A Completely Integrable Hamiltonian System of C. Neumann-type on the Complex Projective Space

Kiyotaka II and Akira YOSHIOKA

Yamagata University and Tokyo Metropolitan University
(Communicated by K. Ogiue)

Introduction

The C. Neumann problem is a Hamiltonian system which describes the motion of a point on the sphere $S^{n-1} = \{x \in \mathbb{R}^n | ||x|| = 1\}$ under the influence of a quadratic potential $U(x) = (1/2) \sum a_j x_j^2$, $a_1, \dots, a_n \in \mathbb{R}$. It is shown by many authors that the C. Neumann problem is completely integrable (see [5, §1]). In [5], Ratiu showed that the C. Neumann problem is a Hamiltonian system on an adjoint orbit in a semidirect product of Lie algebras, and that its complete integrability follows entirely from Lie algebraic considerations.

In the present note, we define a C. Neumann-type problem on the complex projective space $P^{n-1} = \{[z] | z \in C^n, ||z|| = 1\}$ (see section 4). It is a Hamiltonian system which describes the motion of a point on P^{n-1} under the influence of a potential $U([z]) = (1/2) \sum a_j |z_j|^2$. We then show, following Ratiu [5], that this system is a Hamiltonian system on an adjoint orbit in a semidirect product of Lie algebras (Theorem 3.4 and Proposition 4.1). As a consequence, we can prove that the C. Neumann-type problem on the complex projective space is completely integrable (Theorem 4.3).

§ 1. Hamiltonian actions and (co-)adjoint orbits.

In this section, we recall a few facts about symplectic geometry (for references, see [1], [2], [3], [4]). Let M be a symplectic manifold with symplectic structure Ω_M . Recall that Ω_M is a non-degenerate closed two-form on M. Each real-valued smooth (i.e., C^{∞}) function f on M generates a Hamiltonian vector field X_f on M which satisfies $X_f \, \, \square \, \Omega_M = df$. Let $C^{\infty}(M)$ be the space of real-valued smooth functions on M. The Poisson

bracket of $f_1, f_2 \in C^{\infty}(M)$ is defined by $\{f_1, f_2\}_{M} = -\Omega_{M}(X_{f_1}, X_{f_2})$. The Poisson bracket makes $C^{\infty}(M)$ into a Lie algebra called the Poisson algebra of M. Let $\mathfrak{X}(M)$ denote the Lie algebra consisting of smooth vector fields on M with the usual Lie bracket. Then $f \mapsto X_f$ is a Lie algebra homomorphism of $C^{\infty}(M)$ into $\mathfrak{X}(M)$.

Let G be a Lie group with Lie algebra g, and let Φ be a smooth action of G on M. For each $\xi \in g$, let X^{ℓ} denote the infinitesimal generator of the action, i.e., X^{ℓ} is a smooth vector field on M defined by

for $f \in C^{\infty}(M)$, $m \in M$. Recall that $\xi \mapsto X^{\xi}$ is a Lie algebra homomorphism of g into $\mathfrak{X}(M)$. Φ is called a *Hamiltonian action* if

- (i) Φ is a symplectic action, i.e., for each $g \in G$, Φ_g leaves Ω_M invariant, and
- (ii) there exists a linear map, $\xi \mapsto f^{\ell}$, of g into $C^{\infty}(M)$ such that $X_{f^{\ell}} = X^{\ell}$ and $f^{\ell} \circ \Phi_{g^{-1}} = f^{\operatorname{Ad}_{g}(\ell)}$ for $\xi \in \mathfrak{g}$, $g \in G$, where Ad denotes the adjoint action of G.

Here note that $\xi \mapsto f^{\varepsilon}$ is a Lie algebra homomorphism of g into $C^{\infty}(M)$ (cf. [1, Corollary 4.2.9]). A symplectic manifold with a transitive Hamiltonian action of a Lie group G is called a Hamiltonian G-space. Let \mathfrak{g}^* denote the dual space of g. The moment map of a Hamiltonian action is a smooth map J of M into \mathfrak{g}^* given by $\langle J(m), \xi \rangle = f^{\varepsilon}(m)$ for $m \in M$, $\xi \in \mathfrak{g}$, where \langle , \rangle denotes the pairing between \mathfrak{g}^* and \mathfrak{g} .

Now we shall consider the coadjoint action Ad' of G on \mathfrak{g}^* , which is defined by $\langle \mathrm{Ad}'_{\mathfrak{g}}(\alpha), \xi \rangle = \langle \alpha, \mathrm{Ad}_{\mathfrak{g}^{-1}}(\xi) \rangle$ for $g \in G$, $\alpha \in \mathfrak{g}^*$, $\xi \in \mathfrak{g}$. For each $\xi \in \mathfrak{g}$, let $\tilde{\xi}$ denote the infinitesimal generator of the coadjoint action. Let \mathscr{O} be a coadjoint orbit of G. Then \mathscr{O} is a symplectic manifold with the Lie-Kirillov-Kostant-Souriau symplectic structure $\omega_{\mathscr{O}}$. Recall that $\omega_{\mathscr{O}}$ is given by $\omega_{\mathscr{O}}(\tilde{\xi}_{\alpha}, \tilde{\eta}_{\alpha}) = -\langle \alpha, [\xi, \eta] \rangle$ for $\alpha \in \mathscr{O}$, ξ , $\eta \in \mathfrak{g}$. The restriction of the coadjoint action to \mathscr{O} is a Hamiltonian action with the Lie algebra homomorphism $\mathfrak{g} \to C^{\infty}(\mathscr{O})$ given by $\xi \mapsto \langle \cdot, \xi \rangle|_{\mathscr{O}}$. Thus \mathscr{O} is a Hamiltonian G-space.

THEOREM 1.1 (cf. [4, Theorem 5.4.1]). Let M be a Hamiltonian G-space with a moment map J. Then the image J(M) of M under J coincides with a coadjoint orbit of G, and $J: M \rightarrow J(M)$ is a symplectic covering map of Hamiltonian G-spaces.

If $F \in C^{\infty}(\mathfrak{g}^*)$, then the Legendre transformation $\mathscr{L}_F: \mathfrak{g}^* \to \mathfrak{g}$ associated to F is defined by

$$\langle \beta, \mathscr{L}_{F}(\alpha) \rangle = \left[\frac{d}{dt} F(\alpha + t\beta) \right]_{t=0}$$

for α , $\beta \in \mathfrak{g}^*$ (cf. [3, § 1]). The Poisson bracket $\{,\}_{\mathfrak{g}^*}$ is then defined by

$$\{F_1, F_2\}_{\mathfrak{g}^*}(\alpha) = \langle \alpha, [\mathscr{L}_{F_1}(\alpha), \mathscr{L}_{F_2}(\alpha)] \rangle$$

for F_1 , $F_2 \in C^{\infty}(\mathfrak{g}^*)$, $\alpha \in \mathfrak{g}^*$. The Poisson bracket makes $C^{\infty}(\mathfrak{g}^*)$ into a Lie algebra called the Poisson algebra of \mathfrak{g}^* . Recall that the pull-back J^* : $C^{\infty}(\mathfrak{g}^*) \to C^{\infty}(M)$ by the moment map J of a Hamiltonian action is a Lie algebra homomorphism. For each $F \in C^{\infty}(\mathfrak{g}^*)$, let us define $\widetilde{F} \in \mathfrak{X}(\mathfrak{g}^*)$ by

$$\widetilde{F}_{\alpha} = \widetilde{\mathscr{L}_{F}(\alpha)}(\alpha)$$

for $\alpha \in \mathfrak{g}^*$ (cf. [3, §1]). From the definition, it is easy to see that $\widetilde{F}|_{\sigma}$ is tangent to \mathscr{O} for any coadjoint orbit \mathscr{O} . Moreover $\widetilde{F}|_{\sigma}$ is the Hamiltonian vector field on \mathscr{O} generated by $F|_{\sigma}$. It then follows that

$$\{F_1|_{\mathscr{O}}, F_2|_{\mathscr{O}}\}_{\mathscr{O}} = \{F_1, F_2\}_{a^*}|_{\mathscr{O}}$$

for F_1 , $F_2 \in C^{\infty}(\mathfrak{g}^*)$.

Let $\kappa: g \times g \to R$ be a non-degenerate Ad-invariant symmetric bilinear form on g. Let us now identify g^* with g by κ . Then the coadjoint action coincides with the adjoint action. The infinitesimal generator of the adjoint action is given by

$$\tilde{\xi}_{\alpha} = [\alpha, \, \xi] \in \mathfrak{g} \quad (\approx T_{\alpha}\mathfrak{g})$$

for $\alpha, \xi \in \mathfrak{g}$. The symplectic structure of an adjoint orbit \mathscr{O} is given by

$$\omega_{\mathcal{O}}(\tilde{\xi}_{\alpha},\,\tilde{\gamma}_{\alpha}) = -\kappa(\alpha,\,[\xi,\,\eta])$$

for $\alpha \in \mathscr{O}$, ξ , $\eta \in \mathfrak{g}$. If $F \in C^{\infty}(\mathfrak{g})$, then $\widetilde{F} \in \mathfrak{X}(\mathfrak{g})$ is given by

$$\widetilde{F}_{\alpha} = [\alpha, (\nabla F)_{\alpha}]$$

for $\alpha \in \mathfrak{g}$, where ∇F denotes the gradient of F with respect to κ . The Poisson bracket of F_1 , $F_2 \in C^{\infty}(\mathfrak{g})$ is given by

$$\{F_1, F_2\}_{\mathfrak{g}}(\alpha) = \kappa(\alpha, [(\nabla F_1)_{\alpha}, (\nabla F_2)_{\alpha}])$$

for $\alpha \in \mathfrak{g}$ (cf. [5, p. 322]).

§ 2. The Ad-semidirect product $U(n)_{Ad} \times u(n)$.

In this section, according to Ratiu [5, §§ 2 and 3], we shall prepare

a few facts about the Ad-semidirect product $U(n)_{Ad} \times u(n)$ of U(n) with u(n). $U(n)_{Ad} \times u(n)$ is a Lie group with underlying manifold $U(n) \times u(n)$ and composition law

$$(g_1, X_1)(g_2, X_2) = (g_1g_2, X_1 + Ad_{g_1}(X_2))$$
.

Its Lie algebra is the ad-semidirect product $u(n)_{ad} \times u(n)$ of u(n) with u(n). If (X_1, Y_1) , $(X_2, Y_2) \in u(n)_{ad} \times u(n)$, their bracket is given by

$$[(X_1, Y_1), (X_2, Y_2)] = ([X_1, X_2], [X_1, Y_2] + [Y_1, X_2])$$
.

The adjoint action of $U(n)_{Ad} \times u(n)$ on $u(n)_{ad} \times u(n)$ is given by

$$\operatorname{Ad}_{(g,Z)}(X, Y) = (\operatorname{Ad}_{g}(X), \operatorname{Ad}_{g}(Y) + [Z, \operatorname{Ad}_{g}(X)])$$
.

Let us define $K: u(n) \times u(n) \to R$ by $K(X, Y) = -(1/2)\operatorname{tr}(XY)$. Then K is a non-degenerate Ad-invariant symmetric bilinear form on u(n). The form K_s , called the semidirect product of K with itself and defined by

$$K_s((X_1, Y_1), (X_2, Y_2)) = K(X_1, Y_2) + K(Y_1, X_2)$$
,

is a non-degenerate Ad-invariant symmetric bilinear form on $u(n)_{sd} \times u(n)$. The infinitesimal generator of the adjoint action of $U(n)_{Ad} \times u(n)$ is given by

$$(X_1, Y_1)_{(X,Y)} = ([X, X_1], [X, Y_1] + [Y, X_1])$$
.

The symplectic structure of an adjoint orbit is given by

$$\omega_{\mathcal{O}}((\widetilde{X_1, Y_1})_{(X,Y)}, (\widetilde{X_2, Y_2})_{(X,Y)}) = -K_s((X, Y), ([X_1, X_2], [X_1, Y_2] + [Y_1, X_2]))$$

for $(X, Y) \in \mathcal{O}$, (X_1, Y_1) , $(X_2, Y_2) \in u(n)_{ad} \times u(n)$. Let $F \in C^{\infty}(u(n)_{ad} \times u(n))$ and $(X, Y) \in u(n)_{ad} \times u(n)$. Let $(\nabla_1 F)_{(X,Y)}$ and $(\nabla_2 F)_{(X,Y)} \in u(n)$ denote the gradient with respect to K of the functions $F(\cdot, Y)$ and $F(X, \cdot)$ on u(n) at X and at Y, respectively. Then the gradient of F with respect to K, is given by

$$(\nabla F)_{\scriptscriptstyle (X,Y)}\!=\!((\nabla_{\!\scriptscriptstyle 2} F)_{\scriptscriptstyle (X,Y)},\,(\overline{\nabla}_{\!\scriptscriptstyle 1} F)_{\scriptscriptstyle (X,Y)})$$
 .

Hence $\widetilde{F} \in \mathfrak{X}(u(n)_{ad} \times u(n))$ is given by

$$\widetilde{F}_{(X,Y)} = ([X, (\nabla_2 F)_{(X,Y)}], [X, (\nabla_1 F)_{(X,Y)}] + [Y, (\nabla_2 F)_{(X,Y)}]).$$

Now, let us fix an $A \in u(n)$ and define $E \in C^{\infty}(u(n)_{\mathrm{ad}} \times u(n))$ by

$$E(X, Y) = \frac{1}{2}K(Y, Y) + K(A, X)$$
.

Since $(\nabla_1 E)_{(X,Y)} = A$, $(\nabla_2 E)_{(X,Y)} = Y$, we have

$$\widetilde{E}_{(X,Y)} = ([X, Y], [X, A])$$
.

Thus $t \mapsto (X(t), Y(t))$ is an integral curve of \widetilde{E} if and only if

$$\dot{X}=[X, Y], \qquad \dot{Y}=[X, A].$$

These equations are equivalent to the Lax equation:

$$(X+Y\lambda+A\lambda^2)$$
'= $[X+Y\lambda+A\lambda^2, Y+A\lambda]$

for any parameter λ (see [5, Lemma 3.1]). Let $\varphi_k(X, Y)$ and $\psi_k(X, Y)$ be the respective coefficients of λ^{2k-1} and λ^{2k-2} in the expansion of $F_{k,\lambda}(X, Y) = (1/(2ki^k)) \operatorname{tr}\{(X + Y\lambda + A\lambda^2)^k\}$ for $k = 2, 3, \dots, n$. Then φ_k and ψ_k are real-valued polynomial functions on $u(n)_{\mathrm{ad}} \times u(n)$:

$$egin{align} arphi_k(X,\ Y) &= rac{1}{2i^k} \, {
m tr}(A^{k-1}Y) \; , \ &\psi_k(X,\ Y) &= rac{1}{2i^k} \, {
m tr}\Big(A^{k-1}X + rac{1}{k} \, \sum \, A^a \, Y A^b \, Y A^c \Big) \; , \ \end{array}$$

where the sum is taken over all triplets (a, b, c) of non-negative integers satisfying a+b+c=k-2. Note that $\psi_2=E$.

LEMMA 2.1 (cf. [5, Theorem 3.4]). The functions $\varphi_2, \dots, \varphi_n, \psi_2, \dots, \psi_n$ commute with each other in the Poisson bracket $\{\ ,\ \}_{u(n)_{ad}\times u(n)}$.

PROOF (cf. $[5, \S 3]$). By Theorem 3.2 in [5], we have

$$\{F_{k,\lambda}, F_{l,\mu}\}_{u(n)_{ad}\times u(n)} = 0$$

for any parameters λ , μ . It follows that

$$\{\varphi_{\mathbf{k}},\,F_{l,\mu}\}_{u\,(n)_{\mathrm{ad}} imes u\,(n)}\!=\!0$$
 , $\{\psi_{\mathbf{k}},\,F_{l,\mu}\}_{u\,(n)_{\mathrm{ad}} imes u\,(n)}\!=\!0$

for all μ . Hence $\{\varphi_k, \varphi_l\}_{u(n)_{ad} \times u(n)} = 0$, $\{\varphi_k, \psi_l\}_{u(n)_{ad} \times u(n)} = 0$ and $\{\psi_k, \psi_l\}_{u(n)_{ad} \times u(n)} = 0$.

LEMMA 2.2.

(i)
$$\widetilde{\varphi}_{k}|_{(X,Y)} = ([X, i(-iA)^{k-1}], [Y, i(-iA)^{k-1}])$$
,

$$\begin{split} (\mathrm{ii}) \quad \tilde{\psi}_k|_{(X,Y)} = & \left(\left[X, \sum_{j=0}^{k-2} (-iA)^j Y(-iA)^{k-j-2} \right], \\ & \left[X, \ i(-iA)^{k-1} \right] + \left[Y, \sum_{j=0}^{k-2} (-iA)^j Y(-iA)^{k-j-2} \right] \right). \end{split}$$

PROOF. Since for any X', $Y' \in u(n)$,

$$K((\nabla_1 \varphi_k)_{(X,Y)}, X') = \left[\frac{d}{dt} \varphi_k(X + tX', Y)\right]_{t=0} = 0$$

and

$$\begin{split} K((\nabla_2 \varphi_k)_{(X,Y)}, \ Y') = & \left[\frac{d}{dt} \varphi_k(X, \ Y + t \, Y') \right]_{t=0} \\ = & K(i(-iA)^{k-1}, \ Y') \ , \end{split}$$

we have $(\nabla_1 \varphi_k)_{(X,Y)} = 0$ and $(\nabla_2 \varphi_k)_{(X,Y)} = i(-iA)^{k-1}$. Hence (i) follows. (ii) is obtained similarly.

§ 3. Hamiltonian actions of $U(n)_{Ad} \times u(n)$.

Let $C^n = \{z = {}^t(z_1, \dots, z_n)\}$ be the complex *n*-space with the Hermitian inner product \langle , \rangle_R and the Euclidean inner product \langle , \rangle_R given by $\langle z, w \rangle = \sum \overline{z}_j w_j$ and $\langle z, w \rangle_R = \operatorname{Re}\langle z, w \rangle$, respectively. If we put $z^* = (\overline{z}_1, \dots, \overline{z}_n)$ for $z = {}^t(z_1, \dots, z_n)$, then $\langle z, w \rangle = z^*w = \operatorname{tr} wz^*$. The (co-)tangent bundle of the unit sphere $S^{2n-1} = \{z \in C^n | \langle z, z \rangle = 1\}$ in C^n is realized as

$$T^*S^{2n-1} = \{(z, w) \in S^{2n-1} \times C^n | \langle z, w \rangle_R = 0 \}$$
.

The tangent bundle TT^*S^{2n-1} of T^*S^{2n-1} and the canonical symplectic structure Ω_S on T^*S^{2n-1} are given by

$$TT^*S^{2n-1} = \{(U, V)_{(z,w)} \mid (z, w) \in T^*S^{2n-1}, (U, V) \in C^n \times C^n, \langle z, U \rangle_R = 0, \langle z, V \rangle_R + \langle w, U \rangle_R = 0\}$$

and

$$arOmega_{S}((U_{\scriptscriptstyle 1},\ V_{\scriptscriptstyle 1})_{\scriptscriptstyle (m z,m w)},\ (U_{\scriptscriptstyle 2},\ V_{\scriptscriptstyle 2})_{\scriptscriptstyle (m z,m w)})\!=\!\langle U_{\scriptscriptstyle 1},\ V_{\scriptscriptstyle 2}
angle_{R}\!-\!\langle V_{\scriptscriptstyle 1},\ U_{\scriptscriptstyle 2}
angle_{R}$$
 ,

respectively.

If $f \in C^{\infty}(T^*S^{2n-1})$, a smooth extension of f onto $C^n \times C^n$ is also denoted by the same letter f. For $(z, w) \in C^n \times C^n$, let us define $f_s = f_s(z, w)$ and $f_w = f_w(z, w) \in C^n$ by

$$(\operatorname{grad} f)_{(z,w)} = (f_z(z, w), f_w(z, w)),$$

where grad f is the gradient of f with respect to \langle , \rangle_R .

LEMMA 3.1. Let $f, f_1, f_2 \in C^{\infty}(T^*S^{2n-1})$. Then the Hamiltonian vector field generated by f is given by

$$(i) \quad X_f|_{(s,w)} = (f_w - \langle z, f_w \rangle_R z, \ -f_s + \langle z, f_s \rangle_R z - \langle w, f_w \rangle_R z + \langle z, f_w \rangle_R w)_{(s,w)}$$

and the Poisson bracket of f_1 and f_2 is given by

(ii)
$$\{f_1, f_2\}_S(z, w) = -\langle f_{1z}, f_{2w}\rangle_R + \langle f_{2z}, f_{1w}\rangle_R + \langle z, f_{1z}\rangle_R \langle z, f_{2w}\rangle_R \\ -\langle z, f_{2z}\rangle_R \langle z, f_{1w}\rangle_R + \langle z, f_{1w}\rangle_R \langle w, f_{2w}\rangle_R - \langle z, f_{2w}\rangle_R \langle w, f_{1w}\rangle_R$$

for $(z, w) \in T^*S^{2n-1}$.

PROOF. It is easy to verify that the right-hand side of (i) is tangent to T^*S^{2n-1} . Let $(U, V)_{(z,w)} \in TT^*S^{2n-1}$. Then $\langle z, U \rangle_R = 0$ and $\langle z, V \rangle_R + \langle w, U \rangle_R = 0$. By the direct calculation, we then have

$$Q_{S}((f_{w}-\langle z,f_{w}\rangle_{R}z-f_{z}+\langle z,f_{z}\rangle_{R}z-\langle w,f_{w}\rangle_{R}z+\langle z,f_{w}\rangle_{R}w)_{(z,w)},(U,V)_{(z,w)})$$

$$=\langle f_{z},U\rangle_{R}+\langle f_{w},V\rangle_{R}=[(d/dt)f(z+tU,w+tV)]_{t=0}=df((U,V)_{(z,w)}),$$

from which (i) follows.

Now, let us define an action Φ of $U(n)_{Ad} \times u(n)$ on T^*S^{2n-1} by

$$\Phi_{(g,X)}(z, w) = (gz, gw - iXgz + \langle gz, iXgz \rangle gz)$$
.

 Φ is well-defined and real-analytic. From the definition, the geometric meaning of the action is easily observed. The infinitesimal generator is given by

$$X^{(X,Y)}|_{(z,w)} = (-Xz, -Xw + iYz - \langle z, iYz \rangle z)_{(z,w)}$$

for $(X, Y) \in u(n)_{ad} \times u(n)$, $(z, w) \in T^*S^{2n-1}$. Let us define $f^{(X,Y)} \in C^{\infty}(T^*S^{2n-1})$ by

$$f^{(X,Y)}(z, w) = -\langle Xz, w \rangle_R - \frac{1}{2} \langle z, iYz \rangle$$
.

LEMMA 3.2. $\Phi: (U(n)_{Ad} \times u(n)) \times T^*S^{2n-1} \to T^*S^{2n-1}$ is a Hamiltonian action with Lie algebra homomorphism: $(X, Y) \mapsto f^{(X,Y)}$. The moment $map\ J: T^*S^{2n-1} \to u(n)_{ad} \times u(n)$ ($\approx (u(n)_{ad} \times u(n))^*$) is given by

$$J(z, w) = (izz^*, zw^* - wz^*)$$
.

PROOF. Since $f_z^{(x,y)} = Xw - i\,Yz$ and $f_w^{(x,y)} = -Xz$, we have by Lemma 3.1 that the Hamiltonian vector field generated by $f^{(x,y)}$ coincides with $X^{(x,y)}$. It then follows that Φ is symplectic, since $U(n)_{\mathbb{A}^d} \times u(n)$ is connected. By the direct calculation we have

$$f^{(\boldsymbol{X},\boldsymbol{Y})} \circ \boldsymbol{\Phi}_{(\boldsymbol{g},\boldsymbol{Z})^{-1}} \!=\! f^{\mathrm{Ad}_{(\boldsymbol{g},\boldsymbol{Z})}(\boldsymbol{X},\boldsymbol{Y})}$$

for $(X, Y) \in u(n)_{ad} \times u(n)$, $(g, Z) \in U(n)_{Ad} \times u(n)$. As to the moment map, it follows from the definition that

Hence we have

$$J(z, w) = (izz^*, zw^* - wz^*)$$
.

The complex projective space $P^{n-1}=P^{n-1}(C)$ is a quotient space of S^{2n-1} by the S^1 -action $z\mapsto e^{it}z$. Thus $P^{n-1}=\{[z]|z\in S^{2n-1}\}$, where [z] denotes the equivalence class. Its cotangent bundle T^*P^{n-1} with the canonical symplectic structure Ω_P is identified with a reduced symplectic manifold as follows: Let $\phi\in C^\infty(T^*S^{2n-1})$ be defined by $\phi(z,w)=\langle iz,w\rangle_R$. The Hamiltonian vector field X_ϕ induces an S^1 -action $(z,w)\mapsto (e^{it}z,e^{it}w)$ on T^*S^{2n-1} . By the reduction procedure, we then obtain a symplectic manifold

$$\phi^{-1}(\{0\})/\sim = \{[z, w] \mid \phi(z, w) = 0\}$$

$$= \{[z, w] \mid \langle z, z \rangle = 1, \langle z, w \rangle = 0\}$$

$$= T * P^{n-1}$$

with the reduced symplectic structure equal to Ω_P , where [z, w] denotes the equivalence class $\{(e^{it}z, e^{it}w) | t \in R\}$ (cf. [2, p. 377, Example 3]). The canonical projection $T^*P^{n-1} \to P^{n-1}$ is given by $[z, w] \mapsto [z]$. Since the action Φ leaves the function ϕ invariant, it is reduced to give an action of $U(n)_{Ad} \times u(n)$ on T^*P^{n-1} , which we also denote by Φ . Thus

$$\Phi_{(g,X)}([z, w]) = [gz, gw - iXgz + \langle gz, iXgz \rangle gz]$$

for $(g, X) \in U(n)_{Ad} \times u(n)$, $[z, w] \in T^*P^{n-1}$. Since $f^{(X,Y)}$ is invariant under the S^1 -action $(z, w) \mapsto (e^{it}z, e^{it}w)$, it induces a function on T^*P^{n-1} , which we also denote by $f^{(X,Y)}$;

$$f^{(X,Y)}([z, w]) = -\langle Xz, w \rangle_R - \frac{1}{2}\langle z, iYz \rangle$$
.

Then as a corollary of Lemma 3.2, we have

PROPOSITION 3.3. $\Phi: (U(n)_{Ad} \times u(n)) \times T^*P^{n-1} \to T^*P^{n-1}$ is a Hamiltonian action with Lie algebra homomorphism: $(X, Y) \mapsto f^{(X,Y)}$. The moment $f(X, Y) \mapsto f^{(X,Y)}$ is given by

$$J([z, w]) = (izz^*, zw^* - wz^*)$$
.

If $z = (i/\sqrt{n})^t(1, 1, \dots, 1)$, then $[z, 0] \in T^*P^{n-1}$ and $J([z, 0]) = ((1/n)^t(1, 1, \dots, 1)(1, 1, \dots, 1), 0)$.

THEOREM 3.4. $[z, w] \mapsto J([z, w])$ is a symplectic diffeomorphism of T^*P^{n-1} onto the adjoint orbit of $U(n)_{Ad} \times u(n)$ through $((i/n)^t(1, 1, \dots, 1) \times (1, 1, \dots, 1), 0)$ with the Lie-Kirillov-Kostant-Souriau symplectic structure.

Moreover we have

$$J \circ \Phi_{(q,X)} = \mathrm{Ad}_{(q,X)} \circ J$$

for $(g, X) \in U(n)_{Ad} \times u(n)$.

PROOF. By Theorem 1.1, it suffices to show that Φ is transitive and that J is injective. Since the latter is easily shown, we have only to show the former. If [z, w], $[z', w'] \in T^*P^{n-1}$, then $\langle z, z \rangle = \langle z', z' \rangle = 1$, $\langle z, w \rangle = \langle z', w' \rangle = 0$. Choose $g \in U(n)$ such that z = gz'. If we put $X = i\{(w - gw')z^* + z(w - gw')^*\}$, then $X \in u(n)$ and $\Phi_{(g,X)}([z', w']) = [z, w]$. Hence Φ is transitive.

§ 4. Proof of the complete integrability.

Let (|) be the canonical Riemannian metric on P^{n-1} . Then $([z, w]|[z, w']) = \langle w, w' \rangle_R$ for $[z, w], [z, w'] \in T^*P^{n-1}$. Let us fix $a_1, a_2, \cdots, a_n \in R$, and define a Hamiltonian function $H \in C^{\infty}(T^*P^{n-1})$ by

$$H([z, w]) = \frac{1}{2}([z, w]|[z, w]) + \frac{1}{2} \sum_{j=1}^{n} a_j |z_j|^2$$
.

The Hamiltonian system $(T^*P^{n-1}, \Omega_P, H)$ describes the motion of a point on P^{n-1} under the influence of the potential $U([z]) = (1/2) \sum a_i |z_j|^2$. We shall call this system the C. Neumann-type problem on the complex projective space. Let φ_k , $\psi_k \in C^{\infty}(u(n)_{ad} \times u(n))$ be the functions defined in Section 2 with $A = \operatorname{diag}(ia_1, \dots, ia_n)$.

PROPOSITION 4.1 (cf. [5, Theorem 3.4]). The functions $\varphi_2 \circ J$, \cdots , $\varphi_n \circ J$, $\psi_2 \circ J(=H)$, \cdots , $\psi_n \circ J$ are constants of the motion in involution for the C. Neumann-type problem $(T^*P^{n-1}, \Omega_P, H)$ on the complex projective space.

PROOF. Since the pull-back $J^*: C^{\infty}(u(n)_{ad} \times u(n)) \to C^{\infty}(T^*P^{n-1})$ is a Lie algebra homomorphism, it follows from Lemma 2.1 that the functions $\varphi_2 \circ J, \dots, \varphi_n \circ J, \ \psi_2 \circ J, \dots, \psi_n \circ J$ are all in involution.

LEMMA 4.2. Let $A = \operatorname{diag}(ia_1, \dots, ia_n)$ with a_1, \dots, a_n all distinct. Then $d(\varphi_2 \circ J), \dots, d(\varphi_n \circ J), d(\psi_2 \circ J), \dots, d(\psi_n \circ J)$ are linearly independent everywhere on an open dense set in T^*P^{n-1} .

PROOF. Put $z = (1/\sqrt{n})^t (1, 1, \dots, 1)$ and $X = izz^*$. Then $[z, 0] \in T^*P^{n-1}$ and (X, 0) = J([z, 0]). By Lemma 2.2, $\widetilde{\varphi}_k|_{(X,0)} = ([X, i(-iA)^{k-1}], 0)$ and $\widetilde{\psi}_k|_{(X,0)} = (0, [X, i(-iA)^{k-1}])$. Since

$$[X, i(-iA)^{k-1}] = \frac{1}{n} \begin{pmatrix} 0 & a_1^{k-1} - a_2^{k-1} & a_1^{k-1} - a_3^{k-1} & \cdots & a_1^{k-1} - a_n^{k-1} \\ a_2^{k-1} - a_1^{k-1} & 0 & a_2^{k-1} - a_3^{k-1} & \cdots & a_2^{k-1} - a_n^{k-1} \\ & & & & & & \\ a_n^{k-1} - a_1^{k-1} & a_n^{k-1} - a_2^{k-1} & a_n^{k-1} - a_3^{k-1} & \cdots & 0 \end{pmatrix},$$

we have that $[X, i(-iA)^{k-1}]$, $k=2, 3, \dots, n$, are linearly independent if and only if a_1, a_2, \dots, a_n are all distinct. Hence $\widetilde{\varphi}_2, \dots, \widetilde{\varphi}_n, \widetilde{\psi}_2, \dots, \widetilde{\psi}_n$ are linearly independent at (X, 0). It then follows that $d(\varphi_2 \circ J), \dots, d(\varphi_n \circ J), d(\psi_2 \circ J), \dots, d(\psi_n \circ J)$ are linearly independent at [z, 0]. Since $\varphi_k \circ J$, $\psi_k \circ J$ are real-analytic, this completes the proof.

From Proposition 4.1 and Lemma 4.2, we have our main result (a "complex projective space-version" of [5, Theorem 4.3]):

THEOREM 4.3. Let a_1, \dots, a_n be all distinct. Then the motion of a point on the complex projective space P^{n-1} under the influence of the potential $U([z]) = (1/2) \sum a_j |z_j|^2$ is completely integrable. Its 2(n-1) generically independent integrals in involution are given by $\varphi_2 \circ J, \dots, \varphi_n \circ J$, $\psi_2 \circ J, \dots, \psi_n \circ J$.

References

- [1] R. ABRAHAM and J. E. MARSDEN, Foundations of Mechanics, 2nd ed., Benjamin/Cummings, New York, 1978.
- [2] V.I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Math., 60, Springer, New York-Heidelberg-Berlin, 1978.
- [3] V. Guillemin and S. Sternberg, The moment map and collective motion, Ann. Physics, 127 (1980), 220-253.
- [4] B. KOSTANT, Quantization and unitary representations, Modern Analysis and Applications III, Lecture Notes in Math., 170, Springer, Berlin-Heidelberg-New York, 1970, 87-208.
- [5] T. RATIU, The C. Neumann problem as a completely integrable system on an adjoint orbit, Trans. Amer. Math. Soc., 264 (1981), 321-329.

Present Address:
DEPARTMENT OF MATHEMATICS
YAMAGATA UNIVERSITY
YAMAGATA 990
AND
DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE AND TECHNOLOGY
SCIENCE UNIVERSITY OF TOKYO
NODA, CHIBA 278