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Introduction

As it is well known, the problem of $C^{\infty}$ local isometric embedding of
a two dimensional Riemannian manifold into $R^{\epsilon}$ is a problem whether $C^{\infty}$

functions $x(u, v),$ $y(u, v),$ $z(u, v)$ which satisfy

(0.1) $dx^{2}+dy^{2}+dz^{2}=Edu^{2}+2Fdudv+Gdv^{2}$

exist in a neighborhood of a point, say $(u, v)=0$ , when the first funda-
mental form $Edu^{2}+2Fdudv+Gdv^{2}$ is given. The results already known
are as follows. Let $K$ be the Gaussian curvature of the two dimensional
manifold, then the classical result is that the problem is affirmatively
answered if $K\neq 0$ at $(u, v)=0$ , and a recent interesting result due to Lin
[4] is that it is also affirmative if $K=0$ , grad $K\neq 0$ at $(u, v)=0$ . Now
a natural question arises. Namely, is it affirmative when

(0.2) $K=gradK=0$ at $(u, v)=0$

and one of the following conditions holds:
(i) Hess $K(O, 0)>0$ ,
(ii) Hess $K(O, 0)<0$ ,
(iii) Hess $K(O, 0)$ has two eigenvalues with opposite signs?
Hereafter, for simplicity, we refer the case with conditions (0.2) and

(i) (resp. (ii) and resp. (iii)) by (i) (resp. (ii) and resp. (iii)).
Then what we have obtained is the following.

THEOREM. The problem of $C^{\infty}$ local isometric embedding is also
affirmative in the case (ii). (Consult \S 4 for the related results.)

We note we can replace the equation (0.1) by a second order Monge-
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Amp\‘ere equation (i.e., Darboux equation). Namely, reminding the $fac$ .

that a two dimensional Riemannian manifold whose Gaussian curvaturt
is zero is locally isometric to Euclidean space with its standard metric
it is enough to solve the following Darboux equation (0.3) for $z$ under
the condition $\nabla z(O, 0)=0$ , which assures the Gaussian curvature of $th\{$

metric $Edu^{2}+2Fdudv+Gdv^{2}-dz^{2}$ vanishes:

(0.3) $(z_{11}-\Gamma i_{1}z_{i})(z_{22}-\Gamma_{22}z)-(z_{1l}-\Gamma i_{2}z)^{2}$

$=K(EG-F^{2}-Ez_{2}^{2}-Gz_{1}^{2}-2Fz_{1}z_{2})$

where $\Gamma_{jk}$ are the Christoffel symbols, $z$ is the first derivative of $z$ witl
respect to the i-th variable and $z_{\dot{g}k}$ is the second derivative with respec $\cdot$

to the j-th and k-th variable by calling $u$ the first variable and $vth_{t}$

second variable.
This paper is organized as follows. In \S 1 we modify the $equatio\iota$

(0.3) and construct an approximate solution for the modified equation
In order to get a solution of the modified equation by compensating $th\langle$

approximate solution, we set up the Nash implicit function theorem $iI$

\S 2. Then the subsequent sections are devoted to deriving the estimateg
related to the Nash implicit function theorem. The most hardest par $\cdot$

is to derive the evolutional type energy inequality for the linearized
equation which is an effectively hyperbolic equation. The method is $t\langle$

rewrite the linearized equation into a singular, hyperbolic, pseudodifferen
tial system diagonal in its principal part by Morimoto [5] $diagonalizatio\iota$

process. This is done in \S 3, and we also derive the desired $est\ddagger mat_{\langle}$

for the linearized equation from this system and prove the other estimates
Finally, in \S 4 we remark about the other cases and problem which $ca\iota$

be treated by similar methods.

\S 1. Modified Darboux equation and its approximate solution.

Following the usual notations used in the theory of partial differentia
equations, we hereafter rewrite the previous independent variables $u,$ $1$

by $x,$ $y$ (sometimes $t,$ $x$) and the previous dependent variable $z$ by $u$ , re
spectively. The rest of the symbols are kept unchanged. We also ust
the convention of the Einstein summation rule and the convenient $wa$]

of writing derivatives of $u$ such as $u_{11}=u_{g*},$ $u_{12}=u_{\iota r}$ , etc. In this notation
(0.3) becomes

(1.1) $F(u)=g$

where
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(1.2) $F(u)=(u_{11}-\Gamma_{11}^{i}u_{i})(u_{22}-\Gamma_{22}^{i}u_{l})-(u_{12}-\Gamma_{12}^{i}u_{i})^{2}$

$+K(Eu_{2}^{2}+Gu_{1}^{2}-2Fu_{1}u_{2})$ ,

(1.3) $g=K(EG-F^{2})$ .
From (ii), there exist $\delta_{0}>0$ and $d_{0}>0$ such that

(1.4) $d_{0}^{-1}(x^{2}+y^{2})\leqq-K(x, y)\leqq d_{0}(x^{2}+y^{2})$

on $x^{2}+y^{2}\leqq\delta_{0}^{2}$ . Now take $\delta(0<\delta<\delta_{0})$ sufficiently small and $\gamma(\theta)\in C_{0}^{\infty}(R^{1})$

with the properties: $0\leqq\gamma\leqq 1$ and

(1.5) $\gamma(\theta)=\left\{\begin{array}{ll}1 & (|\theta|\leqq\delta/2)\\0 & (|\theta|\geqq\delta).\end{array}\right.$

Set

(1.6) $\gamma_{1}(x, y)=\gamma((x^{2}+y^{2})^{1/2})$ ,

(1.7) $\gamma_{2}(x, y)=1-\gamma_{1}(x, y)$ .
Then, we modify the equation (1.1) to

(1.8) $\tilde{F}(u)=g\sim$

where

(1.9) $\tilde{F}(u)=\gamma_{1}\{(u_{11}-\Gamma i_{1}u_{i})(u_{22}-\Gamma_{22}^{i}u)-(u_{12}-\Gamma_{12}^{i}u)^{2}\}$

$+\gamma_{2}(u_{11}-\Gamma i_{1}u)-\gamma_{2}(u_{22}-\Gamma_{22}u_{i})+\gamma_{1}K(Eu_{2}^{2}+Gu_{1}^{2}-2Fu_{1}u_{2})$ ,

(1.10) $g\sim=\gamma_{1}g-\gamma_{2}$ .
Note (1.1) and (1.10) are equivalent on $(x^{2}+y^{2})^{1/2}\leqq\delta/2’$ .

Next we proceed to construct an approximate solution for the equa-
tion (1.8).

LEMMA 1.1. We can construct an approximate solution $u_{0}(x, y)\in C^{\infty}(R^{2})$

with the following property:

(1.11) $x^{-4}(\tilde{F}(u)-g\sim),$ $x^{-2}(u_{0}(x, y)-c_{0}y^{2})eB^{\infty}(R^{2})$

where $c_{0}>0$ and, for any $S\subset R^{n}$ ($n=1$ or 2), $B^{\infty}(S)$ is the set of $C^{\infty}$

functions defined on $S$ with bounded derivatives.

PROOF. If we seek $u_{0}(x, y)$ in the form

(1.12) $u_{0}(x, y)=c_{0}y^{2}+\sum_{;=2}^{b}\phi_{j}(y)x^{j}$ , $\phi_{j}(y)\in B^{\infty}(R)$ $(2\leqq j\leqq 5)$ ,
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we only have to check the first property $(1.11)_{1}$ of (1.12) by taking $\phi;(y)$

$(2\leqq j\leqq 5)$ appropriately. In order to determine $\phi_{J}(y)(2\leqq j\leqq 5)$ , expand the
coefficients and $\tilde{g}$ of (1.8) into Taylor series around $x=0$ , and equate the
coefficients of $x^{j}$ . Then we get the recursion formula for $\phi_{i+2}(0\leqq j\leqq 3)$ .
In this recursion formula, the coefficient of $\phi_{\dot{g}+2}$ is

$(j+2)(j+1)\{2\gamma_{1}(0, y)(c_{0}-y^{2}\Gamma_{22}^{2}(0, y))+\gamma_{2}(0, y)\}$ ,

which is bounded from below by $(j+2)(j+1)\min(c_{0},1)$ if we take $\delta>0$

small enough. Hence we can determine $\phi_{j+2}(0\leqq j\leqq 3)$ so that (1.12)
satisfies $(1.11)_{1}$ . Q.E.D.

\S 2. Nash implicit function $t$heorem.

Set

(2.1) $\Phi(u)=\tilde{F}(u+u_{0})-\tilde{F}(u_{0})$ ,

(2.2) $f=g\sim-\tilde{F}(u_{0})$ ,

and consider the equation

(2.3) $\Phi(u)=f$ .
Note that $u+u_{0}$ is a solution of (1.8) if $u$ is a solution of (2.3).

For each $m$ in the set $Z_{+}$ of nonnegative integers, let $E_{n}$ be the
completion of $\{u(x, y)\in C^{\infty}([-T, T]\times R_{y}^{1});|u|_{*}<\infty\}$ with respect to the
norm $|u|_{n}=\sup_{0<|x|\leqq T}\sum_{\dot{g}=0}^{\epsilon}|x|^{-\iota+j}\Vert(\partial/\partial x)^{\dot{g}}u(x, \cdot)\Vert_{*+2-\dot{g}+n}..$ , and $F_{n}$. be the
completion of $\{u(x, y)\in C^{\infty}([-T, T]\times R_{y}^{1});||u\Vert_{n}<\infty\}$ with respect to the
norm $||u||_{n}=\sup_{0<|a|\leq T}\sum_{g=0}!|x|^{-8+j}\Vert(\partial/\partial x)^{\dot{g}}u(x, )||_{n+’*-j}*\cdot$ Here $m^{*}$ is any fixed
number, $m^{*}\geqq 2,$ $||u(x, y)||$ . denotes the Sobolev norm of order $s$ in $R^{1},$ , and
$T>0$ will be specified later. Then, E. $(meR)$ and $F_{n}(m\in R)$ are the
scales of Banach spaces with smoothing operators.

We also denote the closed unit ball in $E_{\sim}$ by $D_{n}$ , and for any $r>0$ ,
$D_{n}^{\prime}(r)$ denotes the ball of radius $r$ centered at $0$ in $F_{*}$ , and set $E_{\infty}=$

$\bigcap_{*}E_{*},$ $F_{\infty}=\bigcap_{n}F_{*}$ .
NASH THEOREM (cf. [1]). Let $\Phi:D_{0}\rightarrow F_{0}$ be a map with the following

properties:
(A) $\Phi(0)=0$ .
(B) For any $m\in Z_{+},$ $\Phi:D_{0}\cap E_{n}\rightarrow F_{n}$ is twice Fr\’echet diferentiable.
(C) For any $m\in Z_{+},$ $u\in D_{0}\cap E.,$ $v,$ $weE_{\sim}$ ,

(2.4) $||\Phi’(u)v||_{n}\leqq C_{r}(|v|.+|u|_{r}|v|_{0})$ ,
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(2.5) $||\Phi^{\prime\prime}(u)(v, w)||_{fn}\leqq C_{m}^{\prime}(1+|u|_{m})|v|_{m}|w|_{m}$ ,

where $C_{m},$ $C_{n*}^{\prime}$ are independent of $u,$ $v,$ $w$ .
(D) There exists $\alpha\in Z_{+}$ such that, for any $\alpha\leqq m\in Z_{+},$ $u\in D_{\alpha}\cap E_{\infty}$ ,

there exists a right inverse $Q(u)$ of $\Phi^{\prime}(u)$ which maps $F_{\tau n}$ into $E_{n’-\alpha}$ and
satisfies the estimate:

(2.6) $|Q(u)h|_{m-\alpha}\leqq K_{m}(\Vert h\Vert_{m}+|u|_{\dagger*}\Vert h\Vert_{\alpha})$

$(meZ_{+}, m\geqq\alpha, ueD_{\alpha}\cap E_{\infty}, heF.)$ ,

where $K_{m}$ is independent of $u,$ $v$ .
Then, there exist $\rho>0$ and a mapping $\Psi:D_{\eta\alpha}^{\prime}(\rho)\cap F_{\infty}--*D_{\alpha}\cap E_{\infty}$ such

that

(2.7) $\Phi\cdot\Psi(f)=f$ $(f\in D_{\eta\alpha}^{\prime}(\rho)\cap F_{\infty}, \eta\geqq 11)$ .
REMARK. The validities of the estimates (2.3) and (2.4) follow from

the well known inequality:

(2.8) $\Vert f\cdot gl1_{m}\leqq C_{m}(\Vert f\Vert_{n}\Vert g\Vert_{1}+\Vert f\Vert_{1}\Vert g\Vert_{m})$

for any positive integer $m$ and $f,$ $g$ in the m-th order Sobolev space
$H^{m}(R^{1})$ with its norm $\Vert\cdot\Vert_{m}$ .

Since (A) and (B) clearly hold, we only have to prove (D).

\S 3. Evolutional type energy inequality for the linearized equation.

Hereafter, we take $\alpha\in Z_{+}$ appropriately large and $T>0$ appropriately
small, and let $u\in D_{\alpha}\cap E_{m}$ . Then, we can easily see the principal part
$L.(v)$ of $\Phi^{\prime}(u)v$ is given by

(3.1) $L_{u}(v)=\{\gamma_{1}(w_{22}-\Gamma_{22}w_{i})+\gamma_{2}\}v_{11}+\{\gamma_{1}(w_{11}-\Gamma i_{1}w_{i})-\gamma_{2}\}v_{22}-2\gamma_{1}(w_{12}-\Gamma i_{2}w_{i})v_{12}$

where

(3.2) $w=u+u_{0}$ .
Here, from Lemma 1.1,

$|\gamma_{1}(w_{22}-\Gamma_{22}^{1}w)+\gamma_{2}|\geqq A_{0}>0$ $(u\in D_{\alpha}\cap E_{\infty})$

for some constant $A_{0}$ if $\delta>0$ is small enough. Moreover, the discriminant
$D(u)$ of (3.1) is

$D(u)=-\gamma_{1}\tilde{F}(w)+\gamma_{2}^{2}+\gamma_{1}^{2}K(Ew_{2}^{2}+Gw_{1}^{2}-2Fw_{1}w_{2})$

$=-\gamma_{1}\tilde{F}(w)+\gamma_{2}^{2}+\gamma_{1}^{2}O^{8}$ ,



246 GEN NAKAMURA

where, for any $l\in Z_{+},$ $O^{l}$ denotes a function $heC^{\infty}([-T, T]\times R_{y}^{1})$ such
that $h(x, y)/r^{l}$ is bounded as $r=(x^{2}+y^{2})^{1/2}\rightarrow 0$ . Since $\tilde{F}(w)=\gamma_{1}K(EG-F^{2})-$

$\gamma_{2}+O^{8}$ by (1.3), (1.10) and Lemma 1.1, we have

(3.3) $D(u)=-\gamma_{1}^{2}K(EG-F^{2})+\gamma_{2}^{2}+\gamma_{1}\gamma_{2}+\gamma_{1}O$ .
Hence taking $\delta>0$ small enough, there exists a constant $d_{1}>0$ such that

(3.4) $d_{1}^{-1}(x^{2}+y^{2})\leqq D(u)\leqq d_{1}\min(x^{2}+y^{2},1)$ $(x, yeR)$

for any $u\in D_{a}\cap E_{\infty}$ . Therefore the operator $\Phi^{\prime}(u)$ is hyperbolic with re.
spect to the time variable $x$ . Moreover, $\Phi^{\prime}(u)$ is an effectively hyperbolic
operator (see [7] for the definition of effectively hyperbolic operators).
To see this we quote the following remark due to Nishitani [7].

REMARK 3.1. Let $P$ be a second order partial differential operator
with principal part

(3.5) $P_{2}=AD_{t}^{2}+2BD_{t}D_{a}+CD_{x}^{2}$ ,

where $D_{t}=(-1)^{1/2}\partial/\partial t,$ $D_{g}=(-1)^{1/2}\partial/\partial x$ and $A(t, x),$ $B(t, x),$ $C(t, x)eB^{\infty}([-T$

$T]\times R_{x}^{1})$ . Assume $|A(t, x)|\geqq A_{0}>0$ and $B^{2}-AC\geqq 0$ on $[-T, T]\times R_{x}^{1}$ for some
constant $A_{0}$ , and $B^{2}-AC=0$ if and only if $(t, x)=0$ . Then the necessary
and sufficient condition for the operator to be effectively hyperbolic is
(3.6) $((\partial/\partial t)+(B/A)(\partial/\partial x))^{2}(B^{2}-AC)>0$ at $(t, x)=0$ .

Writing $L.(v)$ in the form (3.5), $B$ becomes
(3.7) $B=-\gamma_{1}\{(u+u_{0})_{12}-\Gamma_{12}^{i}(u+u_{0})\}=O^{1}$

and (3.4) yields $B^{2}-AC=O^{2}$ . Hence, the condition (3.6) reduces to
(3.8) $(\partial/\partial t)^{2}(B^{2}-AC)>0$ at $(t, x)=0$

in our case, which is valid because of (3.4).

Although the $well\cdot posedness$ of the effectively hyperbolic operator is
well known and several types of energy inequalities have been derived
no one has mentioned about the evolutional type energy inequality whicf
is crucial in our proof. (Prof. Nishitani told me that it is possible $tt$

derive our energy inequality from his method. However, to see this, il
is necessary to rewrite the whole proof of [7].) So we will present $e$

simple method of deriving an evolutional type energy inequality for ou]

special type of effectively hyperbolic operator. We also note that $thI\{$

method is also effective for constructing a fundamental solution for $le$
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certain degenerate hyperbolic operator discussed in [8].
Our task is to prove the following lemma.

LEMMA 3.1. For given $s_{0}\geqq m^{*}+2$ , there exist $T>0,$ $\alpha^{\prime}\in Z_{+},$ $M>0$

such that, for any $u\in D_{\alpha^{\prime}}\cap E_{\infty}$ , $|s|\leqq s_{0},$ $h\in C^{0}([-T, T], H^{+r}(R^{1}))$ , the
Cauchy problem:

(3.9) $\Phi^{\prime}(u)v=h$

with zero Cauchy data on $t=0$ admits a unique solution $v\in\bigcap_{j=0}^{2}C^{\dot{f}}([-T, T]$ ,
$H^{-j}(R^{1}))$ which satisfies

(3.10) $||v(t, )||_{\epsilon}+\Vert(\partial/\partial t)v(t, )\Vert_{-1}\leqq C|\int_{0}^{t}\Vert h(t^{\prime}, )||_{\epsilon+H}dt|$ $(|t|\leqq T, |s|\leqq s_{0})$ ,

where $C^{\dot{f}}([-T, T], H^{t}(R^{1}))$ denotes the set of $j$ times continuously differen-
tiable $H(R^{1})$ valued functions defined on $[-T, T]$ and $C$ is a constant
independent of $u$ . Moreover, if $h\in\bigcap_{j=0}^{1}C^{j}([-T, T], H^{\epsilon+K-j}(R^{1}))$ , then the
above $v$ belongs to $\bigcap_{j=0}^{8}C^{\dot{f}}([-T, T], H^{-\dot{s}}(R^{1}))$ and satisfies
(3.11) $|v|_{m}\leqq C\Vert h||_{m+H+8}$ $(|s|\leqq s_{0})$

where $s=m+m^{*}+2$ and $C$ is a constant independent of $u$ . Moreover,
denoting this $v$ by $Q(u)h$ , the condition (D) of Nash Theorem holds for
this $Q(u)h$ .

REMARK 3.2. From Lemma 3.1, we can prove our Theorem in the
following manner. Since the estimate (2.6) is a direct consequence of
Lemma 3.1, the Nash implicit function theorem tells the existence of a
solution $u+u_{0}$ of (1.1) in the neighborhood of the origin $(x, y)=0$ which is
of C’ class in $x$ and $C^{\infty}$ class in $y$ and satisfies $u/x^{8}=O^{0}$ . Here, we have
utilized the one extra factor $x$ of (2.2) $f=g\sim-\tilde{F}(u_{0})$ to make its norm
$||f\Vert_{\eta\alpha}$ small so that $f\in D_{\eta\alpha}^{\prime}(\rho)\cap F_{\infty}$ . Then, reminding $u_{0}=C_{0}y^{2}+x^{2}O^{0}$ , the
coefficient $(u+u_{0})_{yy}-\Gamma_{22}^{l}(u+u_{0})_{l}$ of $(u+u_{0})_{xx}$ in (1.1) is nonzero near the
origin. Hence, using (1.1), $u+u_{0}$ is of $C^{\infty}$ class in $x,$ $y$ near the origin.
Thus Theorem is proved.

PROOF OF LEMMA 3.1. Whereas the proof of the estimate (3.10) is
divided into several lemmas, the estimate (3.11) can be easily proved
by assuming (3.10). So we do this first. Combining (3.1) and $v(t, x)=$

$\int_{0}^{t}(\partial/\partial t^{\prime})v(t^{\prime}, x)dt^{\prime}$ , we have

(3.12) $\Vert v(t, )\Vert_{\epsilon}\leqq C|\int_{0}^{t}\int_{0}^{t^{\prime}}\Vert h(t^{\prime\prime}, )||_{\epsilon+M+1}dt^{\prime}dt^{\prime}’|$ ,
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where $C(s)$ is a general constant independent of $u$ . Also, we have from
(3.9) and (3.10),

(3.13) $||(\partial/\partial t)^{2}v(t, )\Vert_{-2}\leqq C\{||h(t, )\Vert_{-2}+|\int_{0}^{t}\Vert h(t^{\prime}, )\Vert_{\iota+K}dt^{\prime}|\}$ ,

(3.14) $||(\partial/\partial t)v(t, \cdot)||_{-3}\leqq C\{\Vert(\partial/\partial t)h(t, \cdot)\Vert_{-s}+\Vert h(t, \cdot)\Vert_{-2}+|\int_{0}^{t}\Vert h(t^{\prime}, \cdot)\Vert_{+r}dt^{\prime}|\}$ .

Then, (3.11) easily follows from $(3.12)\sim(3.14)$ . Moreover the validity of
(D) follows from the rearrangement argument given in [2; pp 739-740].

The rest of this section is devoted to proving (3.10).

DEFINITION 3.1. (i) Define the weight function $\nu(t, x, \xi)$ by

(3.15) $\nu(t, x, \xi)=\{t^{2}+\rho(x)^{2}+\langle\xi\rangle^{-1}\chi((t^{2}+\rho(x)^{2})\langle\xi\rangle)\}^{1/2}$ $(x, \xi\in R, |t|\leqq T)$ ,

(3.16) $\rho(x)=\{\gamma(x)x^{2}+(1-\gamma(x))\}^{1/2}$ ,

where $\langle\xi\rangle=(1+\xi^{2})^{1/2},$ $\gamma$ is the one already defined in \S 1 and $xeC_{0}^{\infty}(R^{1})$

such that $0\leqq\chi\leqq 1,$ $\chi(\theta)=1(|\theta|\leqq 1),$ $=0(|\theta|\geqq 2)$ .
(ii) For $m,$ $k\in R,$ $a(t, x, \xi)\in S^{\pm}[m, k]$ if the following properties

hold.
(a) $a(t, x, \xi)\in C^{0}(\{0\leqq\pm t\leqq\pm T\}\times R_{x}^{1}\times R_{\xi}^{1})$ and $a(t, x, \xi)eC^{\infty}(R_{x}^{1}\times R_{\epsilon}^{1})$

for each fixed $t(0\leqq\pm t\leqq\pm T)$ .
(b) For any $\alpha,$ $\beta\in Z_{+}$ , there exists a constant $C_{\alpha,\beta}>0$ such that

$|D_{\text{\’{e}}}^{\alpha}D_{x}^{\rho}a(t, x, \xi)|\leqq C_{\alpha,\beta}\langle\xi\rangle^{r\cdot-\alpha}\nu^{k-\beta}$ $(x, \xi\in R^{1},0\leqq\pm t\leqq\pm T)$ .
(iii) We also denote the class of operators with symbols in $S^{\pm}[m, k]$

by $S^{\pm}[m, k]$ .
In order to simplify the notations, we will restrict our subsequent

argument to the case $0\leqq t\leqq T$ and simply write $S[m, k]=S^{+}[m, k]$ .
We first desingularize the singularities of the characteristic roots of

$\Phi^{\prime}(u)$ by modifying its principal symbol. For this purpose, set

(3.17) $L_{\iota}(v)=AD_{t}^{2}v+2BD_{t}D_{g}v+CD_{x}^{2}v$ ,

(3.18) $b(t, x)=(B^{2}-AC)/A^{l}$ ,

(3.19) $T=\{b(t, x)+\langle\xi\rangle^{-1}\chi(b(t, x)\langle\xi\rangle)\}^{1/2}$ ,

(3.20) $\lambda_{j}=-B\xi/A+(-1)^{j-1}\{\chi(T\xi)+(1-\chi(T\xi))|T\xi|\}$ ,

(3.21) $\Lambda_{j}=D_{t}-\lambda_{\dot{f}}(t, x, D_{x})$ $(j=1,2)$

and consider
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(3.22) $\tilde{P}_{2}=\Lambda_{1}\circ\Lambda_{2}$

as the principal part of

(3.23) $P\equiv A^{-1}\Phi^{\prime}(u)$ .
LEMMA 3.2. $x_{j}eS[1,1],$ $(\partial/\partial t)\lambda_{j}\in S[1,0](j=1,2)$ .
PROOF. If we note $\nu,$

$T$ can estimate each other and the same is true
for $\nu,$

$\langle\xi\rangle^{1/2}$ on supp $\chi(b\langle\xi\rangle)$ , it is not hard to prove $(\partial/\partial t)^{j}T\in S[0,1-j]$

$(j=0,1)$ . Next write $\lambda_{\dot{f}}$ in the form:

(3.24) $x_{j}=-B\xi/A+\tilde{\lambda}_{j}(T\xi)$ ,

where
(3.25) $x_{\dot{f}}(\eta)=(-1)^{j-1}\{\chi(\eta)+(1-\chi(\eta))|\eta|\}$

belongs to the H\"ormander class $S_{1,0}^{1}$ . Then the assertion easily follows
from $(\partial/\partial t)^{j}T\in S[0,1-j](j=0,1)$ and

(3.26) $\langle T\xi\rangle^{-1}\leqq C\langle\xi\rangle^{-1}\nu^{-1}$

for some constant $C$. Q.E.D.

LEMMA 3.3. For $j\neq k(1\leqq j, k\leqq 2)$ , there emst $a_{ik},$ $b_{jk}eS[-1, -1]$

such that $a_{jk}\circ(x_{j}-x_{k})=I+b_{jk}$ .
PROOF. This can be easily proved by noting (3.24), (3.26) and

$|\tilde{\lambda}_{j}(\eta)-\tilde{\lambda}_{k}(\eta)|\geqq C\langle\eta\rangle$ for some constant $C>0$ . Q.E.D.

LEMMA 3.4. For $j\neq k(1\leqq j, k\leqq 2)$ ,

(3.27) $[\Lambda_{j}, \Lambda_{k}]=p_{jk}\circ\Lambda_{j}+q_{jk}\circ\Lambda_{k}+r_{jk}$

for some $p_{jk},$ $q_{jk},$ $r_{jk}\in S[0, -1]$ .
PROOF. From (3.21),

(3.28) $[\Lambda_{j}, \Lambda_{k}]=(D_{t}x,-D_{t}x_{k})+[x_{j}, x_{k}]$

$\equiv A+B$ .
Here, by applying the usual product formula of pseudodifferential opera-
tors, we have $A\in S[1,0],$ $B\in S[1,1]$ . From Lemma 3.3, $I=a_{jk}\circ(\Lambda_{\dot{f}}-\Lambda_{k})-b_{\dot{g}k}$

for some $a_{Jk},$ $b_{\dot{g}k}\in S[-1, -1]$ . Hence

(3.29) $\left\{\begin{array}{l}A=A\circ a_{\dot{g}k^{\circ}}(\Lambda_{j}-\Lambda_{k})-A\circ b_{jk}\\B=B\circ a_{jk}\circ(\Lambda_{j}-\Lambda_{k})-B\circ b_{jk}\end{array}\right.$
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From (3.28) and (3.29),

(3.30) $[A_{\dot{f}}, A_{k}]=p_{\dot{g}k}\circ\Lambda_{\dot{f}}+q_{\dot{g}k}\circ A_{k}+r_{\dot{g}k}$

where

(3.31) $\left\{\begin{array}{l}p_{\dot{g}k}=A\circ a_{\dot{J}k}+B\circ a_{jk}\in S[0, -1]\\q_{\dot{g}k}=-A\circ a_{\dot{g}k}-B\circ a_{\dot{J}k}\in S[0, -1]\\r_{\dot{g}k}=-A\circ b_{\dot{g}k}-B\circ b_{\dot{g}k}eS[0, -1]\end{array}\right.$

Q.E.D.

LEMMA 3.5. Let $keR$ and $c\in S[1, k]$ . Then,

(3.32) $c=c_{11}A_{1}+c_{12}\Lambda_{2}+c_{0}$

for 8ome $c_{11},$ $c_{12},$ $c_{0}\in S[0, k-1]$ ,

PROOF. This easily follows from Lemma 3.3. Q.E.D.

LEMMA 3.6. If we denote the principal part of $P$ by $P_{2}$ , we have

(3.33) $P_{2}$– $P_{2}eS[0, -2]$ .
PROOF. By definitions,

(3.34) $P_{2}=D_{t}^{2}+2(B/A)D_{t}Dae+(C/A)D_{x}^{2}$ ,

(3.35) $\tilde{P}_{2}=\{D_{t}^{2}-(x_{1}+x_{2})D_{t}+\lambda_{1}\lambda_{2}\}+\{\lambda_{1^{\circ}}\lambda_{2}-D_{t}*\}$

$\equiv\tilde{P}_{21}+\tilde{P}_{22}$ .
Here, we have

(3.36) $-(\lambda_{1}+\lambda_{2})=2B\xi/A$

from (3.20), and

(3.37) $P_{22}eS[0,1]\subset S[0, -2]$

from the product formula of pseudodifferential operators. Moreover, since
$|T\xi|\geqq 2$ for $|\xi|^{1/2}\geqq 2$ ,

(3.38) $x_{1}x_{2}=C|\xi|^{2}/A-\langle\xi\rangle^{-1}\chi(b\langle\xi\rangle)|\xi|^{2}$ $(|\xi|^{1/2}\geqq 2)$

follows from $(3.18)\sim(3.20)$ . Reminding $\nu$ and $\langle\xi\rangle^{-1/2}$ are equivalent on
supp $\chi(b\langle\xi\rangle)$ ,

(3.39) $\langle\xi\rangle^{-1}\chi(b\langle\xi\rangle)|\xi|^{2}eS[0, -2]$ .
Hence $P_{2}-\tilde{P}_{21}eS[0, -2]$ which immediately entails the assertion. Q.E.D.
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LEMMA 3.7.

(3.40) $R\equiv P-P_{2}=\sum_{\dot{g}=1}^{2}\gamma_{1j}^{\prime}\Lambda_{j}+\gamma_{0}^{\prime}$

for some $\gamma_{1j}^{\prime},$ $\gamma_{0}^{\prime}\in S[0, O]\subset S[0, -1](j=1,2)$ .
PROOF. From (1.9) and (2.1), we have

(3.41) $AR(v)\equiv\gamma_{1}[-\{(u+u_{0})_{22}-\Gamma_{22}^{i}(u+u_{0})\}\Gamma i_{1}v_{i}$

$-\{(u+u_{0})_{11}-\Gamma_{11}^{i}(u+u_{0})_{i}\}\Gamma_{22}^{i}v$

$+2\{(u+u_{0})_{12}-\Gamma_{12}^{i}(u+u_{0})_{i}\}\Gamma i_{2}v_{i}]$

$-\gamma_{2}\Gamma i_{1}v_{i}+\gamma_{2}\Gamma_{22}^{i}v_{l}$

$+2\gamma_{1}K\{E(u+u_{0})_{2}v_{2}+G(u+u_{0})_{1}v_{1}$

$-F(u+u_{0})_{2}v_{1}-F(u+u_{0})_{1}v_{2}\}$ .
Then, writing $R$ in the form

(3.42) $R=q_{1}(t, x)D_{t}+q_{2}(t, x)D_{x}$ ,

we have

(3.43) $q_{1},$ $q_{2}eS[0,0]$ .
Applying Lemma 3.5 to $q_{2}D$. and $q_{1}\lambda_{1}\in S[1,1]$ of $q_{1}D_{t}=q_{1}\Lambda_{1}+q_{1}\lambda_{1}$ ,

(3.44) $q_{1}D_{t}=\sum_{j=1}^{2}h_{1\dot{f}}\Lambda_{\dot{f}}+h_{0}$ ,

(3.45) $q_{2}D_{x}=\sum_{\dot{g}=1}^{2}k_{1j}\Lambda_{j}+k_{0}$

for some $h_{1j},$ $h_{0}\in S[0,0](j=1,2),$ $k_{1j},$ $k_{0}\in S[0, -1](j=1,2)$ . Now the
assertion is almost clear from (3.44), (3.45). Q.E.D.

Summing up what we have proved in Lemmas 3. $2\sim 3.7$ , we have the
following.

PROPOSITION 3.1. $x_{\dot{f}}(j=1,2)$ defined by (3.20) are real valued func-
tions and satisfy $x_{j}eS[1,1],$ $(\partial/\partial t)\lambda_{\dot{f}}\in S[1,0]$ , and $\Lambda_{j}(j=1,2)$ defined by
(3.21) satisfy (3.27) $[\Lambda_{1}, \Lambda_{2}]=p_{12}\Lambda_{1}+q_{12}\Lambda_{2}+r_{12}$ , where $p_{12},$ $q_{12}\in S[0, -1]$ ,
$r_{12}eS[0, -2]$ . Also, the operator $P$ defined by (3.23) has the expression:

(3.46) $P=\Lambda_{1^{\circ}}\Lambda_{2}+\sum_{\dot{g}=1}^{2}\gamma_{1\dot{f}}\Lambda_{j}+\gamma_{0}$ ,

where $\gamma_{1j}\in S[0, -1](j=1,2),$ $\gamma_{0}\in S[0, -2]$ .
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REMARK 3.3. (i) An operator $P$ with the above properties is a
variant of v-involutively hyperbolic operator introduced by Kumano-go
[3].

(ii) The above procedure of rewriting the operator $P$ into the form
(3.46) is a slight modification of the method due to Yamamoto [8].

Next we rewrite (3.46) into an equivalent system by Morimoto’s
diagonalization process (cf. [5]). Namely, set

(3.47) $v_{0}=\nu^{-1}v$ , $v_{1}=\Lambda_{1}v$ , $v_{l}=\Lambda_{a}v$ ,

(3.48) $V={}^{t}[v_{0}, v_{1}, v_{2}]$ ,

where the symbol $t$ denotes the transposition. Then, we have the follow-
ing lemma.

LEMMA 3.8. The equation (3.46) is equivalent to

(3.49) L $V=H$ ,

where

(3.50) $L=D_{t}I+D(t)+B(t)\nu(t)^{-1}$ ,

(3.51) $D(t)=-\left\{\begin{array}{ll}\nu^{-1}x_{1}\nu,0 & 0\\0,\lambda_{2} & 0\\0 & 0,x_{2}\end{array}\right\}eS[1,1]$ ,

(3.52) $B(t)eS[0,0]$ , $H=A^{-1}{}^{t}[0, h, h]$

and I is the identity matrix.

PROOF. From Proposition 3.1,

(3.53) $D_{l}v_{0}=(\nu^{-1}\lambda_{1}\nu)v_{0}+\{(D_{t}\nu^{-1})\nu\}v_{0}+\nu^{-1}v_{1}$ ,

(3.54) $D_{t}v_{1}=(A_{1^{\circ}}\Lambda_{2}-[\Lambda_{1}, \Lambda_{2}])v+x_{2}v_{1}$

$=*v_{1}-\{(\gamma_{0}+r_{12})\nu\}v_{0}-(\gamma_{11}+p_{12})v_{1}-(\gamma_{12}+q_{12})v_{2}+A^{-1}h$ ,

(3.55) $D_{t}v_{2}=\Lambda_{1^{\circ}}\Lambda_{2}v+x_{1}v_{2}$

$=\lambda_{1}v_{2}-(\gamma_{0}\nu)v_{0}-\gamma_{11}v_{1}-\gamma_{12}v_{2}+A^{-1}h$ .
These equations immediately entail the assertion. Q.E.D.

LEMMA 3.9. For given $s_{0}>0$ , there exist $T>0,$ $\alpha^{\prime}’\in Z_{+},$ $M^{\prime}>0$ such
that, for any $ueD_{\alpha^{\prime\prime}}\cap E_{\infty},$ $s(|s|\leqq s_{0}),$ $H\in C^{0}([-T, T], H^{+K^{\prime}}(R^{1}))$ , the
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Cauchy problem:

(3.56) $LV=H$

with zero Cauchy data on $t=0$ admits a unique solution $Ve\bigcap_{j=0}^{1}C^{j}([-T, T]$ ,
$H^{-\dot{g}}(R^{1}))$ which satisfies

(3.57) $||V(t, )\Vert_{\epsilon}\leqq C^{\prime}(s)|\int_{0}^{t}\Vert H(t^{\prime}, )||_{\iota+M^{\prime}}dt|$ $(|t|\leqq T, |s|\leqq s_{0})$ ,

where C’ is a constant independent of $u$ .
PROOF. As before we only illustrate the case $0\leqq t\leqq T$. Suppose

$Ve\bigcap_{g=0}^{!}C^{j}([0, T], H^{-j}(R^{1})),$ $V|_{t=0}=0$ , then we can estimate $V$ in terms
of $H=LV$ as follows. Namely, take $\theta>0,$ $\sigma>0$ appropriately large and
estimate $(d/dt)||W(t)||_{*}^{2}$ , where

(3.58) $W(t)\equiv W(t, )=e^{-\theta t}\tilde{\nu}(t)^{-\sigma}V(t, )$ ,

(3.59) $\nu\sim(t)=t+\langle\xi\rangle^{-1/2}$ .
Using (3.56),

(3.60) $2||W(t)\Vert_{*}(d/dt)\Vert W(t)\Vert.=(d/dt)\Vert W(t)||^{2}.=2{\rm Re}((d/dt)W(t), W(t))_{*}$

$=-2{\rm Re}((\theta+\sigma\sim\nu(t)^{-1})W(t), W(t)).+2{\rm Re}(e^{-\theta t}\tilde{\nu}(t)^{-\sigma}(d/dt)V(t), W(t))$ .
$=-2\theta\Vert W(t)\Vert^{2}l-2\sigma\Vert\tilde{\nu}(t)^{-1/2}W(t)\Vert_{\epsilon}^{2}+2{\rm Im}(e^{-\theta t}\nu\sim(t)^{-\sigma}(D(t)$

$+B(t)\nu(t)^{-1})V(t),$ $W(t)).+2{\rm Im}(e^{-\theta t}\nu\sim(t)^{-\sigma}H(t), W(t))_{\epsilon}$

$\leqq-2\theta||W(t)||_{l}^{2}-2\sigma||\nu\sim(t)^{-1/2}W(t)||^{2}.+2||e^{-\theta t}\tilde{\nu}(t)^{-\sigma}H(t)||.||W(t)\Vert.+2Z$ ,

where

(3.61) $Z={\rm Im}(e^{-\theta t}\tilde{\nu}(t)^{-\sigma}(D(t)+B(t)\nu(t)^{-1})V(t), W(t))_{\delta}$

and $(, )_{\epsilon}$ denotes the inner product of the Hilbert space $H(R^{1})$ . Since

(3.62) $[\nu\sim(t)^{-\sigma}, D(t)]=\tilde{D}(t)\sim\nu(t)^{-\sigma}$ ,

(3.63) $[\sim\nu(t)^{-\sigma}, B(t)\nu(t)^{-1}]=\tilde{B}(t)\sim\nu(t)^{-\sigma}$

for some $\tilde{D}(t)\in S[0,0],\tilde{B}(t)\in S[-1,2]\subset S[0,0]$ , and

(3.64) $Z\leqq C_{1}(s)\Vert W(t)\Vert^{2}.+{\rm Im}((D(t)+B(t)\nu(t)^{-1})W(t), W(t))$ .
for some constant $C_{1}(s)>0$ . If $\Lambda$ denotes the pseudodifferential operator
with symbol $(1+\xi^{2})^{\prime 2}$ ,
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(3.65) ${\rm Im}(D(t)W(t), W(t)).=-(-1)^{1/2}/2((D(t)-D(t)^{*})\Lambda’ W(t), \Lambda W(t))_{0}$

$+{\rm Im}([\Lambda, D(t)]W(t), \Lambda W(t))_{0}$ .
Here we note $D(t)eS[1,1]$ is a real valued symbol and $[\Lambda, D(t)]eS[s, 0]$ .
Hence

(3.66) ${\rm Im}(D(t)W(t), W(t)).\leqq C_{2}(s)||W(t)||^{2}$.
with some constant $C_{2}(s)>0$ . As for ${\rm Im}(B(t)\nu(t)^{-1}W(t), W(t)).$ ,

(3.67) ${\rm Im}(B(t)\nu(t)^{-1}W(t), W(t))$.
$={\rm Im}(\{\nu\sim(t)^{1/2}\Lambda B(t)\nu(t)^{-1}\tilde{\nu}(t)^{1/2}\Lambda^{-}\}\Lambda^{\sim}\nu(t)^{-1/2}W(t), \Lambda\tilde{\nu}(t)^{-1/2}W(t))_{0\prime}$

(3.68) $\tilde{\nu}(t)^{1/2}\Lambda B(t)\nu(t)^{-1}\tilde{\nu}(t)^{1/2}\Lambda^{-}-\tilde{\nu}(t)^{1/2}B(t)\nu(t)^{-1}\tilde{\nu}(t)^{1/2}\in S[-1, -1]$

and $\nu\sim(t)^{1/2}B(t)\nu(t)^{-1}\nu\sim(t)^{1/2}\in S[0,0]$ . Thus, for some constant $C_{\epsilon}(s)>0$ and
$C_{4}>0$ ,

(3.69) ${\rm Im}(B(t)\nu(t)^{-1}W(t), W(t)).\leqq C_{3}(s)||W(t)\Vert^{2}.+C_{4}||\tilde{\nu}(t)^{-1/2}W(t)||^{2}.$ .
From (3.60), (3.66), (3.69),

(3.70) $\Vert W(t)||.(d/dt)||W(t)||.\leqq(\sum_{\dot{g}=1}^{s}C_{\dot{f}}(s)-\theta)||W(t)||^{2}$.
$+(C_{4}-\sigma)||\tilde{\nu}(t)^{-1/2}W(t)||^{2}.+||W(t)||.||e^{-\theta t}\nu\sim(t)^{-\sigma}H(t)||$ . .

Now take $\theta,$ $\sigma$ large enough so that

(3.71) $\theta\geqq\sum_{j=1}^{s}C_{\dot{f}}(s)$ ,

(3.72) $\sigma\geqq C_{4}$ .
Then, from (3.70),

(3.73) $(T+1)^{-\sigma}e^{-\theta\tau}||V(t)||.\leqq||W(t)||$ .
$\leqq\int_{0}^{t}||e^{-\theta t}’\nu\sim(t)^{-\sigma}H(t)||.dt^{\prime}\leqq C_{f}(s)\int_{0}^{t}||H(t^{\prime})||_{+\sigma/2}dt$ $(0\leqq t\leqq T)$

for some constant $C_{f}(s)>0$ . Therefore, there exists a constant $C_{6}(T)>0$

such that, for any $s(|s|\leqq s_{0})$ ,

(3.74) $||V(t)||.\leqq C_{6}(s, T)\int_{0}^{t}||H(t^{\prime})||_{+\sigma/2}dt$ $(0\leqq t\leqq T)$ .
We remark here $C_{6}(T)$ does not depend on $u\in D_{a^{\prime\prime}}\cap E_{\infty}$ . This is because
that, for any $s(|s|\leqq s_{0})$ , the operator norm of a zero-th order pseudodif-
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ferential operator on $H^{\epsilon}(R^{1})$ depends only on the bound of the derivatives
of its symbol up to finite order (say $k$). Hence, we must take $\alpha^{\prime}$

’ large
enough so that

(3.75) $\alpha^{\prime}’+m^{*}\geqq k+1$ .
To complete the proof, we note that $L^{*}$ has the same form as $L$ .

Then, we can prove the assertion by applying the usual duality argument
(cf. [6] p. 166). Q.E.D.

Finally, we remark that Lemma 3.1 follows from Lemma 3.9. The
proof is as follows. From Lemma 3.9,

(3.76) $\Vert v_{0}(t, )||.,$ $\Vert v_{1}(t, )\Vert.\leqq C’|\int_{0}^{t}||h(t’, )||_{+r},dt|$ $(0\leqq t\leqq T, |s|\leqq s_{0})$

for some constant $C’>0$ . Reminding (3.21) and (3.47),

$||v(t, \cdot)||.=\Vert\nu v_{0}(t, \cdot)\Vert_{\epsilon}\leqq C^{\prime\prime}|\int_{0}^{t}||h(t^{\prime}, \cdot)\Vert_{+H^{\prime}}dt^{\prime}|$ ,

$|1D_{t}v(t, \cdot)\Vert_{*-1}=\Vert v_{1}(t, \cdot)+\lambda_{1}v(t, \cdot)\Vert_{-1}\leqq||v_{1}(t, \cdot)\Vert_{-1}+C_{8}\Vert v(t, \cdot)\Vert_{\epsilon}$

$\leqq C’|\int_{0}^{t}||h(t^{\prime}, \cdot)||_{\epsilon+H^{\prime}-1}dt|+c’ c_{s}|\int_{0}^{t}\Vert h(t’, \cdot)\Vert_{*+H^{\prime}}dt^{\prime}|$

$\leqq C_{4}|\int_{0}^{t}\Vert h(t^{\prime}, )\Vert_{\epsilon+H^{\prime}}dt^{\prime}|$ $(|t|\leqq T, |s|\leqq s_{0})$

for some constants $C’,$ $C_{4}>0$ . Thus, we have proved our claim.

\S 4. Some extension of our result and the related problem.

The problem of the local existence of a nonparametric surface with
prescribed Gaussian curvature $K$ is to find a $C^{\infty}$ function $f(x, y)_{r}$ defined
in a neighborhood of the origin such that

(4.1) $(f_{xx}f_{yy}-f^{2}aey)/(1+|\nabla f|^{2})^{2}=K(x, y)$ .
Let us call this “problem II“ and the previous one “problem I”. Suppose
$K$ has the form:

(4.2) $K=LM^{l}$ ,

near the origin, where $l$ is a positive integer and $L,$ $M$ are $C^{\infty}$ functions
defined in a neighborhood of the origin such that

(4.3) $L<0$ , $M=gradM=0$ , Hess $M>0$
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at $(x, y)=(O, 0)$ . Then, we have the following.

THEOREM. The problems $I,$ $II$ are affirmative for any positive inte $\cdot$

$ger$ .
PROOF. Although we have to alter the definition of the symbol class

and the modification of the principal part of $\Phi^{\prime}(u)$ , the proof is essentially
the same as before. So we omit the proof and only point out the neces-
sary alterations and remarks. As for the definition of norms, we have
to replace the number 5 (resp. 3) in the definition $|u|_{n}$ (resp. $\Vert u\Vert_{*}$) by
$2l+3$ (resp. $2l+1$). As for the definition of the symbol class, change the
definition of $\nu(t, x, \xi)$ to

(4.4) $\nu(t, x, \xi)=\{(t^{2}+\rho(x)^{2})^{l}+\langle\xi\rangle^{-2l\omega}\chi((t^{2}+\rho(x)^{2})^{l}\langle\xi\rangle^{2l\omega})\}^{1/(2\iota)}$ ,

where

(4.5) $\omega=1/(l+1)$ .
As for the modification $of\backslash $ the principal part of $\Phi^{\prime}(u)$ , change the defini-
tions of $b(t, x)$ and $T(t, x, \xi)$ to

(4.6) $b(t, x)=(B^{2}-AC)/A^{2}$

and

(4.7) $T=\{b(t, x)^{l}+\langle\xi\rangle^{-2l\omega}\chi(b(t, x)^{l}\langle\xi\rangle^{2l\omega})\}^{1/(2l)}$ .
We remark that, as the order $2l$ of the degeneracy of $K$ becomes

higher, we need the so called Levi condition for the linearized operator
$\Phi^{\prime}(u)$ . Namely, for any second order classical pseudodifferential operator

$P=\sum_{\dot{g}=0}^{2}p_{\dot{f}}(t, x, D_{g})D_{t}^{2-j}$ , $p_{j}\sim\sum_{k=0}^{\infty}p_{ik}$ , ord $p_{ik}=j-k$

with the same principal symbol as that of $\Phi(u)$ , the condition is that
$p_{21}\in S[1, l-1]$ . Since $\langle\xi\rangle^{-1}$ is dominated by $\nu^{l+1}$ and we can choose an
approximate solution $u_{0}(t, x)=c_{0}t^{2}+\sum_{j\geq 2}\Phi_{\dot{f}}(x)t^{j}$ such that $\Phi_{j}(v)=O(x^{2l+2-\dot{s}})$ ,
the Levi condition holds for both $\Phi^{\prime}(u)$ and its rearrangement, if we ex-
press the Darboux equation in terms of the geodesic parallel coordinate.

Q.E.D.

REMARK. By a similar method we can also prove a similar result
for the both problems when $K$ vanishes on a hypersurface provided that
some of the Christoffel symbols vanish up to certain order on this surface
for the problem I.
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