Reducibility of Flow-Spines

Ippei ISHII

Keio University

The notion of flow-spines was introduced in [2]. A flow-spine is a standard spine of a closed 3 -manifold M and is generated by a normal pair which is a pair of a non-singular flow on M and its compact local section. In this paper, we consider methods for constructing a simpler flow-spine than given one. In general, a spine P_{1} (not necessarily a flow-spine) is thought to be simpler than P_{2} when P_{1} has less third singularities than P_{2}. And, for example in [1], several methods for obtaining a spine with less third singularities are discovered by Ikeda, Yamashita and Yokoyama. However a spine obtained by applying those methods to a flow-spine is not always a flow-spine. Hence, in order to leave our discussion within an extent of flow-spines, we must consider other "reducibility" of flow-spines.

In $\S 4$ we will give one of reasonable definitions of the reducibility of flow-spines. In §3 a "simply reduced flow-spine" is defined, and our reducibility will be considered within this sub-class of simply reduced flow-spines. And in $\S \S 5-6$ we will give some conditions for a flow-spine to be reducible in our sense. §§1-2 are devoted to preparations. Especially in §2, we will precisely formulate the concept of a "singularitydata" introduced in [2], and give a necessary condition for a singularitydata to be realized by a normal pair.

§ 1. Preliminaries.

Let M be a smooth closed 3-manifold, and ψ_{t} be a smooth non-singular flow on M. A pair of ψ_{t} and its compact local section Σ is said to be a normal pair (see [2] for the precise definition), if (ψ_{t}, Σ) satisfies that
(i) Σ is homeomorphic to a compact 2-disk,
(ii) $\left|T_{ \pm}\left(\psi_{t}, \Sigma\right)(x)\right|<\infty$ for any $x \in M$,
(iii) $\partial \Sigma$ is ψ_{t}-transversal at $\left(x, T_{+}\left(\psi_{t}, \Sigma\right)(x)\right)$ for any $x \in \partial \Sigma$, and
(iv) if $x \in \partial \Sigma$ and $x_{1}=\widehat{T}_{+}\left(\psi_{t}, \Sigma\right)(x) \in \partial \Sigma$, then $\hat{T}_{+}\left(\psi_{t}, \Sigma\right)\left(x_{1}\right)$ is contained
in $\operatorname{Int} \Sigma$,
where $T_{ \pm}\left(\psi_{t}, \Sigma\right): M \rightarrow \boldsymbol{R}$ and $\hat{T}_{ \pm}\left(\psi_{t}, \Sigma\right): M \rightarrow \Sigma$ are defined by

$$
\begin{aligned}
& T_{+}\left(\psi_{t}, \Sigma\right)(x)=\inf \left\{t>0 \mid \psi_{t}(x) \in \Sigma\right\} \\
& T_{-}\left(\psi_{t}, \Sigma\right)(x)=\sup \left\{t<0 \mid \psi_{t}(x) \in \Sigma\right\} \\
& \hat{T}_{ \pm}\left(\psi_{t}, \Sigma\right)(x)=\psi_{0}(x) \quad\left(\sigma=T_{ \pm}\left(\psi_{t}, \Sigma\right)(x)\right) .
\end{aligned}
$$

Then flow-spines $P_{-}\left(\psi_{t}, \Sigma\right)$ and $P_{+}\left(\psi_{t}, \Sigma\right)$ generated by a normal pair $\left(\psi_{t}, \Sigma\right)$ are given by

$$
\begin{aligned}
& P_{-}\left(\psi_{t}, \Sigma\right)=\Sigma \cup\left\{\psi_{t}(x) \mid x \in \partial \Sigma, T_{-}\left(\psi_{t}, \Sigma\right)(x) \leqq t \leqq 0\right\} \\
& P_{+}\left(\psi_{t}, \Sigma\right)=\Sigma \cup\left\{\psi_{t}(x) \mid x \in \partial \Sigma, 0 \leqq t \leqq T_{+}\left(\psi_{t}, \Sigma\right)(x)\right\}
\end{aligned}
$$

It was shown in [2] that every closed 3 -manifold admits a normal pair, and that each of $P_{-}\left(\psi_{t}, \Sigma\right)$ and $P_{+}\left(\psi_{t}, \Sigma\right)$ forms a standard spine of the phase manifold.

When there is no fear of confusion, we simply write $T_{ \pm}, \hat{T}_{ \pm}$and $P_{ \pm}$ for $T_{ \pm}\left(\psi_{t}, \Sigma\right), \hat{T}_{ \pm}\left(\psi_{t}, \Sigma\right)$ and $P_{ \pm}\left(\psi_{t}, \Sigma\right)$ respectively. For a given normal pair (ψ_{t}, Σ), the following notation are used throughout this paper, which are the same as in [2].

Notation.

(1) For a closed fake surface $P, \mathscr{S}_{j}(P)$ denotes the set of the j-th singularities of P (see [1], [2]).
(2) ν denotes the number of the elements of $\mathcal{S}_{3}\left(P_{-}\right)\left(P_{-}=P_{-}\left(\psi_{t}, \Sigma\right)\right)$.
(3) By $a_{1}, a_{2}, \cdots, a_{\nu}$ we denote the elements of $\mathfrak{S}_{3}\left(P_{-}\right)$; i.e., $\mathfrak{S}_{3}\left(P_{-}\right)=$ $\left\{a_{1}, \cdots, a_{\nu}\right\}=\left\{x \in \operatorname{Int} \Sigma \mid \hat{T}_{+}(x)\right.$ and $\hat{T}_{+}^{2}(x)$ are both on $\left.\partial \Sigma\right\}$.

Figure 1
(4) $b_{k}=\hat{T}_{+}\left(a_{k}\right), c_{k}=\hat{T}_{+}^{2}\left(a_{k}\right)$ and $d_{k}=\hat{T}_{+}^{3}\left(a_{k}\right)(k=1, \cdots, \nu)$. Notice that $b_{k}, c_{k} \in \partial \Sigma$, and that $\left\{d_{1}, \cdots, d_{\nu}\right\}=\mathfrak{S}_{3}\left(P_{+}\right) \subset \operatorname{Int} \Sigma$.
(5) $C_{1}, C_{2}, \cdots, C_{2 \nu}$ denote the connected components of $\partial \Sigma-\left\{b_{1}, \cdots, b_{\nu}\right.$, $\left.c_{1}, \cdots, c_{\nu}\right\}$.

We always assume that the assignments of numbers to a_{k} 's and C_{m} 's are fixed once for all.

For each $k=1, \cdots, \nu$, we define four integers $k(j)(j=1, \cdots, 4,1 \leqq$ $k(j) \leqq 2 \nu)$ so that the components $C_{k(j)}$ are like as in Figure 1 (see [2] for the precise).

§ 2. Singularity-data.

In [2] the notion of the sigularity-data was introduced. We give its precise formulation in this section.

Let (ψ_{t}, Σ) be a normal pair on some manifold M. Fixing an orientation on $\partial \Sigma$, we denote by $\overparen{x y}(x, y \in \partial \Sigma)$ the subarc of $\partial \Sigma$ going from x to y in the positive direction. For each $m=1, \cdots, 2 \nu$, take a point w_{m} on the component C_{m} of $\partial \Sigma-\left\{b_{1}, \cdots, b_{\nu}, c_{1}, \cdots, c_{\nu}\right\}$. Then each $a_{k} \in \mathbb{S}_{3}\left(P_{-}\right)$ satisfies one of the following four conditions:

$$
\begin{aligned}
& (+) \quad b_{k} \in{\widetilde{w_{k(1)}} w_{k(2)}} \text { and } c_{k} \in \overparen{w_{k(3)}} w_{k(4)} \\
& (一) \quad b_{k} \in \overparen{w}_{k(2)} w_{k(1)} \quad \text { and } \quad c_{k} \in \overparen{w_{k(4)}} w_{k(3)} \\
& \left(+^{*}\right) b_{k} \in \overbrace{w_{k(1)}} w_{k(2)} \text { and } c_{k} \in{\overparen{w_{k(4)}} w_{k(3)}}^{w^{2}} \\
& \left(-{ }^{*}\right) b_{k} \in \overparen{w}_{\boldsymbol{w}_{k(2)}} w_{k(1)} \quad \text { and } \quad c_{k} \in{\overparen{w_{k(3)}}}^{w_{k(4)}} \text {. }
\end{aligned}
$$

As is shown in [2], any a_{k} satisfies the condition (+) or (-) if M is orientable. In [2], the following two informations (a) and (b) about the third singularities of $P_{ \pm}$are called a singularity-data.
(a) The arrangement of b_{k} 's and c_{k} 's on $\partial \Sigma$.
(b) The condition $(+)$ or $(-)$ or $\left(+^{*}\right)$ or $\left(-^{*}\right)$ which is satisfied by each of a_{k} 's.

How a singularity-data determines a flow-spine is stated in [2].
Now we shall give a more precise formulation of a singularity-data. Let B^{+}, B^{-}, C^{+}and C^{-}be mutually disjoint finite subsets of the circle S^{1} such that $\#\left(B^{+} \cup B^{-}\right)=\#\left(C^{+} \cup C^{-}\right)$. Let θ be a one-to-one correspondence between $B^{+} \cup B^{-}$and $C^{+} \cup C^{-}$, and σ be an orientation on S^{1}. Then we call the six-tuple ($\sigma ; B^{+}, B^{-} ; C^{+}, C^{-} ; \theta$) a singularity-data of a flow-spine. Namely, putting $\left\{b_{1}, \cdots, b_{\nu}\right\}=B^{+} \cup B^{-}$and $c_{k}=\theta\left(b_{k}\right)$, we determine the condition (\pm) or $\left(\pm^{*}\right)$ with respect to the given orientation σ on $S^{1}=\partial \Sigma$
which is satisfied by $a_{k} \in \mathbb{S}_{3}\left(P_{-}\right)$corresponding to b_{k} in the following way:
(i) a_{k} satisfies (+) iff $b_{k} \in B^{+}$and $c_{k} \in C^{+}$,
(ii) a_{k} satisfies (-) iff $b_{k} \in B^{-}$and $c_{k} \in C^{-}$,
(iii) a_{k} satisfies ($+^{*}$) iff $b_{k} \in B^{+}$and $c_{k} \in C^{-}$,
(iv) a_{k} satisfies (${ }^{*}$) iff $b_{k} \in B^{-}$and $c_{k} \in C^{+}$.

Let $\Delta=\left(\sigma ; B^{+}, B^{-} ; C^{+}, C^{-} ; \theta\right)$ be a singularity-data, and $\Gamma_{l}(l=1, \cdots, \nu)$ be the connected components of $S^{1}-\left(B^{+} \cup B^{-}\right)$, and w_{l} be a point on Γ_{l}. For each $k=1, \cdots, \nu$, we define three integers $k\{j\}(j=1,2,3,1 \leqq k\{j\} \leqq \nu)$ so that $\Gamma_{k i j\}}$ satisfy the following conditions (i)-(iii).
(i) $\Gamma_{k(1)}$ and $\Gamma_{k[2]}$ are components having b_{k} as their end point,
(ii) $b_{k} \in \overparen{w}_{k(1)} w_{k(2)}$ iff $b_{k} \in B^{+}$, and $b_{k} \in \overparen{w_{k(2)}} w_{k(1)}$ iff $b_{k} \in B^{-}$,
(iii) $\boldsymbol{c}_{k} \in \Gamma_{k\{3\}}$.

And define a group $\Pi(\Delta)$ by

$$
\Pi(\Delta) \equiv\left\langle g_{1}, \cdots, g_{\nu} ; r_{1}, \cdots, r_{\nu}\right\rangle, \quad r_{k}=g_{k(1) 1} g_{k(3)} g_{k\{2]}^{-1} .
$$

The following theorem was shown in [2].
Theorem 2.1. If a singularity-data Δ is realized by a normal pair on M, then $\pi_{1}(M)=\Pi(\Delta)$.

For a singularity-data $\Delta=\left(\sigma ; B^{+}, B^{-} ; C^{+}, C^{-} ; \theta\right)$, we define the reversed singularity-data Δ^{r} by $\Delta^{r}=\left(-\sigma ; C^{+}, C^{-} ; B^{+}, B^{-} ; \theta^{-1}\right)$. If Δ is realized by a normal pair (ψ_{t}, Σ) on M, then Δ^{r} is realized by ($\bar{\psi}_{t}, \Sigma$) where $\bar{\psi}_{t}$ is the time-reversed flow given by $\bar{\psi}_{t}=\psi_{-t}$. Hence, by the above theorem, we must have $\Pi(\Delta)=\Pi\left(\Delta^{r}\right)=\pi_{1}(M)$, namely we get the following necessary condition for the realizability of a singularity-data.

Proposition 2.2. If a singularity-data Δ is realized by some normal pair, then $\Pi(\Delta)=\Pi\left(\Delta^{r}\right)$.
§3. Simple third singularities, simply reduced normal pairs.
Let $\left(\psi_{t}, \Sigma\right)$ be a normal pair. A third singularity a_{k} of $P_{-}=P_{-}\left(\psi_{t}, \Sigma\right)$ (or d_{k} of P_{+}) is said to be simple, if $C_{k(2)}=C_{k(3)}$. If $a_{k} \in \mathbb{S}_{3}\left(P_{-}\right)$is simple, then each of $\left\{a_{k}\right\} \cup \widehat{T}_{-}\left(C_{k(2)}\right)$ and $\left\{d_{k}\right\} \cup \widehat{T}_{+}\left(C_{k(3)}\right)$ forms a simple closed curve in Σ (cf. Figure 2).

Definition 3.1. A normal pair (ψ_{t}, Σ) is said to be simply reduced, if any simple $a_{k} \in \mathfrak{S}_{3}\left(P_{-}\right)$satisfies that

$$
\begin{aligned}
& \partial C_{k(1)} \subset \hat{T}_{+}\left(\Im_{3}\left(P_{-}\right)\right)=\left\{b_{1}, \cdots, b_{\nu}\right\}, \quad \text { and } \\
& \partial C_{k(4)} \subset \hat{T}_{-}\left(\Im_{3}\left(P_{+}\right)\right)=\left\{c_{1}, \cdots, c_{\nu}\right\} .
\end{aligned}
$$

Figure 2
In what follows, we shall give a method for obtaining a simply reduced normal pair from given one.

Suppose that $\# \Im_{3}\left(P_{-}\right) \geqq 2$, and let $a_{k} \in \mathfrak{S}_{3}\left(P_{-}\right)$be a simple third singularity such that $\partial C_{k_{(1)}} \cap \widehat{T}_{-}\left(S_{3}\left(P_{+}\right)\right) \neq \varnothing$. Then $C_{k_{(1)}}=C_{k^{\prime}(3)}$ or $C_{k_{(1)}}=C_{k^{\prime}(4)}$ for some $k^{\prime} \neq k$. First we shall consider the case $C_{k(1)}=C_{k^{\prime}(3)}$. Assume that $b_{k}, c_{k}, b_{k^{\prime}}$ and $c_{k^{\prime}}$ are arranged as in Figure 3 (a). Then $\overparen{c_{k^{\prime}} c_{k}}$ and $C_{k^{\prime}(1)} \cup C_{k^{\prime}(2)}$ are mapped by $\widehat{T}_{\text {_ }}$ into the figure like as in Figure $3(\mathrm{~b})$.

Figure 3
Take a compact 2 -disk Y in Σ so that (Int $Y) \cap \widehat{T}_{-}(\partial \Sigma)=\widehat{T}_{-}\left(\widehat{c_{k^{\prime}} c_{k}}\right)$ and $\gamma \equiv$ $\partial Y \cap \hat{T}_{-}(\partial \Sigma)=\hat{T}_{-}\left(\gamma^{\prime}\right)$ for some small subarc γ^{\prime} of $\partial \Sigma$ containing $b_{k^{\prime}}$. And choose a continuous function $f: Y \rightarrow \boldsymbol{R}$ so that $f(x)=\hat{T}_{+}(x)$ for $x \in \gamma$ and $0<f(x)<T_{+}(x)$ for $x \in Y-\gamma$. A new compact local section Σ^{\prime} is defined by $\Sigma^{\prime}=\Sigma \cup\left\{\psi_{t}(x) \mid x \in Y, t=f(x)\right\}$. Then ($\psi_{t}, \Sigma^{\prime}$) is also a normal pair and
has less third singularity than (ψ_{t}, Σ) (see Figure 4). If $\Delta=\left(\sigma ; B^{+}, B^{-}\right.$; $C^{+}, C^{-} ; \theta$) is the singularity-data for (ψ_{t}, Σ), then the singularity-data Δ^{\prime} of ($\psi_{t}, \Sigma^{\prime}$) is given by $\Delta^{\prime}=\left(\sigma ; B_{1}^{+}, B_{1}^{-} ; C_{1}^{+}, C_{1}^{-} ; \theta_{1}\right)$ where $B_{1}^{ \pm}=B^{ \pm}-\left\{b_{k^{\prime}}\right\}$, $C_{1}^{ \pm}=C^{ \pm}-\left\{c_{k^{\prime}}\right\}$ and $\theta_{1}=\left.\theta\right|_{B_{1}^{+} \cup B_{1}^{-}}$.

Now we shall consider the case $C_{k(1)}=C_{k^{\prime}(4)}$. In this case, $\widehat{T}_{-}\left(\widetilde{c_{k^{\prime}} c_{k}}\right)$ is like as in Figure 5. First we shall show that, deforming ψ_{t} if necessary, we may assume that $\widehat{T}_{-}\left(\widehat{c_{k^{\prime}}, c_{k}}\right)$ is disjoint from $\widehat{T}_{+}(\partial \Sigma)$.

Figure 5
Let X be the vector field generating ψ_{t}, and define U to be $U=$ $\left\{\psi_{t}(x) \mid x \in \operatorname{Int} \Sigma,-\delta<t<0\right\}$, where $\delta>0$ is a collar-size for (ψ_{t}, Σ) (see [2] for the definition of a collar-size). Let (x, y) be a smooth coordinate on Σ. Then, by the mapping $(x, y, t) \mapsto \psi_{t}(x, y),(x, y, t)$ becomes a coordinate on U. Consider a vector field \widetilde{X} on M such that $\tilde{X} \equiv 0$ on the outside of U and $\widetilde{X}(x, y, t)=a(x, y, t) \partial / \partial x+b(x, y, t) \partial / \partial y$ on U. And let ψ_{t}^{\prime} be a flow generated by $X+\widetilde{X}$. Then obviously ($\psi_{t}^{\prime}, \Sigma$) is a normal pair and has the same singularity-data as (ψ_{t}, Σ). Moreover it is easy to see that, for an adequate choice of $\widetilde{X}, \widehat{T}_{-}\left(\psi_{t}^{\prime}, \Sigma\right)\left(\widetilde{c_{k^{\prime}} c_{k}}\right)$ does not intersect with $\widehat{T}_{+}\left(\psi_{t}^{\prime}, \Sigma\right)(\partial \Sigma)$
(cf. Figure 6).

Figure 6
Hence we may assume that the original $\left(\psi_{t}, \Sigma\right)$ has this property. Then we can take a compact 2 -disk $Y \subset \Sigma$ so that (Int $\Sigma) \cap \widehat{T}_{-}(\partial \Sigma)=\widehat{T}_{-}\left(\widetilde{c_{k^{\prime}} c_{k}}\right)$ and $Y \cap \widehat{T}_{+}(\partial \Sigma)=\varnothing$ (see Figure $7(\mathrm{a})$). Then, for a compact local section $\Sigma^{\prime}=$ $\mathrm{Cl}(\Sigma-Y),\left(\psi_{t}, \Sigma^{\prime}\right)$ is a normal pair and $P_{-}\left(\psi_{t}, \Sigma^{\prime}\right)$ has less third singularity than $P_{-}\left(\psi_{t}, \Sigma\right)$. Also in this case, the singularity-data of ($\psi_{t}, \Sigma^{\prime}$) is obtained by omitting $b_{k^{\prime}}$ and $c_{k^{\prime}}$ from the one of ($\left.\psi_{t}, \Sigma\right)$.

Figure 7
If $a_{k} \in \subseteq_{3}\left(P_{-}\right)$is simple and $b_{k^{\prime}} \in \partial C_{k(4)}$, then, considering the graph $\widehat{T}_{+}(\partial \Sigma)$ instead of $\hat{T}_{-}(\partial \Sigma)$, we can see that the third singularity $d_{k^{\prime}} \in P_{+}$ can be removed in the same way as above. Repeating this procedure, we get a simply reduced normal pair or a normal pair with only one third singularity. If M admits a normal pair with one third singularity, then M is the 3 -sphere S^{8} (see [2]). Hence we have that

THEOREM 3.1. If $M \neq S^{3}$, then by the above procedure we get a simply reduced normal pair. And in the case of $M=S^{3}$ we obtain a simply reduced normal pair or a normal pair with only one third singularity.

§4. Reducibility.

Let $\left(\psi_{t}, \Sigma\right)$ be a normal pair on M, and $A \equiv\left\{a_{k_{1}}, \cdots, a_{k_{r}}\right\}$ be the set of simple third singularities of $P_{-}\left(\psi_{t}, \Sigma\right)$. Then $\gamma_{j} \equiv\left\{a_{k_{j}}\right\} \cup \widehat{T}_{-}\left(C_{k_{j}(2)}\right)$ is a simple closed curve in Σ for each $a_{k_{j}} \in A$. We denote by $D_{j} \subset \Sigma$ the domain bounded by γ_{j}, and define V to be

$$
V=P_{-} \cup\left\{\psi_{t}(x) \mid x \in D_{1} \cup D_{2} \cup \cdots \cup D_{r}, 0<t \leqq \delta\right\}
$$

where $\delta>0$ is a collar-size for (ψ_{t}, Σ). Evidently V collapses to P_{-}, and has free faces

$$
F_{j}=\left\{\psi_{t}(x) \mid x \in \gamma_{j}-\left\{a_{k_{j}}\right\}, 0<t<\delta\right\} .
$$

Collapsing V from these free faces, we obtain

$$
\begin{aligned}
V^{\prime} & =\left(P_{-} \cup \psi_{j}\left(D_{1}\right) \cup \cdots \cup \psi_{\delta}\left(D_{r}\right)\right)-\left(\tilde{\gamma}_{1} \cup \cdots \cup \tilde{\gamma}_{r}\right) \\
\tilde{\gamma}_{j} & =\left\{\psi_{t}(x) \mid x \in \gamma_{j}-\left\{a_{k_{j}}\right\}, 0<t<\delta\right\}
\end{aligned}
$$

(see Figure 8). This V^{\prime} still has free faces $L_{j}=\left\{\psi_{t}\left(a_{k j}\right) \mid 0<t<\delta\right\}$.

Figure 8
Hence, continuing the collapsing process, we get a spine \widetilde{P} of M. Maybe \widetilde{P} depends on the collapsing process. And, in general, \widetilde{P} is not a flowspine. However it is known that

Theorem 4.1 ([1]). If we get a \widetilde{P} which is not a closed fake surface, then $H_{1}(M ; Z)$ is not trivial or $M=S^{3}$.

And the next proposition can be easily seen by the way in which we collapse V to \widetilde{P}.

Proposition 4.2. If \widetilde{P} is a closed fake surface, then $\mathbb{S}_{3}(\widetilde{P})$ is included in $\mathfrak{S}_{3}\left(P_{-}\right)-A$. And moreover if $b_{k} \in \partial C_{k_{j}(1)}$ for some $a_{k_{j}} \in A$, then $a_{k} \notin \Im_{3}(\widetilde{P})$.

This proposition implies that a simply reduced flow-spine having many simple third singularities results in a spine with few third singularities. Taking account of this, we define the reducibility of a flow-spine in what follows.

DEFINITION 4.1. Two simple third singularities $a_{k_{1}}$ and $a_{k_{2}}$ are said to be twin, if $C_{k_{1}(1)}$ and $C_{k_{2}(1)}$ has the same boundary point.

Definition 4.2. (1) $\kappa_{0}=\kappa_{0}\left(\psi_{t}, \Sigma\right)$ denotes the number of the simple third singularities of $P_{-}\left(\psi_{t}, \Sigma\right)$.
(2) $\kappa_{1}=\kappa_{1}\left(\psi_{t}, \Sigma\right)$ denotes the number of pairs of twin simple third singularities of $P_{-}\left(\psi_{t}, \Sigma\right)$.
(3) $\kappa=\kappa\left(\psi_{t}, \Sigma\right)$ is defined by $\kappa=\nu-2 \kappa_{0}+\kappa_{1}\left(\nu=\# \mathbb{S}_{3}\left(P_{-}\right)\right)$.

We define the reducibility as follows.
DEFINITION 4.3. A simply reduced normal pair (ψ_{t}, Σ) (or its flowspine $P_{-}\left(\psi_{t}, \Sigma\right)$) on M is said to be reducible, if there is a simply reduced normal pair ($\psi_{t}^{\prime}, \Sigma^{\prime}$) on M satisfying either of the following (i) or (ii).
(i) $\kappa\left(\psi_{t}^{\prime}, \Sigma^{\prime}\right)<\kappa\left(\psi_{t}, \Sigma\right)$.
(ii) $\kappa\left(\psi_{t}^{\prime}, \Sigma^{\prime}\right)=\kappa\left(\psi_{t}, \Sigma\right)$ and $\kappa_{0}\left(\psi_{t}^{\prime}, \Sigma^{\prime}\right)-2 \kappa_{1}\left(\psi_{t}^{\prime}, \Sigma^{\prime}\right)<\kappa_{0}\left(\psi_{t}, \Sigma\right)-2 \kappa_{1}\left(\psi_{t}, \Sigma\right)$.

The next theorem will give a reasonability of this definition of the reducibility.

THEOREM 4.3. If M admits a simply reduced normal pair (ψ_{t}, Σ) such that $\kappa\left(\psi_{t}, \Sigma\right) \leqq 0$, then either $H_{1}(M ; \boldsymbol{Z}) \neq\{0\}$ or $M=S^{3}$.

First we shall prove that
LEMMA 4.4. Let $a_{k_{1}}$ and $a_{k_{2}}$ be twin simple third singularities of $P_{-}\left(\psi_{t}, \Sigma\right)$. If $\left(\psi_{t}, \Sigma\right)$ is simply reduced and $H_{1}(M ; \boldsymbol{Z})=\{0\}$, then $\partial C_{k_{1}(1)} \cap$ $\partial C_{k_{2}(1)}=\left\{b_{k_{3}}\right\}$ for some $k_{3} \neq k_{1}, k_{2}$.

Proof. Since (ψ_{t}, Σ) is simply reduced, $C_{k_{k_{1}(1)}}=C_{k_{2}(1)}$ if the conclusion of the lemma does not hold. In this case, setting $L=\operatorname{Cl}\left(C_{k_{1}(2)} \cup C_{k_{1_{1}(1)}} \cup C_{k_{2_{2}(2)}}\right)$, we can see that $\hat{T}_{-}(L)$ forms a component of $\partial \Sigma \cup \hat{T}_{-}(\partial \Sigma)$, that is, $\partial \Sigma \cup \widehat{T}_{-}(\partial \Sigma)$ is not connected. As is shown in Theorem 4.3 of [2], $H_{1}(M ; \boldsymbol{Z})$ is not trivial if $\partial \Sigma \cup \widehat{T}_{-}(\partial \Sigma)$ is not connected. This completes the proof.

Proof of Theorem 4.3. Suppose that $H_{1}(M ; Z)=\{0\}$ and $M \neq S^{3}$, and consider the spine \widetilde{P} constructed in the beginning of this section. Because of Theorem 4.1, \widetilde{P} is a closed fake surface.

Let A be the set of simple third singularities of $P_{-}\left(\psi_{t}, \Sigma\right)$, and A_{0} be a set of third singularities $a_{k^{\prime}}$ such that $b_{k^{\prime}} \in \partial C_{k(1)}$ for some $a_{k} \in A$ $\left(A \subset A_{0}\right)$. Then, since $\left(\psi_{t}, \Sigma\right)$ is simply reduced, we have $\# A_{0}=2\left(\kappa_{0}-\kappa_{1}\right)+\kappa_{1}$ by Lemma 4.4, and hence $\# \mathscr{S}_{8}(\widetilde{P}) \leqq\left(\nu-\kappa_{1}\right)-2\left(\kappa_{0}-\kappa_{1}\right)$ by Proposition 4.2. On the other hand, M has no standard spine without third singularities if $H_{1}(M ; Z)=\{0\}$ (see [1]). Therefore we must have $\kappa\left(\psi_{t}, \Sigma\right) \geqq \#_{\mathbb{S}_{3}}(P)>0$. This proves the theorem.

According to Theorem 4.3, an affirmative answer to the following problem implies the Poincaré conjecture.

Problem. Let M be a homotopy sphere and (ψ_{t}, Σ) be a simply reduced normal pair on M. Is (ψ_{t}, Σ) reducible whenever $\kappa\left(\psi_{t}, \Sigma\right)>0$?

§5. Examples of reducing methods.

In this section, we explain by examples how we can see the reducibility of a flow-spine. As an example, we consider the singularity-data $\left(\sigma ; B^{+}, B^{-} ; C^{+}, C^{-} ; \theta\right)$ given in Figure 9 , where $B^{+}=\left\{b_{1}, b_{3}\right\}, B^{-}=\left\{b_{2}, b_{4}\right\}$, $C^{+}=\left\{c_{1}, c_{3}\right\}, C^{-}=\left\{c_{2}, c_{4}\right\}$ and $c_{k}=\theta\left(b_{k}\right)$. It can be shown that this singularitydata is realized by a normal pair on S^{3}, and $\hat{T}_{-}(\partial \Sigma)$ and $\widehat{T}_{+}(\partial \Sigma)$ are like as in Figure 10.

Figure 9
We shall show the reducibility of this normal pair (ψ_{t}, Σ) in three different ways.

The First Method. Take a compact 2-disk $Y \subset \Sigma$ like as in Figure

Figure 10

11 (a). Next choose a continuous function $f: Y \rightarrow \boldsymbol{R}$ such that $f(x)=T_{+}(x)$ for $x \in Y \cap \hat{T}_{-}(\partial \Sigma)$ and $0<f(x)<T_{+}(x)$ otherwise. Then, setting $\Sigma^{\prime}=$ $\Sigma \cup\left\{\psi_{t}(x) \mid x \in Y, t=f(x)\right\}$, we get a new normal pair ($\psi_{t}, \Sigma^{\prime}$). For this $\left(\psi_{t}, \Sigma^{\prime}\right), \hat{T}_{-}\left(\partial \Sigma^{\prime}\right)$ is like as in Figure $11(\mathrm{~b})$. Evidently $\kappa\left(\psi_{t}, \Sigma^{\prime}\right)=\kappa\left(\psi_{t}, \Sigma\right)-1$.

Figure 11

The Second Method. In this case, we take a compact 2-disk $Y \subset \Sigma$ like as in Figure 12. Then, applying the method used in §3, we may assume that $Y \cap \widehat{T}_{-}(\partial \Sigma)=\varnothing$. Take another 2-disk U like as in Figure 12.

Figure 12
Now choose a continuous function $f: U \rightarrow \boldsymbol{R}$ such that $f(x)=T_{+}(x)$ for $x \in U \cap \hat{T}_{-}(\partial \Sigma)$ and $0<f(x)<T_{+}(x)$ otherwise. Then, setting $\Sigma^{\prime}=$ $(\mathrm{Cl}(\Sigma-Y)) \cup\left\{\psi_{t}(x) \mid x \in U, t=f(x)\right\}$, we obtain a normal pair ($\psi_{t}, \Sigma^{\prime}$). The singularity-data of ($\psi_{t}, \Sigma^{\prime}$) is given by Figure 13, and this normal pair has a simple third singularity a_{1}. Hence, applying the procedure in $\S 3$, we get a simply reduced normal pair ($\psi_{t}^{\prime}, \Sigma^{\prime \prime}$) such that $\kappa\left(\psi_{t}^{\prime}, \Sigma^{\prime \prime}\right)<$ $\kappa\left(\psi_{t}, \Sigma\right)$.

Figure 13
The Third Method. In this case, we take three 2-disks $Y_{j}(j=$ $1,2,3)$ like as in Figure $14(\mathrm{a})$, (b). And let $\gamma_{l}(l=1, \cdots, 6)$ be subarcs of ∂Y_{j} indicated in the figure. We can choose continuous functions $f_{j}: Y_{j} \rightarrow \boldsymbol{R}$ such that
(i) $0<f_{j}(x)<T_{+}(x)$ for any j and $x \in Y_{j}$,
(ii) $f_{1}(x) \equiv \delta$ (δ is a collar-size),
(iii) $f_{2}(x)=T_{+}(x)+\delta$ for $x \in \gamma_{4}$,
(iv) $f_{3}(x)=T_{+}(x)+\delta$ for $x \in \gamma_{6}$, and
(v) $f_{3}(x)=T_{+}(x)+f_{2}\left(\hat{T}_{+}(x)\right)$ for $x \in \gamma_{5}\left(\widehat{T}_{+}(x) \in \gamma_{3}\right)$.

Then $D=\left\{\psi_{t}(x) \mid x \in Y_{j}, t=f_{j}(x), j=1,2,3\right\}$ is a compact local section and
homeomorphic to a 2-disk. Now take another compact 2-disk U like as in Figure $14(\mathrm{~b})$, and choose a continuous function $f: U \rightarrow \boldsymbol{R}$ such that $f(x)=T_{+}(x)$ for $x \in U \cap \hat{T}_{-}(\partial \Sigma), f(x)=\delta$ for $x \in U \cap Y_{1}$ and $0<f(x)<T_{+}(x)$ otherwise.

Figure 14
Then, defining Σ^{\prime} by $\Sigma^{\prime}=\Sigma \cup D \cup\left\{\psi_{t}(x) \mid x \in U, t=f(x)\right\}$, we get a normal pair (ψ_{t}, Σ). We can easily see that, applying the procedure used in §3 to this ($\psi_{t}, \Sigma^{\prime}$), we obtain a normal pair ($\psi_{t}^{\prime}, \Sigma^{\prime \prime}$) with $\# \mathscr{S}_{3}\left(P_{-}\left(\psi_{t}^{\prime}, \Sigma^{\prime \prime}\right)\right)=1$.

In the next section, we shall give a generalization of the third method. The first and the second methods will be discussed in the forthcoming paper.

§6. A condition for the reducibility of flow-spines.

In order to give a condition for the reducibility which is a generalization of the third method of the preceding section, we first prepare a definition.

Definition 6.1. A simple closed curve β in M is said to be nice (with respect to a normal pair $\left(\psi_{t}, \Sigma\right)$), if it satisfies that
(i) $\beta \cap\left(\Sigma \cup \Im_{2}\left(P_{-}\right) \cup \Im_{2}\left(P_{+}\right)\right)=\varnothing$,
(ii) $\psi_{t}(x) \notin \beta$ for any $x \in \beta$ and $0<t<T_{+}(x)$,
(iii) β is nowhere tangential to ψ_{t}, and transversal to P_{-}and P_{+},
(iv) $\beta \cap P_{-}=\left\{x_{\beta}\right\}$ is a singleton and $x_{\beta} \notin C_{k(2)}=C_{k(3)}$ for any simple third singularity a_{k} of P_{-},
(v) there is an embedded 2-disk $D_{\beta} \subset M-\Sigma$ such that $\partial D_{\beta}=\beta$ and D_{β} is a compact local section of ψ_{t}, and
(vi) $\quad D_{\beta} \cap P_{-} \cap P_{+} \neq \varnothing$ or $\hat{T}_{+}\left(x_{\beta}\right) \notin C_{k(1)} \cup C_{k(4)}$ for any simple third singularity a_{k} of P_{-}.

Then we can show that

Theorem 6.1. A simply reduced normal pair (ψ_{t}, Σ) is reducible, if it admits a nice closed curve β such that $\widetilde{x}_{\beta} \equiv\left\{\psi_{t}\left(x_{\beta}\right) \mid 0<t<T_{+}\left(x_{\beta}\right)\right\}$ does not intersect with D_{β}.

Moreover in the case where $H_{1}(M ; Z)$ is trivial, we have that
THEOREM 6.2. A simply reduced normal pair (ψ_{t}, Σ) on M is reducible, if $H_{1}(M ; Z)$ is trivial and $\left(\psi_{t}, \Sigma\right)$ admits a nice closed curve.

Proof of Theorem 6.1. Let β be a nice closed curve with respect to (ψ_{t}, Σ), and B_{0} be a subset of $\hat{T}_{+}\left(\mathfrak{S}_{3}\left(P_{-}\right)\right.$) consisting of the points b such that $\psi_{t}(b) \notin D_{\beta}$ for any $0<t<T_{+}(b)$. First we shall prove that

Lemma 6.3. $\quad b_{k}=\hat{T}_{+}\left(a_{k}\right)$ is contained in B_{0}, if a_{k} is a simple third singularity of $P_{-}\left(\psi_{t}, \Sigma\right)$.

Proof. Let the third singularity a_{k} be simple, and $V \subset \Sigma$ be the domain bounded by $\left\{a_{k}\right\} \cup \widehat{T}_{-}\left(C_{k(2)}\right)$. And define \tilde{V} to be $\tilde{V}=\left\{\psi_{t}(x) \mid x \in \mathrm{Cl}(V)\right.$, $\left.0 \leqq t \leqq T_{+}(x)\right\}$. Then, according to the conditions (iv) and (v) in Definition 6.1, each component of $D_{\beta} \cap \partial \widetilde{V}$ is a closed curve in $\partial \widetilde{V}-\left(V \cup \widehat{T}_{+}(V) \cup C_{k(2)}\right)$, and nowhere tangential to ψ_{t}. Therefore $D_{\beta} \cap \partial \tilde{V}$ cannot intersect with the orbit segment from b_{k} to $\widehat{T}_{+}\left(b_{k}\right)$. This completes the proof of the lemma.

Now suppose that $\widetilde{x}_{\beta} \cap D_{\beta}=\varnothing$, and denote by C_{β} the component of $\partial \Sigma-\left(\hat{T}_{+}\left(\mathfrak{S}_{3}\left(P_{-}\right)\right) \cup \hat{T}_{+}^{2}\left(\mathfrak{S}_{3}\left(P_{-}\right)\right)\right)$which contains $\hat{T}_{+}\left(x_{\beta}\right)$. Then, since $\widetilde{x}_{\beta} \cap D_{\beta}=$ \varnothing, we can take a compact 2 -disk $U \subset \Sigma$ like as in Figure 15 and a continuous function $f: U \rightarrow \boldsymbol{R}$ which satisfy that
(i) $U \cap \hat{T}_{-}(\partial \Sigma) \subset \hat{T}_{-}\left(C_{\beta}\right)$,
(ii) $f(x)=T_{+}(x)$ for $x \in U \cap \hat{T}_{-}\left(C_{\beta}\right)$,
(iii) $f\left(\hat{T}_{-}(x)\right)=-T_{-}(x)$ for $x \in \beta\left(\hat{T}_{-}(x) \in U \cap \hat{T}_{-}(\beta)\right)$, and
(iv) $\psi_{f(x)}(x) \notin \Sigma \cap D_{\beta}$ for $x \in U-\widehat{T}_{-}(\partial \Sigma \cup \beta)$.

Figure 15

Define Σ^{\prime} to be $\Sigma^{\prime}=\Sigma \cup D_{\beta} \cup\left\{\psi_{t}(x) \mid x \in U, t=f(x)\right\}$. Then ($\psi_{t}, \Sigma^{\prime}$) is a normal pair, and $a_{0}^{\prime}=\hat{T}_{-}\left(\psi_{t}, \Sigma^{\prime}\right)\left(x_{\beta}\right)$ is a simple third singularity of $P_{-}\left(\psi_{t}, \Sigma^{\prime}\right)$. In the remainder of the proof, we denote $T_{ \pm}\left(\psi_{t}, \Sigma^{\prime}\right)$ and $\widehat{T}_{ \pm}\left(\psi_{t}, \Sigma^{\prime}\right)$ by $T_{ \pm}^{\prime}$ and $\hat{T}_{ \pm}^{\prime}$ respectively, and $T_{ \pm}\left(\psi_{t}, \Sigma\right)$ and $\widehat{T}_{ \pm}\left(\psi_{t}, \Sigma\right)$ by $T_{ \pm}$and $\hat{T}_{ \pm}$respectively. Let B^{*} be the set of points $c \in \beta \cap P_{+}\left(\psi_{t}, \Sigma\right)$ such that $\psi_{t}(c) \notin D_{\beta}$ for any $T_{-}(c)<t<0$, and define B_{1} by $B_{1}=\widehat{T}_{-}^{\prime}\left(B^{*}\right)$. Then it is evident that $\mathscr{S}_{3}\left(P_{-}\left(\psi_{t}, \Sigma^{\prime}\right)\right)=\left\{a_{0}^{\prime}\right\} \cup \hat{T}_{-}^{\prime}\left(B_{0}\right) \cup \hat{T}_{-}^{\prime}\left(B_{1}\right)$. Let Δ be the singularity-data of ($\psi_{t}, \Sigma^{\prime}$), and Δ^{\prime} be the one obtained by removing B_{1} and $\hat{T}_{+}^{\prime}\left(B_{1}\right)$ from Δ. Then, noticing that a_{0}^{\prime} is simple, we can easily see that Δ^{\prime} can be realized by some normal pair ($\psi_{t}^{\prime}, \Sigma^{\prime \prime}$) on M. We shall consider a simply reduced normal pair (ψ_{t}^{*}, Σ^{*}) which is obtained by applying the procedure in §3 to this ($\psi_{t}^{\prime}, \Sigma^{\prime \prime}$), and show that $\kappa\left(\psi_{t}^{*}, \Sigma^{*}\right)<\kappa\left(\psi_{t}, \Sigma\right)$ or $\kappa_{0}\left(\psi_{t}^{*}, \Sigma^{*}\right)-$ $2 \kappa_{1}\left(\psi_{t}^{*}, \Sigma^{*}\right)<\kappa_{0}\left(\psi_{t}, \Sigma\right)-2 \kappa_{1}\left(\psi_{t}, \Sigma\right)$.

First we shall consider the case where $D_{\beta} \cap P_{+} \cap P_{-} \neq \varnothing\left(P_{ \pm}=P_{ \pm}\left(\psi_{t}, \Sigma\right)\right)$. In this case $\# B_{0}<\# \mathscr{S}_{3}\left(P_{-}\right)$, and hence $\# \mathscr{S}_{3}\left(P_{-}^{*}\right) \leqq \# B_{0}+1 \leqq \# \mathscr{S}_{3}\left(P_{-}\right)\left(P_{-}^{*}=\right.$ $P_{-}\left(\psi_{t}^{*}, \Sigma^{*}\right)$). It follows from Lemma 6.3 and the procedure for getting $\left(\psi_{t}^{*}, \Sigma^{*}\right)$ that $\kappa_{j}^{*}=\kappa_{j}+1$ or $\kappa_{j}\left(j=0,1, \kappa_{j}^{*}=\kappa_{j}\left(\psi_{t}^{*}, \Sigma^{*}\right)\right.$ and $\left.\kappa_{j}=\kappa_{j}\left(\psi_{t}, \Sigma\right)\right)$, and that $\kappa_{0}^{*}=\kappa_{0}+1$ if $\# \mathscr{S}_{3}\left(P_{-}^{*}\right)=\# \mathscr{S}_{3}\left(P_{-}\right)$. Therefore we have $\kappa\left(\psi_{t}^{*}, \Sigma^{*}\right)>$ $\kappa\left(\psi_{t}, \Sigma\right)$ except the case where $\kappa_{0}^{*}=\kappa_{0}$ and $\# \mathscr{S}_{3}\left(P_{-}^{*}\right)=\# \mathbb{S}_{3}\left(P_{-}\right)-1$. This case can occur only when $\#\left(D_{\beta} \cap P_{+} \cap P_{-}\right)=1$ and $\hat{T}_{+}\left(x_{\beta}\right)$ is contained in $C_{k(1)}$ or $C_{k(4)}$ for some simple third singularity a_{k} of P_{-}. And in this case we can see that $\kappa_{1}^{*}=\kappa_{1}$, and hence $\kappa\left(\psi_{t}^{*}, \Sigma^{*}\right)<\kappa\left(\psi_{t}, \Sigma\right)$ also in this case.

Next we shall consider the case where $D_{\beta} \cap P_{+} \cap P_{-}=\varnothing$ and $\hat{T}_{+}\left(x_{\beta}\right) \notin$ $C_{k(1)} \cup C_{k(4)}$ for any simple third singularity a_{k} of P_{-}. Let y be the end point of C_{β} which is not included in $\widehat{T}_{+}\left(D_{\beta}\right)$. If $y \in \widehat{T}_{+}\left(\mathfrak{S}_{3}\left(P_{-}\right)\right)$, then using the condition that $\hat{T}_{+}\left(x_{\beta}\right) \notin C_{k(1)}$ for any simple a_{k}, we can see that $\# \mathscr{S}_{3}\left(P_{-}^{*}\right)=\# \mathscr{S}_{3}\left(P_{-}\right)+1, \quad \kappa_{0}^{*}=\kappa_{0}+1$ and $\kappa_{1}^{*}=\kappa_{1}$ or $\kappa_{1}+1$. And in the case where y is contained in $\hat{T}_{+}^{2}\left(\mathfrak{S}_{3}\left(P_{-}\right)\right)$, by the condition $\widehat{T}_{+}\left(x_{\beta}\right) \notin C_{k(4)}$ for simple a_{k}, we have that $\# \mathscr{S}_{3}\left(P_{*}^{*}\right) \leqq \# \mathscr{S}_{s}\left(P_{-}\right), \kappa_{0}^{*}=\kappa_{0}+1$ or κ_{0} and $\kappa_{1}^{*}=\kappa_{1}$ or $\kappa_{1}+1$, and moreover that $\# \mathscr{S}_{3}\left(P_{-}^{*}\right)<\# \mathbb{S}_{3}\left(P_{-}\right)$if $\kappa_{0}^{*}=\kappa_{0}$. Hence in any cases, we get $\kappa\left(\psi_{t}^{*}, \Sigma^{*}\right)<\kappa\left(\psi_{t}, \Sigma\right)$ or $\kappa_{0}^{*}-2 \kappa_{1}^{*}<\kappa_{0}-2 \kappa_{1}$. This completes the proof.

Proof of Theorem 6.2. According to Theorem 6.1, it is sufficient for the proof of Theorem 6.2 to show that $\widetilde{x}_{\beta} \cap D_{\beta}=\varnothing$ for any nice closed curve β if $H_{1}(M ; \boldsymbol{Z})$ is trivial.

Assume that $\widetilde{x}_{\beta} \cap D_{\beta} \neq \varnothing$, and define $F: \beta \rightarrow \boldsymbol{R}$ by

$$
F(x)=\inf \left\{t>0 \mid \psi_{t}(x) \in D_{\beta}\right\}
$$

According to the conditions (ii), (iv) and (v) of Definition 6.1, F is con-
tinuous on β and $F(x)<T_{+}(x)$ for any $x \in \beta$. Hence the 2-dimensional polyhedron $D_{\beta} \cup \widetilde{\beta}$ defines a 2-cycle, where $\widetilde{\beta}=\left\{\psi_{t}(x) \mid x \in \beta, 0 \leqq t \leqq F(x)\right\}$. Therefore if $H_{1}(M ; Z)$ is trivial, then $D_{\beta} \cup \widetilde{\beta}$ divides M into two domains V_{1} and V_{2}. Let x_{0} be a point D_{β} which is not contained in the domain bounded by $\left\{\psi_{t}(x) \mid x \in \beta, t=F(x)\right\}$. We can choose x_{0} so that the orbit through x_{0} does not intersect with β. Without loss of generality, we assume that $\psi_{\delta}\left(x_{0}\right) \in V_{1}$ for small $\delta>0$ and $\psi_{-\delta}\left(x_{0}\right) \in V_{2}$. Because $\left(D_{\beta} \cup \widetilde{\beta}\right) \cap$ $\Sigma=\varnothing, \Sigma$ is completely included in either of these two domains.

Let $\Sigma \subset V_{1}$. Then there must exist a $t_{0}\left(T_{-}\left(x_{0}\right)<t_{0}<0\right)$ such that $\psi_{t}\left(x_{0}\right) \in V_{2}$ for $t_{0}<t<0$ and $\psi_{t_{0}}\left(x_{0}\right) \in D_{\beta}$. However this is obviously impossible. Also in the case of $\Sigma \subset V_{2}$, we have a contradiction that $\psi_{t}\left(x_{0}\right) \in$ $D_{\beta}-U$ for some $0<t<T_{+}\left(x_{0}\right)$ where $U \subset D_{\beta}$ is the domain bounded by $\left\{\psi_{t}(x) \mid x \in \beta, t=F(x)\right\}$. This completes the proof.

Remark 1. The assumption of Theorem 6.2 seems to be somewhat weakened, that is, we can show the following (a) and (b).
(a) If $H_{1}(M ; Z)=\{0\}$ and β is a simple closed curve satisfying that (1) β satisfies (i)-(iv) in Definition 6.1,
(2) $\operatorname{LK}\left(\beta, \psi_{\delta}(\beta)\right)=0$ for sufficiently small $\delta>0$ where $\operatorname{LK}(\cdot, \cdot)$ is the linking number,
(3) there is an "immersed" 2-disk $D_{\beta}^{\prime} \subset M-\Sigma$ such that $\partial D_{\beta}^{\prime}=\beta$ and D_{β}^{\prime} is nowhere tangential to ψ_{t}, then we can take an embedded 2 -disk $D_{\beta}^{\prime \prime} \subset M-\Sigma$ with $\partial D_{\beta}^{\prime \prime}=\beta$.
(b) Any simple closed curve satisfying (i)-(iv) in Definition 6.1 has the above property (2) if $H_{1}(M ; Z)$ is trivial.

However, in (a), it is not yet known whether we can take $D_{\beta}^{\prime \prime}$ so that it is transversal to ψ_{t}.

Remark 2. Recently Ikeda and Inoue ([3], [4]) introduced the concept of DS-diagrams and DS-diagrams with E-cycle. As is pointed out in [4], a flow-spine defines a DS-diagram with E-cycle. The converse can be also proved, namely, we can construct a normal pair which generates a given DS-diagram with E-cycle. Especilly we can say that if a singularitydata is realizable in the sense of [2], then it is really generated by some normal pair. This fact will be discussed in the forthcoming paper.

References

[1] H. Ikeda, Acyclic fake surfaces, Topology, 10 (1971), 9-36.
[2] I. Ishil, Flows and spines, Tokyo J. Math., 9 (1986), 505-525.
[3] H. Ikeda and Y. Inoue, Invitation to DS-diagrams, Kobe J. Math., 2 (1985), 169-186.
[4] H. Ikeda, DS-diagrams with E-cycle, Kobe J. Math., 3 (1986), 103-112.

Present Address:

Department of Mathematics
Faculty of Science and Technology
Keio University
Hiyoshi, Kонокu-ku, Yokohama 223

