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Introduction

Let N™@@) be an m-dimensional complex space form of constant
holomorphic sectional curvature &, and let (M", g) be an n-dimensional
Kaehler manifold. It is well known that holomorphic isometric immersions
of Kaehler manifolds into Kaehler manifolds are minimal immersions. We
consider the following problem: Is an isometric minimal immersion
f: (M", g)— N™(@) a holomorphic or anti-holomorphic immersion? However,
it is not true in general. For example, if we take M'=RH?*c/4) (2-
dimensional real hyperbolic space of constant curvature ¢&/4, ¢<0) or

'=S8%¢&/4) (2-dimensional sphere of constant curvature ¢/4, ¢>0), then
we obtain totally real isometric minimal immersions as follows:

(1) M'=RH&/4) totally real, totally geodesic CH™@) ,

where CH™(¢) is an m-dimensional complex hyperbolic space of constant
holomorphic sectional curvature ¢.

(2) M'=S*e /4) natural covering__) RPX& / 4)
totally real, totally geodesic >C’P’”(5’)

where CP™(¢) is an m-dimensional complex projective space of constant
holomorphic sectional curvature ¢ and RP?*/4) is a 2-dimensional real
projective space of constant curvature ¢/4. ‘

In Part I, we prove the following

THEOREM 1. Let CH™@) be an m-dimensional complex hyperbolic
space of constant holomorphic sectional curvature ¢ (¢ <0), and let (M", g)
be an n-dimensional Kaehler manifold such that dim¢ M=n=2. Then,
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evey minimal isometric immersion of (M*, g) into CH™{C) is a holomor-
phic or anti-holomorphic immersion.

REMARK 1. By (1), Theorem 1 is not true if dim¢ M=1. Our result
is closely related to Siu’s work [5]. In fact, by using Siu’s arguments
we can show that Theorem 1 holds even if CH™(¢) is replaced by a
Kaehler manifold of strongly negative curvature tensor. On the other
hand, we can prove Theorem 1 by using Gauss equation only. CH™(C)
and its quotient manifolds are the examples of Kaehler manifolds of
strongly negative curvature tensor (for example, see [5], [6]). Since
Theorem 1 is of local nature, we can easily see that Theorem 1 holds
when CH™(¢) is replaced by its quotient manifolds.

In Part II, we prove the following theorem, which is some generali-
zation of Micallef’s result [4].

THEOREM 2. Let f: M"— R*™**/D be an isometric stable minimal
immersion of an m-dimensional compact Kaehler manifold into a (2n+2)-
dimensional flat torus. Assume that |R[*=z* holds on M, where R is the
curvature temsor and T 1is the scalar curvature of M. Then, f is holo-
morphic with respect to some orthogonal complex structure of R***[D.

REMARK 2. The case of =1 in Theorem 2 is proved by Micallef
([4], p. 73, Theorem 1’), because the condition |R[’=7" is automatically
gatisfied when n=1. For every complex hypersurface in C**'/D, |R[P=<*

holds.

The author wishes to thank Professors K. Ogiue, N. Ejiri and H.
Tsuji for many valuable comments and suggestions.

PART I. THE CASE OF ¢<0

§1. Proof of Theorem 1.

Let f: (M", g)— (N™(¢), h) be an isometric minimal immersion of an
n-dimensional Kaehler manifold into an m-dimensional complex space
form of constant holomorphic sectional curvature &. Let TM€ (resp. T'N€)
be the complexification of the tangent bundle of M (resp. N). Then, the
differential mapping f,: TM— TN can be naturally extended to the com-
plex linear mapping, which is also denoted by f,. We have the Gauss
equation

(3) ME(fu(X), [ (YNFR(2), [ (W)
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=9(R(X, Y)Z, W)+ho(X, Z), o(Y, W))
—ho(Y, Z2), 0(X, W)), .for X,Y,Z WeTM°,

where R, R and ¢ denote the curvature tensor of M, the curvature
tensor of N and the second fundamental form of f, respectively. They
are also extended to the complex tensors. To prove Theorem 1, it is
enough to show that f is a holomorphic or anti-holomorphic immersion
at each point pe M. Therefore, we choose any point peM and we
verify the assertion at p. We choose unitary bases e, :--, e, of T,M€
and u, -+, un, of Ty, N°. We use the following convention on the range

of indices:

a’B"Y,...:]_’...,m ri,j,.k,...zl,...’n
h’#’v’---zl’-oa,m,_j_’..-’m
A, B C, =1, ...,n,i, cee, T
Then, we have A
(4) (B (ty wzYUr, us>=-";—<aapar.,+aa.,am) :
If we put |

Fule) =3 frua+3. fiuz ,
fuler) = frua+ 3 fouz
then we have “ )
(5) | IR §+§alffz i =04
(6) | %.ff’ ;‘7+Za.ff 2—=(0  for any ¢ and j,

because both g and - are Kaehler metriecs. Moreover, since M and N are
Kaehler manifolds, we have ‘

(7) 9(R(e4, ep)e;, e;)=9g(R(e,, epe;, €3)
=g(R(e,, e;)e4, ep)=g(R(e;, €;)es, €5)=0,
PR (U Uy p)=R( Bz, wpyuz, w5)
=h(R(uar uﬁ)ub u}‘)—:h(R(qu u?)ub u,.)=0 ’
for any A, B, 1, 7, N, #, @ and 8.

Therefore, if we put X=e,, Y=¢;, Z=¢; and W=¢; in (3), it follows



230 SEIICHI UDAGAWA
from (4), (6) and (7) that
(8) 28 35\ Sefifif1+€ 3 (FefefifT—fef it
=2 kole, e7), oles, e:))— 2, hlole, e)-ale;, €7)) .

Since f is minimal, we have >}, g(e,, ¢;)=0, which implies that the right
hand side of (8) is non-negative, and so is the left hand side of (8). We
claim that

(9) S FEFEFTE S fof 2T

In fact, since 3, f‘i’f;‘T is a Hermitian matrix, by choosing a suitable
unitary basis, we can assume that

(10) S ffF=SFF (20) it i=j
0 if <#7,

which, by (5), implies that

(11) gﬁf:=§f§ﬁ“ (20) if <=y
0 if i#7.

Then, the claim (9) is proved. If ¢<0, the first term of the left hand
side of (8) is non-positive and the second term is also non-positive by (9).
On the other hand, since the right hand side of (8) is non-negative, it

follows that the equality in (9) holds. If we put \=3, ffF and g,=
S f2f#, then from (9), (10) and (11) we have A /;=0 for 1<i=j<n.

By n=2 and (5) we obtain A,=0 for any ¢ or y,=0 for any ¢, which
implies that f is holomorphic or anti-holomorphic. Therefore, Theorem 1
is proved.

§2. Some remarks on Section 1.

If ¢=0, from (8) we obtain ‘
12) o(e, e;)=0 for any 7.and j,
which is equivalent to
13) f5=0 for any a, 7 and j.

It is well known that an isometric immersion f is minimal if and only
if f is a harmonic map. The mapping f satisfying (18) is called “pluri-
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harmonic”. We remark the following

PROPOSITION 1. Let f: (M", g)— N™0) be an isometric minimal im-
mersion of a Kaehler manifold. Then, f is pluriharmonic.

PROPOSITION 2. Let f: (M*, g)— CP" be an isometric immersion of a
Kaehler manifold into a complex projective space with the Fubini-Study
metric. If n=2 and f is pluriharmonic, then f is holomorphic or anti-
holomorphic.

REMARK 8. Proposition 1 1is already obtained in [1], p. 212,
Theorem 1.2.

Moreover, we remark that a submanifold satisfying (12) is called
austere by R. Harvey and H. B. Lawson, Jr. ([3], p. 102).

PART II. THE CASE OF ¢=0.
First, we state the following

(%) Let f: M"— R*™"* be an isometric stable mimimal immersion of an
n-dimensional complete Kaehler manifold into a (2n+2)-dimensional
Euclidean space. Assume that M is parabolic, that is, M admits mo
positive mon-constant superharmonic functions and that |R|*=7® holds
everywhere on M. Then, f is holomo'rphw with 'respect to some orthogonal
complex structure of R*"*%,

The case of n=1 in () is proved in [4]. We prove (x) by generaliz-
ing the method of [4] to Kaehler manifolds. Theorem 2 can be proved
immediately by the same method as the proof of (x). Unfortunately, for
the case of n=2, we know no examples of parabolic Kaehler manifolds.

§1. Stability condition.

Let f: M*— R*** be an isometric stable minimal immersion of an =n-
dimensional Kaehler manifold into a (2n+2)-dimensional Euclidean space.
We define the inner product (,) on R™" by

1.1 (s, t)=8-t for any s, teC***,
where ’

2n+2 V . :
CRRAES ;. s, for 8=(81, ety 82n+2) and t=(t1: %y t2n+2) .
S =1 ¥ - s 5

Let TMF€ be the comblexiﬁcé,tion of the tangent bundle TM of M. Then,
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we have TMC¢=TM"“°4+ TM*', where the fibre T,M"(resp. T, M) at pe M
is the " —1-eigenspace (resp. —1” —1-eigenspace) of the complex structure
tensor of M. Let NM be the normal bundle of M. Then, naturally NM
has a complex structure defined by its orientation (i.e., rotation by 90°),
and with respect to this complex structure, we have

NMC¢=NM""+NM** .

We denote by Cy(NMF€) the set of all compactly supported smooth sections
of NM€. Then, we have the stability inequality for a minimal submanifold
of C*** (see [4])

(1.2) | i@sres| i@o*r  for any secravme,

where d is the Riemannian connection of C™*!, and the supersecripts 7' and
N denote orthogonal projections onto the tangent space and normal space
of M respectively. Let (z*) (i=1, ---, n) be a local complex coordinate
system on M. Then, we can write ds=ds+09s, where ds=3, (3,8)dz* and
9s=3, (9;8)dz*. Thus, (1.2) can be rewritten as

(1.3) 2| lasyr=| st
| =L Ias]2+L 13s]? .

Since the connection d is flat and s has compact support, by the integra-
tion by parts we have

§ |as|2=§ EN
‘I M M

This, together with (1.8), yields

(1.4) |, 16orr=| 1@y,
or
1.5) |, 1@rr=| 1@sr.

§2. A condition for f to be holomorphic.
Micallef [4] proved the following

THEOREM A. Let F: M™— R*™ be an immersion of an n-dimensional
complex manifold imto an 2n-real dimensional Euclidean space with the
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usual metric. Assume that there exist vector bundles E and V over M
which satisfy the following conditions:

i) TM¢=~E®E, NM°‘=VD7V,

ii) E@YV is orthogonal to EPV with respect to -, ),

iii) d: TN(EPQV)>T(EPV)RT*M).
Then, there exist complex structures J and J on M and R respectively
such that J is orthogomal with respect to the metric induced on M by
F, J is orthogonal with respect to the Euclidean immer product on R™
and F is holomorphic with respect toJ and J.

REMARK 4. J is actually covariant constant on R™, so that R™ is
endowed with the usual Kaehler structure of C".

We can apply Theorem A to our situation. We put E=TM"° and
V=NM"*. Then, the conditions i) and ii) in Theorem A are satisfied.
To see the condition iii) in Theorem A more precisely, we choose local
fields of unitary frames e, -+, e, and e,,, for TM¢ and NM¥¢, respective-
ly. Then,

de=3, 0 s@es+[de]”  for i=1,-,m,
’=
and

de,.,= wn+1,m®en+1 +[de,.]" ,

where w; and ®,.,77 are the connection 1-forms for TM° and NME©
respectively. Therefore, the condition iii) in Theorem A is satisfied if
and only if

(2.1) [de,,] -e,=0 for i=1, -+, m.

We denote by f., fus and fuse, the first order covariant derivative with
respect to e,, the second order covariant derivative with respect to e,
and e, the third order covariant derivative with respect to e,, ez and ¢
of an immersion f, respectively. From now on, we use the following
convention on the range of indices:

i,j, k, -c-=1’ 'oo’ n:

A BC, -oo=1, e, m1, -+, 7.
Then, we can easily see that (2.1) is equivalent to
(2.2) (fi)"*=0, (f7)'=0  for any < and j,
where (f.5)" is the NM*'-component of f,;. Note that (2.2) is also
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equivalent to

2.3) @s)=0  for any seCo(NM™).

§3. Proof of ().

From Proposition 1, we alreé.dy know that f satisfies

3.1 - (f7)"'=0 for any 7 and 5.
LEMMA 3.1. For a fized vector a € C***%, we have
3.2) 2, D,Dsa*t= —g (@ - fi)(esi - fi7)enss

where D i3 the normal connection of M and a"’ 18 the NM"° component

of a.

PrOOF. First, note that f,; € NM°. We may write a'°=(a - e;7)e,4,-
Using (38.1), we see that :

(3.3) s = — % (exrr - Sl
(3.4) " (Gesm)"=Dem

= W57, n+1(€0)€77 -
Then, we have

Dia'*=(a « (0:6771)")€ns1+ (@ * Dierri)€pnss
+(a - ezm)Die, s

=—2.(a - f)lewwi - fi7)enn
+ 0571, 41(€0)(@ * €710 41+ Dp, 771(€0) (@ + €77) 004
=—2.(a f)emwi - fig)enss - |
Moreover, we have _
(3.5) 3. D.Dya**= — 2 (@ - fo)ewri - fif)enn
—g} (@ - fH(@bsm)" - Fi7) + (emm1  fizdlenss
=3 @ f)ew Fi) Dt -
Since (35 fi7)" = (2 fa3)"=0 by Ricci identity and the minimality of f,

(3.5), together with (3.4) and the fact that D.e,.,=,., 7i(e)e, ., yields
(3.2). . Q.E.D.
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We put s=xo in the stability inequality (1.4), where A is a smooth
R-valued function with compact support and o€ C~(NM€). Then, we
may rewrite (1.4) as

(3.6) | s 10| hior
+| s 000 DAY +UG - Do)

+SM>& >.(Dd - Do) -

Since
0=| 5 @0 - D)2 +0.00(5 + Do)
= SM z“, {m.;(a‘- DG) 4\ (G - Dio)} "
+{. S0 Do)+ S 0020 - DiDE)+( - DDioY)
(3.6) may be rewritten as
an | svieerrs| shror-| Sy Re(@ - Do) -
Note that |
S 1o F=3 1o fult and |dNF=2 3

which, together with (3.7), yield -
(8.8) 2 | Y S lo - ful+2 | 3 5 Re(@: D.Dwo)

=\ _1aneior .

For a unit vector a € C***?, we put o=a*° in (3.8). Then, by Lemma 3.1,
we obtain

(3.9) | vas| ianriavrs SM A,
where
(3.10) a=—2Re(S] @+ (f)")@ - (fr)"")} -

Since (3.9) holds for all smooth fﬁnctions A with compact support, using
a theorem of D. Fisher-Colbrie and R. Schoen [2], we see that there
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exists a smooth function #>0 on M such that
(3.11) —Au+qu=0,
where
Au= '_2 2“ u‘; »
If we put w=Ilog u, then we have
(8.12) : Aw=q+|dw|* .
Since
0={_= 60w +a.omn
= S AdN - dw)— S ANAw ,

from (3.12) we obtain

(8.13) 2§ x(dx,-dw)=s 7\.2q+§ A dw]? .
M M M
Moreover, using 2|n(d\ - dw)| =< (\Y/2)|ldw[*+2|d\[2, we have -
(3.14) 2S ldwgs Vq+—1—S At |dwl .
o M 2 Jn
We choose a unitary basis a, a,, +-+, @,,,, of C™** and we let g, stand
for the expression in (38.10) with a=a,, a=1, 2, ---, 2n+2. The solution

of (3.11) with g¢=gq, is denoted by u, and w,=log u,. Since we can easily
see that
2n42

3, ¢.=—2Re(3 (fu) - ()"} =0,

a=1

from (3.14) we have

(3.15) S” |d7\.|’gsx A
where
(3.16) = 8n +1) ;_: |dwel® .

Again by the theorem of Fischer-Colbrie and Schoen, we see that there
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exists a smooth function v>0 on M such that
—Av+rv=0.
Since =0, we have
Av=rv=0,

which implies that v is a positive superharmonic function. It follows
from the parabolicity of M that v=constant. Therefore, we have r=0
and w,=constant, u,=constant, for a=1,2, .-+, 2rn+2. It follows from
(8.11) that

q.=0 for a=1,2, -, 2n+2.

For any point p e M, either (f,;)(»)=0 for any ¢ and j, or (f))(»)#0 for
some ¢ and 7 holds.

Let L,={(k, )| (fi)(®)#0} be the set of the pair of the indices k& and
! such that (f)(»)+0 at pe M. Then, if we put a,=(fi)(®)/|(fi)(®)| for
any (¢, j) € L,, it follows from ¢,=0 that

(8.17) Re(S; (£u)"() - (Ful @) () - (fin) ()}
=0.
Since (8.17) holds for any (3, ) € L,, we obtain
Re{, 3 ((Fu (N (i) =0 ,

which implies
(3.18) 2 fifE=0
(7%
where f4 is the component of a vector (fi;)"° with respect to e,,,. We
also denote by fi the component of a vector (fi;)* with respect to ezr.

From the Gauss equation we see that the curvature tensor R=(R:)
and the secalar curvature z of M are given respectively by

iakl— .ftkf“ .fik 3
T= ZZR“”
=—2> {55+ lf,‘, 5}

Since |R[*=4 3\: ; 1.1 RijuRiu, the assumption |[RI*=7*, together with (3.18)
yields



238 SEIICHI UDAGAWA
(S 1A A =0 .
Therefore, we have proved that for any point p € M, either
(3.19) Sip)=0 for any % and 7,
or

f4®0)=0  for any 7 and j

holds. o
We need the followin

LEMMA 3.2. 3, ; (fi)"'Q@(dz'dz?) (resp. 3. ; (fi)"'R(dz'dz?)) is a holo-
morphic quadratic differential with the value in NM'° (resp. NM®),
where (2*) is a local complex coordinate system on M.

PrOOF. Since NM€ is the holomorphic vector bundle with the con-
nection D over M and D preserves NM'° and NM"!, it is enough to
show that

Di(fi)=0.
We see that

Di(fip) =@fi)" = (fi)" = (fz)" =0,
because f,;;=0 for any % and j. Q.E.D.

Lemma 3.2, together with (3.19), implies that each of f4 and f% for
any ¢ and j vanishes either identically on M or only at isolated points.
Without loss of generality, we may assume that f. vanishes identically
for any % and j.

Therefore, Theorem A, (2.2) and (8.1) imply that f is holomorphic
with respect to some orthogonal complex structure of R**:. This com-
pletes the proof of ().

§4. Proof of Theorem 2.

By Remark in [4], p. 63, Theorem A still holds even if we replace
R*** by R*™*/D. Moreover, by the same reason as Theorem 1’ in [4,
p. 78], (8.9) is still valid for any A e€C~(M). Hence, we see that the
lowest eigenvalue g, of A—gq on M is non-negative. Therefore, it follows
that if 4>0 is the eigenfunction of A—gq corresponding to Y, then we
get Au—qu=0. If we put w=Ilogu, then we have Aw=q+|dw[®. This
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implies that (3.14), (8.15) and (8.16) are still valid. If we put A=1 in
(8.15), we obtain =0 and w=constant and therefore ¢,<0 for a=1, 2,
«++,2n+2. This, together with 3, ¢,=0, implies ¢,=0 for a=1,2, ---,
2n+2. Therefore, by the same argument as the proof of (x), we have
Theorem 2.

REMARK 5. After the completion of this paper, the author has been
informed that M. Dajezer and G. Thorbergsson (“Holomorphicity of
minimal submanifolds in complex space forms’, preprint) also obtained
our Theorem 1 and Proposition 2, independently.
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