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Reducibility of Flow-Spines
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Keio University

The notion of flow-spines was introduced in [2]. A flow-spine is a
standard spine of a closed 3-manifold $M$ and is generated by a normal
pair which is a pair of a non-singular flow on $M$ and its compact local
section. In this paper, we consider methods for constructing a simpler
flow-spine than given one. In general, a spine $P_{1}$ (not necessarily a
flow-spine) is thought to be simpler than $P_{2}$ when $P_{1}$ has less third
singularities than $P_{2}$ . And, for example in [1], several methods for
obtaining a spine with less third singularities are discovered by Ikeda,
Yamashita and Yokoyama. However a spine obtained by applying those
methods to a flow-spine is not always a flow-spine. Hence, in order to
leave our discussion within an extent of flow-spines, we must consider
other “reducibility” of flow-spines.

In \S 4 we will give one of reasonable definitions of the reducibility
of flow-spines. In \S 3 a ”simply reduced flow-spine“ is defined, and our
reducibility will be considered within this sub-class of simply reduced
flow-spines. And in \S \S 5-6 we will give some conditions for a flow-spine
to be reducible in our sense. \S \S 1-2 are devoted to preparations. Es-
pecially in \S 2, we will precisely formulate the concept of a ”singularity-
data” introduced in [2], and give a necessary condition for a singularity-
data to be realized by a normal pair.

\S 1. Preliminaries.

Let $M$ be a smooth closed 3-manifold, and $\psi_{t}$ be a smooth non-singular
flow on $M$. A pair of $\psi$ and its compact local section $\Sigma$ is said to be a
normal pair (see [2] for the precise definition), if $(\psi_{t}, \Sigma)$ satisfies that

(i) $\Sigma$ is homeomorphic to a compact 2-disk,
(ii) $|T_{\pm}(\psi_{t}, \Sigma)(x)|<\infty$ for any $x\in M$,
(iii) $\partial\Sigma$ is $\psi$ -transversal at $(x, T_{+}(\psi_{t}, \Sigma)(x))$ for any $ x\in\partial\Sigma$ , and
(iv) if $ x\in\partial\Sigma$ and $ x_{1}=\hat{T}_{+}(\psi_{t}, \Sigma)(x)\in\partial\Sigma$ , then $\hat{T}_{+}(\psi_{t}, \Sigma)(x_{1})$ is contained
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in Int $\Sigma$ ,
where $T_{\pm}(\psi_{t}, \Sigma):M\rightarrow R$ and $\hat{T}_{\pm}(\psi_{t}, \Sigma):M\rightarrow\Sigma$ are defined by

$T_{+}(\psi_{t}, \Sigma)(x)=\inf\{t>0|\psi(x)\in\Sigma\}$

$T_{-}(\psi_{t}, \Sigma)(x)=\sup\{t<0|\psi_{t}(x)\in\Sigma\}$

$\hat{T}_{\pm}(\psi, \Sigma)(x)=\psi_{\sigma}(x)$ $(\sigma=T_{\pm}(\psi_{t}, \Sigma)(x))$ .
Then flow-spines $P_{-}(\psi_{t}, \Sigma)$ and $P_{+}(\psi_{t}, \Sigma)$ generated by a normal pair
$(\psi_{t}, \Sigma)$ are given by

$P_{-}(\psi_{t}, \Sigma)=\Sigma\cup\{\psi_{t}(x)|x\in\partial\Sigma, T_{-}(\psi_{t}, \Sigma)(x)\leqq t\leqq 0\}$

$P_{+}(\psi_{t}, \Sigma)=\Sigma\cup\{\psi_{t}(x)|x\in\partial\Sigma, 0\leqq t\leqq T_{+}(\psi_{t}, \Sigma)(x)\}$ .
It was shown in [2] that every closed 3-manifold admits a normal pair,
and that each of $P_{-}(\psi_{t}, \Sigma)$ and $P_{+}(\psi_{t}, \Sigma)$ forms a standard spine of the
phase manifold.

When there is no fear of confusion, we simply write $T_{\pm},$ $T_{\pm}$ and $P_{\pm}$

for $T_{\pm}(\psi_{t}, \Sigma),\hat{T}_{\pm}(\psi_{t}, \Sigma)$ and $P_{\pm}(\psi_{t}, \Sigma)$ respectively. For a given normal
pair $(\psi_{t}, \Sigma)$ , the following notation are used throughout this paper, which
are the same as in [2].

NOTATION.
(1) For a closed fake surface $P,$ $\mathfrak{S}_{j}(P)$ denotev the set of the j-th

singularities of $P$ (see [1], [2]).
(2) $\nu$ denotes the number of the elements of $\mathfrak{S}_{s}(P_{-})(P_{-}=P_{-}(\psi, \Sigma))$ .
(3) By $a_{1},$ $a_{2},$ $\cdots,$ $a_{\nu}$ we denote the elements of $\mathfrak{S}_{s}(P_{-})$ ; i.e., $\mathfrak{S}_{s}(P_{-})=$

$\{a_{1}, \cdots, a_{\nu}\}=$ {$x\in Int\Sigma|\hat{T}_{+}(x)$ and $\hat{T}_{+}^{l}(x)$ are both on $\partial\Sigma$ }.

FIGURE 1
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(4) $b_{k}=\hat{T}_{+}(a_{k}),$ $c_{k}=\hat{T}_{+}^{2}(a_{k})$ and $d_{k}=\hat{T}_{+}^{3}(a_{k})(k=1, \cdots, \nu)$ . Notice that
$b_{k},$ $ c_{k}\in\partial\Sigma$ , and that $\{d_{1}, \cdots, d_{\nu}\}=\mathfrak{S}_{3}(P_{+})\subset Int\Sigma$ .

(5) $C_{1},$ $C_{2},$
$\cdots,$

$C_{2\nu}$ denote the connected components of $\partial\Sigma-\{b_{1},$
$\cdots,$

$b_{\nu}$ ,
$c_{1},$ $\cdots,$ $c_{\nu}$ }.

We always assume that the assignments of numbers to $a_{k}’ s$ and $C_{m}’ s$

are fixed once for all.
For each $k=1,$ $\cdots,$ $\nu$ , we define four integers $k(j)(j=1,$ $\cdots,$ $ 4,1\leqq$

$k(j)\leqq 2\nu)$ so that the components $C_{k(j)}$ are like as in Figure 1 (see [2] for
the precise).

\S 2. Singularity-data.

In [2] the notion of the sigularity-data was introduced. We give its
precise formulation in this section.

Let $(\psi_{t}, \Sigma)$ be a normal $\wedge pair$ on some manifold $M$. Fixing an orien-
tation on $\partial\Sigma$ , we denote by $xy(x, y\in\partial\Sigma)$ the subarc of $\partial\Sigma$ going from $x$

to $y$ in the positive direction. For each $m=1,$ $\cdots,$
$ 2\nu$ , take a point $w_{m}$

on the component $C_{m}$ of $\partial\Sigma-\{b_{1}, \cdots, b_{\nu}, c_{1}, \cdots, c_{\nu}\}$ . Then each $a_{k}\in \mathfrak{S}_{3}(P_{-})$

satisfies one of the following four conditions:

$(+)$ $ b_{k}\in w_{k(1)}w_{k(2)}\wedge$ and $c_{k}\in w_{k(3)}^{\wedge}w_{k(4)}$

– –
(-) $b_{k}\in w_{k(2)}w_{k(1)}$ and $c_{k}\in w_{k(4)}w_{k(\theta)}$

– –
$(+*)b_{k}\in w_{k(1)}w_{k(2)}$ and $c_{k}\in w_{k(4)}w_{k(3)}$

– –
$(-*)b_{k}\in w_{k(2)}w_{k(1)}$ and $c_{k}\in w_{k(3)}w_{k(4)}$ .

As is shown in [2], any $a_{k}$ satisfies the condition $(+)$ or (-) if $M$ is
orientable. In [2], the following two informations (a) and (b) about the
third singularities of $P_{\pm}$ are called a singularity-data.

(a) The arrangement of $b_{k}’ s$ and $c_{k}’ s$ on $\partial\Sigma$ .
(b) The condition $(+)$ or (-) or $(+*)$ or $(-*)$ which is satisfied by

each of $a_{k}’ s$ .
How a singularity-data determines a flow-spine is stated in [2].
Now we shall give a more precise formulation of a singularity-data.

Let $B^{+},$ $B^{-},$ $C^{+}$ and $C^{-}$ be mutually disjoint finite subsets of the circle
$S^{1}$ such that $\#(B^{+}\cup B^{-})=\#(C^{+}\cup C^{-})$ . Let $\theta$ be a one-to-one correspondence
between $B^{+}\cup B^{-}$ and $C^{+}\cup C^{-}$ , and $\sigma$ be an orientation on $S^{1}$ . Then we
call the six-tuple $(\sigma;B^{+}, B^{-};C^{+}, C^{-}; \theta)$ a singularity-data of a flow-spine.
Namely, putting $\{b_{1}, \cdots, b_{\nu}\}=B^{+}\cup B^{-}$ and $c_{k}=\theta(b_{k})$ , we determine the con-
dition $(\pm)$ or $(\pm*)$ with respect to the given orientation $\sigma$ on $ S^{1}=\partial\Sigma$
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which is satisfied by $a_{k}\in \mathfrak{S}_{s}(P_{-})$ corresponding to $b_{k}$ in the following way
(i) $a_{k}$ satisfies $(+)$ iff $b_{k}\in B^{+}$ and $c_{k}eC^{+}$ ,
(ii) $a_{k}$ satisfies (-) iff $b_{k}\in B^{-}$ and $c_{k}\in C^{-}$ ,
(iii) $a_{k}$ satisfies $(+*)$ iff $b_{k}\in B^{+}$ and $c_{k}\in C^{-}$ ,
(iv) $a_{k}$ satisfies $(-*)$ iff $b_{k}\in B^{-}$ and $c_{k}\in C^{+}$ .
Let $\Delta=(\sigma;B^{+}, B^{-};C^{+}, C^{-};\theta)$ be a singularity-data, and $\Gamma_{\iota}(l=1,$ $\cdots,$

$\iota$

be the connected components of $S^{1}-(B^{+}\cup B^{-})$ , and $w_{t}$ be a point on $\Gamma$

For each $k=1,$ $\cdots,$ $\nu$ , we define three integers $ k\{j\}(j=1,2,3,1\leqq k\{j\}\leqq\iota$

so that $\Gamma_{k\{j\}}$ satisfy the following conditions $(i)-(iii)$ .
(i) $\Gamma_{k\{1\}}and\wedge\Gamma_{k\{2\}}$ are components $having\wedge b_{k}$ as their end point,
(ii) $b_{k}\in w_{k\{1\}}w_{k\{2\}}$ iff $b_{k}\in B^{+}$ , and $b_{k}\in w_{k(2I}w_{k\{1\}}$ iff $b_{k}\in B^{-}$ ,
(iii) $c_{k}\in\Gamma_{k\{3\}}$ .

And define a group $\Pi(\Delta)$ by

$\Pi(\Delta)\equiv\langle g_{1}, \cdots, g_{\nu};r_{1}, \cdots, r_{\nu}\rangle$ , $r_{k}=g_{k\{1\}}g_{k\{\S\}}g_{k\{2\}}^{-1}$ .
The following theorem was shown in [2].

THEOREM 2.1. If a singularity-data $\Delta$ is realized by a normal pai
on $M$, then $\pi_{1}(M)=\Pi(\Delta)$ .

For a singularity-data $\Delta=(\sigma;B^{+}, B^{-};C^{+}, C^{-};\theta)$ , we define the reverse
singularity-data $\Delta$ ’ by $\Delta^{f}=$ $(-\sigma;C^{+}, C^{-}; B^{+}, B^{-};\theta^{-1})$ . If $\Delta$ is realized $b$

a normal pair $(\psi_{t}, \Sigma)$ on $M$, then A‘ is realized by $(\overline{\psi}_{t}, \Sigma)$ where $\overline{\psi}_{t}$ is th
time-reversed flow given by $\overline{\psi}_{t}=\psi_{-t}$ . Hence, by the above theorem, $w$

must have $\Pi(\Delta)=\Pi(\Delta^{f})=\pi_{1}(M)$ , namely we get the following necessar
condition for the realizability of a singularity-data.

PROPOSITION 2.2. If a singularity-data $\Delta$ is realized by some $norm\{$

pair, then $\Pi(\Delta)=\Pi(\Delta^{f})$ .

\S 3. Simple third singularities, simply reduced normal pairs.

Let $(\psi_{t}, \Sigma)$ be a normal pair. A third singularity $a_{k}$ of $P_{-}=P_{-}(\psi_{t},$ $\Delta^{\backslash }$

(or $d_{k}$ of $P_{+}$ ) is said to be simple, if $C_{k(2)}=C_{k(3)}$ . If $a_{k}\in \mathfrak{S}_{3}(P_{-})$ is simpl
then each of $\{a_{k}\}\cup\hat{T}_{-}(C_{k(2)})$ and $\{d_{k}\}\cup\hat{T}_{+}(C_{k(8)})$ forms a simple closed curt
in $\Sigma$ (cf. Figure 2).

DEFINITION 3.1. A normal pair $(\psi_{t}, \Sigma)$ is said to be simply $reduce_{1}$

if any simple $a_{k}\in \mathfrak{S}_{3}(P_{-})$ satisfies that

$\partial C_{k(1)}\subset\hat{T}_{+}(\mathfrak{S}_{3}(P_{-}))=\{b_{1}, \cdots, b_{\nu}\}$ , and
$\partial C_{k(4)}\subset\hat{T}_{-}(\mathfrak{S}_{3}(P_{+}))=\{c_{1}, \cdots, c_{\nu}\}$ .
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$\psi_{t}|$

FIGURE 2

In 1what follows, we shall give a method for obtaining a simply re-
duced normal pair from given one.

Suppose that $\#\mathfrak{S}_{3}(P_{-})\geqq 2$ , and let $a_{k}\in \mathfrak{S}_{3}(P_{-})$ be a simple third singu-
larity such that $\partial C_{k(1)}\cap\hat{T}_{-}(S_{3}(P_{+}))\neq\emptyset$ . Then $C_{k(1)}=C_{k^{\prime}(3)}$ or $C_{k(1)}=C_{k^{\prime}(4)}$ for
some $k^{\prime}\neq k$ . First we shall consider the case $C_{k(1)}=C_{\underline{k^{\prime}(}3)}$ . Assume that
$b_{k},$ $c_{k},$

$b_{k^{\prime}}$ and $c_{k^{\prime}}$ are arranged as in Figure 3 (a). Then $c_{k^{\prime}}c_{k}$ and $C_{k^{\prime}(1)}UC_{k^{\prime}(2)}$

are mapped by $\hat{T}_{-}$ into the figure like as in Figure 3 (b).

$\nearrow^{c_{k}\backslash }\backslash \backslash \nearrow\dot{b}_{k}\overline{c}_{k}\backslash _{\tau_{c}}\backslash \backslash \backslash \backslash $

$\backslash $

$11’’\prime l’’’$

’ $i$

$’’\prime 1$

,
$\Sigma$

$t1$.
$\iota_{\backslash }$.

$\backslash \backslash $

$\backslash $

\sim .----------

$a\nearrow^{b}1_{k}^{\prime}$

$\backslash \backslash $

(a) (b)

FIGURE 3

Take a compact 2-disk $Y$ in $\Sigma$ so that (Int $Y$) $\cap\hat{T}_{-}(\partial\Sigma)=\hat{T}_{-}(\overline{c_{k^{\prime}}c_{k}})$ and $\gamma\equiv$

$\partial Y\cap\hat{T}_{-}(\partial\Sigma)=\hat{T}_{-}(\gamma^{\prime})$ for some small subarc $\gamma^{\prime}$ of $\partial\Sigma$ containing $b_{k^{\prime}}$ . And
choose a continuous function $f:Y\rightarrow R$ so that $f(x)=\hat{T}_{+}(x)$ for $ x\in\gamma$ and
$0<f(x)<T_{+}(x)$ for $ x\in Y-\gamma$ . A new compact local section $\Sigma$ is defined
by $\Sigma^{\prime}=\Sigma\cup\{\psi_{t}(x)|x\in Y, t=f(x)\}$ . Then $(\psi_{t}, \Sigma)$ is also a normal pair and
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has less third singularity than $(\psi_{t}, \Sigma)$ (see Figure 4). If $\Delta=(\sigma;B^{+},$ $B_{1}^{-}$

$C^{+},$ $ C^{-};\theta$) is the singularity-data for $(\psi_{t}, \Sigma)$ , then the singularity-data $\Delta$

of $(\psi_{t}, \Sigma)$ is given by $\Delta^{\prime}=(\sigma;B_{1}^{+}, B_{1}^{-};C_{1}^{+}, C_{1}^{-};\theta_{1})$ where $B_{1}^{\pm}=B^{\pm}-\{b_{k^{\prime}}\}$

$C_{1}^{\pm}=C^{\pm}-\{c_{k^{\prime}}\}$ and $\theta_{1}=\theta|_{B_{1}\cup B_{1}}+-$ .

Now we shall consider the case $C_{k(1)}=C_{k^{\prime}(4)}$ . In this case, $\hat{T}_{-}(\overline{c_{k^{\prime}}c}_{k})$ is
like as in Figure 5. First we shall show that, deforming $\psi_{t}$ if necessary,
we may assume that $\hat{T}_{-}(\overline{c_{k^{\prime}}c}_{k})$ is disjoint from $\hat{T}_{+}(\partial\Sigma)$ .

$c_{1\prime}\#...’\backslash (\gamma_{al^{--\cdot\backslash }}^{=\backslash }:_{l}\gamma^{b_{\hslash}}\backslash _{\backslash \backslash }\nearrow^{c*}$

$\backslash $

$.\backslash \backslash \backslash \backslash ..’,$

’

:
$a*u^{\prime}’’$

’

$\backslash $

$\backslash \backslash $

$c_{\backslash _{\backslash }}\backslash \sim-------\cdots- d^{br}$

FIGURE 5

Let $X$ be the vector field generating $\psi_{t}$ , and define $U$ to be $U=$

{$\psi_{t}(x)|$ xeInt $\Sigma,$ $-\delta<t<0$}, where $\delta>0$ is a collar-size for $(\psi_{t}, \Sigma)$ (see [2]
for the definition of a collar-size). Let $(x, y)$ be a smooth coordinate on
$\Sigma$ . Then, by the mapping $(x, y, t)\mapsto\psi_{t}(x, y),$ $(x, y, t)$ becomes a $coordinat\epsilon$

on $U$. Consider a vector field $\tilde{X}$ on $M$ such that $\tilde{X}\equiv 0$ on the outside oi
$U$ and $\tilde{X}(x, y, t)=a(x, y, t)\partial/\partial x+b(x, y, t)\partial/\partial y$ on $U$. And let $\psi_{t}^{\prime}$ be a flow
generated by $X+\tilde{X}$. Then obviously $(\psi_{t}^{\prime}, \Sigma)$ is a normal pair and has $th\epsilon$

same singularity-data as $(\psi_{t}, \Sigma)$ . Moreover it is easy to see that, for an
adequate choice of $\tilde{X},\hat{T}_{-}(\psi_{t}^{\prime}, \Sigma)(\overline{c_{k^{\prime}}c}_{k})$ does not intersect with $\hat{T}_{+}(\psi_{t}^{\prime}, \Sigma)(\partial\Sigma)$
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(cf. Figure 6).

$\psi_{t}$ $\psi_{t}^{\prime}$

FIGURE 6

Hence we may assume that the original $(\psi_{t}, \Sigma)$ has this property. Then
we can take a compact 2-disk $Y\subset\Sigma$ so that (Int $\Sigma$) $\cap\hat{T}_{-}(\partial\Sigma)=\hat{T}_{-}(c_{k^{\prime}}c_{k})\wedge$ and
Yn $\hat{T}_{+}(\partial\Sigma)=\emptyset$ (see Figure $7(a)$). Then, for a compact local section $\Sigma=$

$C1(\Sigma-Y),$ $(\psi_{t}, \Sigma)$ is a normal pair and $P_{-}(\psi_{t}, \Sigma)$ has less third singularity
than $P_{-}(\psi_{t}, \Sigma)$ . Also in this case, the singularity-data of $(\psi_{t}, \Sigma)$ is ob-
tained by omitting $b_{k^{\prime}}$ and $c_{k^{\prime}}$ from the one of $(\psi_{t}, \Sigma)$ .

(a) $\zeta b$)

FIGURE 7

If $a_{k}\in \mathfrak{S}_{3}(P_{-})$ is simple and $b_{k^{\prime}}\in\partial C_{k(4)}$ , then, considering the graph
$\hat{T}_{+}(\partial\Sigma)$ instead of $\hat{T}_{-}(\partial\Sigma)$ , we can see that the third singularity $d_{k^{\prime}}\in P_{+}$

can be removed in the same way as above. Repeating this procedure,
we get a simply reduced normal pair or a normal pair with only one
third singularity. If $M$ admits a normal pair with one third singularity,
then $M$ is the 8-sphere $S^{\epsilon}$ (see [2]). Hence we have that
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THEOREM 3.1. If $M\neq S^{3}$ , then by the above procedure we get a simply
reduced normal pair. And in the case of $M=S^{8}$ we obtain a simply
reduced normal pair or a normal pair with only one third singularity.

\S 4. Reducibility.

Let $(\psi_{t}, \Sigma)$ be a normal pair on $M$, and $A\equiv\{a_{k_{1}}, \cdots, a_{k_{f}}\}$ be the set
of simple third singularities of $P_{-}(\psi_{t}, \Sigma)$ . Then $\gamma_{j}\equiv\{a_{k_{\dot{J}}}\}\cup\hat{T}_{-}(C_{k_{j}(2)})$ is a
simple closed curve in $\Sigma$ for each $a_{k_{j}}\in A$ . We denote by $ D_{j}\subset\Sigma$ the
domain bounded by $\gamma_{j}$ , and define $V$ to be

$V=P_{-}\cup\{\psi_{t}(x)|x\in D_{1}\cup D_{2}U\cdots\cup D_{f}, 0<t\leqq\delta\}$

where $\delta>0$ is a collar-size for $(\psi_{t}, \Sigma)$ . Evidently $V$ collapses to $P_{-}$ , and
has free faces

$F_{j}=\{\psi_{t}(x)|x\in\gamma_{j}-\{a_{k_{\dot{J}}}\}, 0<t<\delta\}$ .
Collapsing $V$ from these free faces, we obtain

$V^{\prime}=(P_{-}\cup\psi_{\delta}(D_{1})\cup\cdots\cup\psi_{\delta}(D_{f}))-(\tilde{\gamma}_{1}\cup\cdots\cup\tilde{\gamma}_{f})$

$\tilde{\gamma}_{\dot{g}}=\{\psi_{t}(x)|xe\gamma_{j}-\{a_{k_{j}}\}, 0<t<\delta\}$ ,

(see Figure 8). This $V$’ still has free faces $L_{\dot{g}}=\{\psi(a_{kj})|0<t<\delta\}$ .

$\supset$

$v$
$V^{\prime}$

FIGURE 8

Hence, continuing the collapsing process, we get a spine $\tilde{P}$ of $M$. Maybe
$\tilde{P}$ depends on the collapsing process. And, in general, $\tilde{P}$ is not a flow-
spine. However it is known that

THEOREM 4.1 ([1]). If we get a $\tilde{P}$ which is not a closed fake surface,
then $H_{1}(M;Z)$ is not trivial or $M=S^{8}$ .

And the next proposition can be easily seen by the way in which
we collapse $V$ to $\tilde{P}$.



FLOW-SPINES 169

PROPOSITION 4.2. If $\tilde{P}$ is a closed fake surface, then $\mathfrak{S}_{3}(\tilde{P})$ is in-
cluded in $\mathfrak{S}_{3}(P_{-})-A$ . And moreover if $b_{k}\in\partial C_{k_{j^{(1)}}}$ for some $a_{k_{j}}\in A$ , then
$a_{k}\not\in \mathfrak{S}_{3}(\tilde{P})$ .

This proposition implies that a simply reduced flow-spine having many
simple third singularities results in a spine with few third singularities.
Taking account of this, we define the reducibility of a flow-spine in what
follows.

DEFINITION 4.1. Two simple third singularities $a_{k_{1}}$ and $a_{k_{2}}$ are said
to be twin, if $C_{k_{1}(1)}$ and $C_{k_{2}(1)}$ has the same boundary point.

DEFINITION 4.2. (1) $\kappa_{0}=\kappa_{0}(\psi_{t}, \Sigma)$ denotes the number of the simple
third singularities of $P_{-}(\psi_{t}, \Sigma)$ .

(2) $\kappa_{1}=\kappa_{1}(\psi_{t}, \Sigma)$ denotes the number of pairs of twin simple third
singularities of $P_{-}(\psi_{t}, \Sigma)$ .

(3) $\kappa=\kappa(\psi_{t}, \Sigma)$ is defined by $\kappa=\nu-2\kappa_{0}+\kappa_{1}(\nu=\#\mathfrak{S}_{8}(P_{-}))$ .
We define the reducibility as follows.

DEFINITION 4.3. A simply reduced normal pair $(\psi_{t}, \Sigma)$ (or its flow-
spine $P_{-}(\psi_{t}, \Sigma))$ on $M$ is said to be reducible, if there is a simply reduced
normal pair $(\psi_{t}^{\prime}, \Sigma)$ on $M$ satisfying either of the following (i) or (ii).

(i) $\kappa(\psi_{t}^{\prime}, \Sigma^{\prime})<\kappa(\psi_{t}, \Sigma)$ .
(ii) $\kappa(\psi_{t}^{\prime}, \Sigma)=\kappa(\psi_{t}, \Sigma)$ and $\kappa_{0}(\psi_{t}^{\prime}, \Sigma^{\prime})-2\kappa_{1}(\psi_{t}^{\prime}, \Sigma^{\prime})<\kappa_{0}(\psi_{t}, \Sigma)-2\kappa_{1}(\psi_{t}, \Sigma)$ .
The next theorem will give a reasonability of this definition of the

reducibility.

THEOREM 4.3. If $M$ admits a simply reduced normal pair $(\psi_{t}, \Sigma)$

such that $\kappa(\psi_{t}, \Sigma)\leqq 0$ , then either $H_{1}(M;Z)\neq\{0\}$ or $M=S^{8}$ .
First we shall prove that

LEMMA 4.4. Let $a_{k_{1}}$ and $a_{k_{2}}$ be twin simple third singularities of
$P_{-}(\psi_{t}, \Sigma)$ . If $(\psi_{t}, \Sigma)$ is simply reduced and $H_{1}(M;Z)=\{0\}$ , then $\partial C_{k_{1}(1)}\cap$

$\partial C_{k_{2}(1)}=\{b_{k_{3}}\}$ for some $k_{3}\neq k_{1},$ $k_{2}$ .
PROOF. Since $(\psi_{t}, \Sigma)$ is simply reduced, $C_{k_{1}(1)}=C_{k_{2}(1)}$ if the conclusion

of the lemma does not hold. In this case, setting $L=C1(C_{k_{1}(2)}\cup C_{k_{1}(1)}\cup C_{k_{2}(2)})$ ,
we can see that $\hat{T}_{-}(L)$ forms a component of $\partial\Sigma\cup\hat{T}_{-}(\partial\Sigma)$ , that is,
$\partial\Sigma\cup\hat{T}_{-}(\partial\Sigma)$ is not connected. As is shown in Theorem 4.3 of [2],
$H_{1}(M;Z)$ is not trivial if $\partial\Sigma\cup\hat{T}_{-}(\partial\Sigma)$ is not connected. This completes
the proof.
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PROOF OF THEOREM 4.3. Suppose that $H_{1}(M;Z)=\{0\}$ and $M\neq S^{8},$ $an($

consider the spine $B$ constructed in the beginning of this section. Becaus
of Theorem 4.1, $\tilde{P}$ is a closed fake surface.

Let $A$ be the 8et of simple third singularities of $P_{-}(\psi_{t}, \Sigma)$ , and $A$

be a set of third singularities $a_{k^{\prime}}$ such that $b_{k^{\prime}}\in\partial C_{kt1)}$ for some $a_{k}\in 1$

$(A\subset A_{0})$ . Then, since $(\psi_{t}, \Sigma)$ is simply reduced, we have $\# A_{0}=2(\kappa_{0}-\kappa_{1})+r$

by Lemma 4.4, and hence $\#\mathfrak{S}_{\epsilon}(\tilde{P})\leqq(v-\kappa_{1})-2(\kappa_{0}-\kappa_{1})$ by Proposition 4.2
On the other hand, $M$ has no standard spine without third singularitie
if $H_{1}(M;Z)=\{0\}$ (see [1]). Therefore we must have $\kappa(\psi_{t}, \Sigma)\geqq\#\mathfrak{S}_{8}(P)>0$

This proves the theorem.

According to Theorem 4.3, an affirmative answer to the followinl
problem implies the Poincar\’e conjecture.

PROBLEM. Let $M$ be a homotopy sphere and $(\psi, \Sigma)$ be a simply
reduced normal pair on $M$. Is $(\psi_{t}, \Sigma)$ reducible whenever $\kappa(\psi_{t}, \Sigma)>0$ ?

\S 5. Examples of reducing methods.

In this section, we explain by examples how we can see the reduc
ibility of a flow-spine. As an example, we consider the $singularity- dat_{s}^{\ell}$

$(\sigma;B^{+}, B^{-};C^{+}, C^{-};\theta)$ given in Figure 9, where $B^{+}=\{b_{1}, b_{8}\},$ $B^{-}=\{b_{2}, b_{4}\}$

$C^{+}=\{c_{1}, c_{8}\},$ $C^{-}=\{c_{2}, c_{4}\}$ and $c_{k}=\theta(b_{k})$ . It can be shown that this singularity
data is realized by a normal pair on $S^{s}$ , and $\hat{T}_{-}(\partial\Sigma)$ and $\hat{T}_{+}(\partial\Sigma)$ are $lik($

as in Figure 10.

FIGURE 9

We shall show the reducibility of this normal pair $(\psi_{t}, \Sigma)$ in three dif
ferent ways.

The First Method. Take a compact 2-disk $Y\subset\Sigma$ like as in $Figur\langle$
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FIGURE 10

11 (a). Next choose a continuous function $f:Y\rightarrow R$ such that $f(x)=T_{+}(x)$

for $x\in Y\cap\hat{T}_{-}(\partial\Sigma)$ and $0<f(x)<T_{+}(x)$ otherwise. Then, setting $\Sigma^{\prime}=$

$\Sigma\cup\{\psi_{t}(x)|x\in Y, t=f(x)\}$ , we get a new normal pair $(\psi_{t}, \Sigma)$ . For this
$(\psi_{t}, \Sigma),\hat{T}_{-}(\partial\Sigma)$ is like as in Figure 11 (b). Evidently $\kappa(\psi_{t}, \Sigma^{\prime})=\kappa(\psi_{t}, \Sigma)-1$ .

(a) Cb)

FIGURE 11

The Second Method. In this case, we take a compact 2-disk $Y\subset\Sigma$

like as in Figure 12. Then, applying the method used in \S 3, we may
assume that $Y\cap\hat{T}_{-}(\partial\Sigma)=\emptyset$ . Take another 2-disk $U$ like as in Figure 12.
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FIGURE 12

Now choose a continuous function $f:U\rightarrow R$ such that $f(x)=T_{+}(x)$ for
$x\in U\cap\hat{T}_{-}(\partial\Sigma)$ and $0<f(x)<T_{+}(x)$ otherwise. Then, setting $\Sigma=$

$(C1(\Sigma-Y))U\{\psi_{t}(x)|x\in U, t=f(x)\}$ , we obtain a normal pair $(\psi_{t}, \Sigma^{\prime})$ . The
singularity-data of $(\psi_{t}, \Sigma^{\prime})$ is given by Figure 13, and this normal pair
has a simple third singularity $a_{1}$ . Hence, applying the procedure in \S 3,
we get a simply reduced normal pair $(\psi_{t}^{\prime}, \Sigma^{\prime\prime})$ such that $\kappa(\psi^{\prime}, \Sigma^{\prime\prime})<$

$\kappa(\psi_{t}, \Sigma)$ .

FIGURE 13

The Third Method. In this case, we take three 2-disks $Y_{j}(j=$

$1,2,3)$ like as in Figure 14 (a), (b). And let $\gamma_{l}(l=1, \cdots, 6)$ be subarcs
of $\partial Y_{j}$ indicated in the figure. We can choose continuous functions
$f_{j}:Y_{\dot{f}}\rightarrow R$ such that

(i) $0<f_{j}(x)<T_{+}(x)$ for any $j$ and $x\in Y_{j}$ ,
(ii) $ f_{1}(x)\equiv\delta$ ( $\delta$ is a collar-size),
(iii) $ f_{2}(x)=T_{+}(x)+\delta$ for $x\in\gamma_{4}$ ,
(iv) $ f_{8}(x)=T_{+}(x)+\delta$ for $xe\gamma_{6}$ , and
(v) $f_{8}(x)=T_{+}(x)+f_{2}(\hat{T}_{+}(x))$ for $x\in\gamma_{f}(\hat{T}_{+}(x)\in\gamma_{3})$ .

Then $D=\{\psi_{t}(x)|x\in Y_{\dot{g}}, t=f_{j}(x), j=1,2,3\}$ is a compact local section and
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homeomorphic to a 2-disk. Now take another compact 2-disk $U$ like as
in Figure 14 (b), and choose a continuous function $f:U\rightarrow R$ such that
$f(x)=T_{+}(x)$ for $x\in U\cap\hat{T}_{-}(\partial\Sigma),$ $ f(x)=\delta$ for $x\in Un$ $Y_{1}$ and $0<f(x)<T_{+}(x)$

otherwise.

(a) (b)

FIGURE 14

Then, defining $\Sigma$ by $\Sigma=\Sigma\cup D\cup\{\psi_{t}(x)|x\in U, t=f(x)\}$ , we get a normal
pair $(\psi_{t}, \Sigma)$ . We can easily see that, applying the procedure used in \S 3
to this $(\psi_{t}, \Sigma)$ , we obtain a normal pair $(\psi_{t}^{\prime}, \Sigma^{\prime\prime})$ with $\#\mathfrak{S}_{3}(P_{-}(\psi_{t}^{\prime}, \Sigma^{\prime}))=1$ .

In the next section, we shall give a generalization of the third
method. The first and the second methods will be discussed in the forth-
coming paper.

\S 6. A condition for the reducibility of flow-spines.

In order to give a condition for the reducibility which is a general-
ization of the third method of the preceding section, we first prepare a
definition.

DEFINITION 6.1. A simple closed curve $\beta$ in $M$ is said to be nice
(with respect to a normal pair $(\psi_{t},$ $\Sigma)$ ), if it satisfies that

(i) $\beta\cap(\Sigma\cup \mathfrak{S}_{2}(P_{-})\cup \mathfrak{S}_{2}(P_{+}))=\emptyset$ ,
(ii) $\psi_{t}(x)\not\in\beta$ for any $ x\in\beta$ and $0<t<T_{+}(x)$ ,
(iii) $\beta$ is nowhere tangential to $\psi_{t}$ , and transversal to $P_{-}$ and $P_{+}$ ,
(iv) $\beta\cap P_{-}=\{x_{\beta}\}$ is a singleton and $x_{\beta}\not\in C_{k(2)}=C_{k(3)}$ for any simple

third singularity $a_{k}$ of $P_{-}$ ,
(v) there is an embedded 2-disk $ D_{\beta}\subset M-\Sigma$ such that $\partial D_{\beta}=\beta$ and

$D_{\beta}$ is a compact local section of $\psi_{t}$ , and
(vi) $ D_{\beta}\cap P_{-}\cap P_{+}\neq\emptyset$ or $\hat{T}_{+}(x_{\beta})\not\in C_{k(1)}\cup C_{k(4)}$ for any simple third sin-

gularity $a_{k}$ of $P_{-}$ .
Then we can show that
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THEOREM 6.1. A simply reduced normal pair $(\psi_{t}, \Sigma)$ is reducible, if
it admits a nice closed curve $\beta$ such that $\tilde{x}_{\beta}\equiv\{\psi_{t}(x_{\beta})|0<t<T_{+}(x_{\beta})\}$ does
not intersect with $D_{\beta}$ .

Moreover in the case where $H_{1}(M;Z)$ is trivial, we have that

THEOREM 6.2. A simply reduced normal pair $(\psi_{u}\Sigma)$ on $M$ is re-
ducible, if $H_{1}(M;Z)$ is trivial and $(\psi_{t}, \Sigma)$ admits a nice closed curve.

PROOF OF THEOREM 6.1. Let $\beta$ be a nice closed curve with respect
to $(\psi_{t}, \Sigma)$ , and $B_{0}$ be a subset of $\hat{T}_{+}(\mathfrak{S}_{s}(P_{-}))$ consisting of the points $b$

such that $\psi_{t}(b)\not\in D_{\beta}$ for any $0<t<T_{+}(b)$ . First we shall prove that

LEMMA 6.3. $b_{k}=\hat{T}_{+}(a_{k})$ is contained in $B_{0}$ , if $a_{k}$ is a simple third
singularity of $P_{-}(\psi_{t}, \Sigma)$ .

PROOF. Let the third singularity $a_{k}$ be simple, and $ V\subset\Sigma$ be the
domain bounded by $\{a_{k}\}\cup\hat{T}_{-}(C_{k(2)})$ . And define $\tilde{V}$ to be $\tilde{V}=\{\psi_{t}(x)|x\in C1(V)$ ,
$0\leqq t\leqq T_{+}(x)\}$ . Then, according to the conditions (iv) and (v) in Definition
6.1, each component of $D_{\beta}\cap\partial\tilde{V}$ is a closed curve in $\partial\tilde{V}-(V\cup\hat{T}_{+}(V)UC_{k(2)})$ ,
and nowhere tangential to $\psi_{t}$ . Therefore $D_{\beta}\cap\partial\tilde{V}$ cannot intersect with the
orbit segment from $b_{k}$ to $\hat{T}_{+}(b_{k})$ . This completes the proof of the lemma.

Now suppose that $ x_{\beta}\sim\cap D_{\beta}=\emptyset$ , and denote by $C_{\beta}$ the component of
$\partial\Sigma-(\hat{T}_{+}(\mathfrak{S}_{3}(P_{-}))\cup\hat{T}_{+}^{2}(\mathfrak{S}_{8}(P_{-})))$ which contains $\hat{T}_{+}(x_{\beta})$ . Then, since $x_{\beta}\sim\cap D_{\beta}=$

$\emptyset$ , we can take a compact 2-disk $ U\subset\Sigma$ like as in Figure 15 and a con-
tinuous function $f:U\rightarrow R$ which satisfy that

(i) $U\cap\hat{T}_{-}(\partial\Sigma)\subset\hat{T}_{-}(C_{\beta})$ ,
(ii) $f(x)=T_{+}(x)$ for $x\in U\cap\hat{T}_{-}(C_{\beta})$ ,
(iii) $f(\hat{T}_{-}(x))=-T_{-}(x)$ for $x\in\beta(\hat{T}_{-}(x)\in U\cap\hat{T}_{-}(\beta))$ , and
(iv) $\psi_{f(ae)}(x)\not\in\Sigma\cap D_{\beta}$ for $x\in U-\hat{T}_{-}(\partial\Sigma\cup\beta)$ .
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Define $\Sigma$ to be $\Sigma^{\prime}=\Sigma\cup D_{\beta}\cup\{\psi_{t}(x)|x\in U, t=f(x)\}$ . Then $(\psi_{t}, \Sigma^{\prime})$ is a normal
pair, and $a_{0}^{\prime}=\hat{T}_{-}(\psi_{t}, \Sigma^{\prime})(x_{\beta})$ is a simple third singularity of $P_{-}(\psi_{t}, \Sigma^{\prime})$ . In
the remainder of the proof, we denote $T_{\pm}(\psi_{t}, \Sigma^{\prime})$ and $\hat{T}_{\pm}(\psi_{t}, \Sigma^{\prime})$ by $T_{\pm}^{\prime}$

and $\hat{T}_{\pm}^{\prime}$ respectively, and $T_{\pm}(\psi_{t}, \Sigma)$ and $\hat{T}_{\pm}(\psi_{t}, \Sigma)$ by $T_{\underline{+}}$ and $\hat{T}_{\pm}$ respec-
tively. Let $B^{*}$ be the set of points ce $\beta\cap P_{+}(\psi_{t}, \Sigma)$ such that $\psi_{t}(c)\not\in D_{\beta}$

for any $T_{-}(c)<t<0$ , and define $B_{1}$ by $B_{1}=\hat{T}_{-}(B^{*})$ . Then it is evident
that $\mathfrak{S}_{3}(P_{-}(\psi_{t}, \Sigma^{\prime}))=\{a_{0}^{\prime}\}U\hat{T}_{-}^{\prime}(B_{0})\cup\hat{T}_{-}^{\prime}(B_{1})$ . Let $\Delta$ be the singularity-data
of $(\psi_{t}, \Sigma)$ , and $\Delta$ be the one obtained by removing $B_{1}$ and $\hat{T}_{+}^{\prime}(B_{1})$ from
$\Delta$ . Then, noticing that $a_{0}^{\prime}$ is simple, we can easily see that $\Delta$

’ can be
realized by some normal pair $(\psi_{t}^{\prime}, \Sigma)$ on $M$. We shall consider a simply
reduced normal pair $(\psi_{t}^{\#}, \Sigma^{*})$ which is obtained by applying the procedure
in \S 3 to this $(\psi_{t}^{\prime}, \Sigma^{\prime\prime})$ , and show that $\kappa(\psi_{t}^{*}, \Sigma^{*})<\kappa(\psi_{t}, \Sigma)$ or $\kappa_{0}(\psi_{t}^{*}, \Sigma^{*})-$

$2\kappa_{1}(\psi_{t}^{*}, \Sigma^{*})<\kappa_{0}(\psi_{t}, \Sigma)-2\kappa_{1}(\psi_{t}, \Sigma)$ .
First we shall consider the case where $D_{\beta}\cap P_{+}\cap P_{-}\neq\emptyset(P_{\pm}=P_{\pm}(\psi_{t}, \Sigma))$ .

In this case $\# B_{0}<\#\mathfrak{S}_{8}(P_{-})$ , and hence $\#\mathfrak{S}_{8}(P_{-}^{*})\leqq\# B_{0}+1\leqq\#\mathfrak{S}_{3}(P_{-})(P_{-}^{*}=$

$P_{-}(\psi_{t}^{*}, \Sigma^{*}))$ . It follows from Lemma 6.3 and the procedure for getting
$(\psi_{t}^{*}, \Sigma^{*})$ that $\kappa_{\dot{f}}^{*}=\kappa_{j}+1$ or $\kappa_{j}$ ($j=0,1,$ $\kappa_{j}^{*}=\kappa_{j}(\psi^{*},$ $\Sigma^{*})$ and $\kappa_{j}=\kappa_{j}(\psi_{t},$ $\Sigma)$),
and that $\kappa_{0}^{*}=\kappa_{0}+1$ if $\#\mathfrak{S}_{3}(P_{-}^{*})=\#\mathfrak{S}_{3}(P_{-})$ . Therefore we have $\kappa(\psi_{t}^{*}, \Sigma^{*})>$

$\kappa(\psi_{t}, \Sigma)$ except the case where $\kappa_{0}^{*}=\kappa_{0}$ and $\#\mathfrak{S}_{3}(P_{-}^{*})=\#\mathfrak{S}_{3}(P_{-})-1$ . This case
can occur only when $\#(D_{\beta}\cap P_{+}\cap P_{-})=1$ and $\hat{T}_{+}(x_{\beta})$ is contained in $C_{k(1)}$ or
$C_{k(4)}$ for some simple third singularity $a_{k}$ of $P_{-}$ . And in this case we can
see that $\kappa_{1}^{*}=\kappa_{1}$ , and hence $\kappa(\psi_{t}^{\star}, \Sigma^{*})<\kappa(\psi_{t}, \Sigma)$ also in this case.

Next we shall consider the case where $ D_{\beta}\cap P_{+}\cap P_{-}=\emptyset$ and $\hat{T}_{+}(x_{\beta})\not\in$

$C_{k(1)}\cup C_{k(4)}$ for any simple third singularity $a_{k}$ of $P_{-}$ . Let $y$ be the end
point of $C_{\beta}$ which is not included in $\hat{T}_{+}(D_{\beta})$ . If $y\in\hat{T}_{+}(\mathfrak{S}_{3}(P_{-}))$ , then using
the condition that $\hat{T}_{+}(x_{\beta})\not\in C_{k(1)}$ for any simple $a_{k}$ , we can see that
$\#\mathfrak{S}_{3}(P_{-}^{*})=\#\mathfrak{S}_{3}(P_{-})+1,$ $\kappa_{0}^{*}=\kappa_{0}+1$ and $\kappa_{1}^{*}=\kappa_{1}$ or $\kappa_{1}+1$ . And in the case
where $y$ is contained in $\hat{T}_{+}^{2}(\mathfrak{S}_{3}(P_{-}))$ , by the condition $\hat{T}_{+}(x_{\beta})\not\in C_{k(4)}$ for
simple $a_{k}$ , we have that $\#\mathfrak{S}_{3}(P_{-}^{*})\leqq\#\mathfrak{S}_{3}(P_{-}),$ $\kappa_{0}^{*}=\kappa_{0}+1$ or $\kappa_{0}$ and $\kappa_{1}^{*}=\kappa_{1}$ or
$\kappa_{1}+1$ , and moreover that $\#\mathfrak{S}_{3}(P_{-}^{*})<\#\mathfrak{S}_{3}(P_{-})$ if $\kappa_{0}^{*}=\kappa_{0}$ . Hence in any cases,
we get $\kappa(\psi_{t}^{*}, \Sigma^{*})<\kappa(\psi_{t}, \Sigma)$ or $\kappa_{0}^{*}-2\kappa_{1}^{*}<\kappa_{0}-2\kappa_{1}$ . This completes the
proof.

PROOF OF THEOREM 6.2. According to Theorem 6.1, it is sufficient
for the proof of Theorem 6.2 to show that $\tilde{x}_{\beta}\cap D_{p}=\emptyset$ for any nice closed
curve $\beta$ if $H_{1}(M;Z)$ is trivial.

Assume that $ X_{\beta}\cap D_{\beta}\neq\emptyset$ , and define $F:\beta\rightarrow R$ by

$F(x)=\inf\{t>0|\psi_{t}(x)\in D_{\beta}\}$ .
According to the conditions (ii), (iv) and (v) of Definition 6.1, $F$ is con-
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tinuous on $\beta$ and $F(x)<T_{+}(x)$ for any $ x\in\beta$ . Hence the 2-dimension:
polyhedron $D_{\beta}\cup\tilde{\beta}$ defines a 2-cycle, where $\tilde{\beta}=\{\psi_{t}(x)|x\in\beta,$ $0\leqq t\leqq F(x)$

Therefore if $H_{1}(M;Z)$ is trivial, then $D_{\beta}\cup\tilde{\beta}$ divides $M$ into two domair
$V_{1}$ and $V_{2}$ . Let $x_{0}$ be a point $D_{\beta}$ which is not contained in the domai
bounded by $\{\psi_{t}(x)|x\in\beta, t=F(x)\}$ . We can choose $x_{0}$ so that the orb $\cdot$

through $x_{0}$ does not intersect with $\beta$ . Without loss of generality, $w$

assume that $\psi_{\delta}(x_{0})\in V_{1}$ for small $\delta>0$ and $\psi_{-\delta}(x_{0})\in V_{2}$ . Because $(D_{\beta}U\tilde{\beta})$ I
$\Sigma=\emptyset,$ $\Sigma$ is completely included in either of these two domains.

Let $\Sigma\subset V_{1}$ . Then there must exist a $t_{0}(T_{-}(x_{0})<t_{0}<0)$ such tha
$\psi_{t}(x_{0})\in V_{2}$ for $t_{0}<t<0$ and $\psi_{t_{0}}(x_{0})\in D_{\beta}$ . However this is obviously impo\dagger

sible. Also in the case of $\Sigma\subset V_{2}$ , we have a contradiction that $\psi_{t}(x_{0})|$

$D_{\beta}-U$ for some $0<t<T_{+}(x_{0})$ where $U\subset D_{\beta}$ is the domain bounded $b$

$\{\psi_{t}(x)|x\in\beta, t=F(x)\}$ . This completes the proof.

REMARK 1. The assumption of Theorem 6.2 seems to be somewhg

weakened, that is, we can show the following (a) and (b).
(a) If $H_{1}(M;Z)=\{0\}$ and $\beta$ is a simple closed curve satisfying that

(1) $\beta$ satisfies $(i)-(iv)$ in Definition 6.1,
(2) $LK(\beta, \psi_{\delta}(\beta))=0$ for sufficiently small $\delta>0$ where $LK(\cdot, )$ is tb
linking number,
(3) there is an ”immersed” 2-disk $ D_{\beta}^{\prime}\subset M-\Sigma$ such that $\partial D_{\beta}^{\prime}=\beta$ and 1
is nowhere tangential to $\psi_{t}$ ,
then we can take an embedded 2-disk $ D_{\beta}^{\prime\prime}\subset M-\Sigma$ with $\partial D_{\beta}^{\prime\prime}=\beta$ .

(b) Any simple closed curve satisfying $(i)-(iv)$ in Definition 6.1 ha
the above property (2) if $H_{1}(M;Z)$ is trivial.

However, in (a), it is not yet known whether we can take $ D_{\beta}^{\prime\prime}\xi$

that it is transversal to $\psi_{t}$ .
REMARK 2. Recently Ikeda and Inoue ([3], [4]) introduced the conceI

of DS-diagrams and DS-diagrams with E-cycle. As is pointed out in [4
a flow-spine defines a DS-diagram with E-cycle. The converse can $f$

also proved, namely, we can construct a normal pair which generates
given DS-diagram with E-cycle. Especilly we can say that if a $singularit^{\urcorner}$.
data is realizable in the sense of [2], then it is really generated by som
normal pair. This fact will be discussed in the forthcoming paper.
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