nbd-map. If $M=\sup f(I^{n})$

and $m=Inff(I^{n})$ , then for all $d,$ $m<d<M$, there is at least one $k\in I^{n}$

such that $d\in f(k)\subseteqq u(d)$ .
In order to prove Corollary 2.3 we first prove the following lemma.

LEMMA 2.2. Let (X, $\tau$) be the product nbd-space of nbd-spaces $(X_{i}, \tau_{i})$

for $i=1,2$ . (X, $\tau$) is connected iff $(X_{i}, \tau_{i})$ is connected for $i=1,2$ .
PROOF. Let (X, $\tau$) be connected. For $i=1,2$ , if $x_{i},$ $y_{i}\in X_{i}$ , then

there are $x,$ $y\in X$ such that $\{x_{i}\}=\pi_{i}(x)$ and $\{y_{i}\}=\pi_{i}(y)$ , where $\pi_{i}$ is the set-
theoretic projection map. Connectedness of (X, $\tau$) implies that there is a
path $\sim x\rightarrow\sim y(l)p$ such that $x\in p(O)$ and $y\in p(l)$ . Hence $\{x\}=\pi_{i}(x)\subseteqq\pi_{i^{\circ}}p(0)$

and $\{y_{i}\}=\pi_{i}(y)\subseteqq\pi_{i^{O}}p(l)$ . By Theorem 1.1, $\pi_{i}\circ p$ is an nbd-map, therefore it
is the path $\sim x_{i}\rightarrow^{\pi_{4^{9}}p(l)}\sim y_{i}$ , hence $(X_{i}, \tau_{i})$ is connected. Conversely let $(X_{l}, \tau_{i})$

be connected for $i=1,2$ . Then for any $x,$ $y\in Y,$ $\{x_{i}\}\pi_{i}(x)$ and $\{y_{i}\}=\pi_{l}(y)$

are in $X_{i}$ . Connectedness of $(X_{i}, \tau_{i})$ for all $i=1,2$ , implies the existence of
the paths $\sim x_{i}\rightarrow(l\dot{.})q_{i}\sim y_{i}$ such that $x_{i}\in q_{i}(0)$ and $y_{i}eq_{i}(l_{i})$ . Without loss of
generality we may assume that $l_{1}\leqq l_{2}$ . Define $r:[0, l_{2}]\rightarrow(X, \tau)$ as,

$\gamma(k)=\left\{\begin{array}{ll}q_{1}(k)\times q_{2}(k) & if 0\leqq k\leqq l_{1}\\q_{1}(l_{1})\times q_{2}(k) & if l_{1}<k\leqq l_{2}.\end{array}\right.$

Since

$\pi_{1}\circ r(k)=\left\{\begin{array}{ll}q_{1}(k) & if 0\leqq k\leqq l_{1}\\q_{1}(l_{1}) & if l_{1}<k\leqq l_{2},\end{array}\right.$

and

$\pi_{2}\circ r(k)=q_{2}(k)$ if $0\leqq k\leqq l_{2}$ ,

therefore $r$ is an nbd-map by Theorem 1.1, also $x\in r(O)$ and $y\in\gamma(l_{2})$ .
Hence $\sim x\rightarrow(l_{2})r\sim y$ , thereby (X, $\tau$) is connected.

PROOF OF COROLLARY 2.3. It is enough to show $I^{n}$ is connected.
This follows from Lemma 2.2 and Theorem 1.3.
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REMARK. Corollary 2.2 may be interpreated as the existence of a point
$xeX$ such that not only $def(x)$ but $f(x)$ is also totally indistinguishable
of $u(d)$ in the sense of [5].
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