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Introduction

The C. Neumann problem is a Hamiltonian system which describes
the motion of a point on the sphere S*'={x € R"|||x||=1} under the influ-
ence of a quadratic potential U(x)=(1/2) 3 ax%, a, +++, a,€ BR. It is shown
by many authors that the C. Neumann problem is completely integrable
(see [6, §1]). In [5], Ratiu showed that the C. Neumann problem is a
Hamiltonian system on an adjoint orbit in a semidirect product of Lie
algebras, and that its complete integrability follows entirely from Lie
algebraic considerations.

In the present note, we define a C. Neumann-type problem on the
complex projective space P '={[z]|z€C", ||z||=1} (see section 4). It is a
Hamiltonian system which describes the motion of a point on P*!' under
the influence of a potential U([z])=(1/2) >} a;]z;/*. We then show, following
Ratiu [5], that this system is a Hamiltonian system on an adjoint orbit
in a semidirect product of Lie algebras (Theorem 3.4 and Proposition 4.1).
As a consequence, we can prove that the C. Neumann-type problem on the
complex projective space is completely integrable (Theorem 4.3).

§1. Hamiltonian actions and (co-)adjoint orbits.

In this section, we recall a few facts about symplectic geometry (for
‘references, see [1], [2], [3], [4]). Let M be a symplectic manifold with
symplectic structure 2,. Recall that 2, is a non-degenerate closed two-
form on M. Each real-valued smooth (i.e., C~) function f on M generates
a Hamiltonian vector field X, on M which satisfies X,:12,=df. Let
C>(M) be the space of real-valued smooth functions on M. The Poisson
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bracket of f,, f; € C~(M) is defined by {f, fi}u=—R,(X,, X;,). The Poisson
bracket makes C~(M) into a Lie algebra called the Poisson algebra of M.
Let X(M) denote the Lie algebra consisting of smooth vector fields on
M with the usual Lie bracket. Then f+— X, is a Lie algebra homomor-
phism of C~(M) into X(M).

Let G be a Lie group with Lie algebra g, and let & be a smooth
action of G on M. For each 2€g, let X* denote the infinitesimal generator
of the action, i.e., X¢ is a smooth vector field on M defined by

Xef)m)=| L1 - 0exp(—t), m) |
t t=0

for f e C*(M), me M. Recall that &— X* is a Lie algebra homomorphism
of g into X¥(M). @ is called a Hamiltonian action if

(i) @ is a symplectic action, i.e., for each ge G, @, leaves 2, invari-

ant, and

(ii) there exists a linear map, ¢—f* of g into C®(M) such that

Xpe=X* and féo@,-1=f4%"® for £eg, g€ G, where Ad denotes

the adjoint action of G.
Here note that ¢— f¢ is a Lie algebra homomorphism of g into C~(M)
(cf. [1, Corollary 4.2.9]). A symplectic manifold with a transitive
Hamiltonian action of a Lie group G is called a Hamiltonian G-space.
Let g* denote the dual space of g. The moment map of a Hamiltonian
action is a smooth map J of M into g* given by {J(m), &)= f%m) for
meM, £€g, where ( , > denotes the pairing between g* and g.

Now we shall consider the coadjoint action Ad’ of G on g*, which is
defined by {Adj(a), &)=<a, Ad,~1(&)) for ge G, axcg*, £e€g. For each £eg,
let & denote the infinitesimal generator of the coadjoint action. Let
be a coadjoint orbit of G. Then ¢ is a symplectic manifold with the
Lie-Kirillov-Kostant-Souriau symplectic structure w,. Recall that w, is
given by w,(&,, 7.)=—<a, [& 1]) for a€ &, & neg. The restriction of
the coadjoint action to ¢~ is a Hamiltonian action with the Lie algebra
homomorphism g— C~(#?) given by &—<{-, &)|,. Thus £ is a Hamiltonian
G-space. :

THEOREM 1.1 (cf. [4, Theorem 5.4.1]). Let M be a Hamiltonian
G-space with a moment map J. Then the image J(M) of M under J
coincides with a coadjoint orbit of G, and J: M—J(M) is a symplectic
covering map of Hamiltonian G-spaces. '

If FeC~(g*), then the Legendre transformation .&%: g¢* —¢ associated
to F' is defined by '
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[ d
B Hla)=| LFa+ts)]

for a, Beg* (cf. [3, §1]). The Poisson bracket {, },. is then defined by
{F), Fi}p(a)=<a, [-%'l(a): %2<a)1>

for F,, F,e C~(g*), aeg*. The Poisson bracket makes C><(g*) into a Lie
algebra called the Poisson algebra of g*. Recall that the pull-back J*:
C~(g*)—C>(M) by the moment map J of a Hamiltonian actNion is a Lie
algebra homomorphism. For each F e C>(g*), let us define F'ec %X(g*) by
~ Vi
F,= % (a)a)

for aeg* (cf. [8, §1]). From the definition, it is easy to see that F,
is tangent to ¢« for any coadjoint orbit <. Moreover F|, is the
Hamiltonian vector field on < generated by F|,. It then follows that

{F1lm lea}d={Fv Fz}g*!o

for F, F, e C~(g*).

Let £:gxg—R be a non-degenerate Ad-invariant symmetrlc bilinear
form on g. Let us now identify g* with g by £. Then the coadjoint
action coincides with the adjoint action. The infinitesimal generator of
the adjoint action is given by

§u=la, Eleg (~T.9)
fof o, £€g. The symplectic structure of an adjoint orbit ¢ is given by
0o(Ear To)=—k(a, [& 7])
for ae >, & neg. If FeC=(g), then Fe%(g) is given by
F.=[a, (VF).]

for a €g, where VF denotes the gradient of F with respect to £. The
Poisson bracket of F, F,e C>(g) is given by

{Fy, F2}a(a)=,5(a’ [(VFl)m (VFz)a])
for aeg (cf. [5, p. 322]).

§2. The Ad-semidirect pfoduct Un)sa X uln).

In this section, according to Ratiu [5, §§2 and 3], we shall prepare
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a few facts about the Ad-semidirect product U(n)ia X u(n) of U(n) with
u(m). Um)saXu(n) is a Lie group with underlying manifold U(n) X w(n)
and composition law

(91 XD(g: X2)=(9.9 .X1+Ad,1(X2)) .

Its Lie algebra is the ad-semidirect product u(m).aXu(n) of u(n) with
un). If (X, Y), (X, Y.) € u(n)aXu(n), their bracket is given by

[(Xv Y1)y (Xz’ }’2)]=([X1’ Xz]; [Xv Y2]+[yv1: Xz]) .
The adjoint action of Un)asa X u(n) on u(n)w X u(n) is given by
Ad(a,Z)(X’ Y)‘:(Adn(X)’ Adn(Y)+[Z’ Ady(X)]) .

Let us define K:u(n)xun)—R by K(X, Y)=—@1/2)tr(XY). Then K is
a non-degenerate Ad-invariant symmetric bilinear form on wu(n). The
form K,, called the semidirect product of K with itself and defined by

Ka((Xv Y), (X, },2))=K(Xv I/,2)'|"I{(Y’1’ X2) ’

is a non-degenerate Ad-invariant symmetric bilinear form on %(7). X u(n).
The infinitesimal generator of the adjoint action of U(n)is X u(n) is given by

X Wan=0X X1 [X, L]+[¥, XD .
The symplectic structure of an adjoint orbit is given by
o~ ——
oA Xy Var Xo Yoarn=—K(X, Y), (X, X] [X, Y.]+[Y., XD)

for (X, Ve, (X, Y), (X Yo)€um)uaxu(n). Let F € C*(U(N)aa X u(n))
and (X, Y)eu®)axu(n). Let (V.F)zy and (V.F)x.y) € u(n) denote the
gradient with respect to K of the functions F(-, Y¥) and F(X, -) on u(n)
at X and at Y, respectively. Then the gradient of F' with respect to

K, is given by
(VF)(X,Y)=((V2F)(X,Y)9 (VxF)(x,r)) .

Hence FeX(u(n)axu(n)) is given by
Fon=0X, VFanb [X, V) En]+ Y, F)anD .
Now, let us fix an A €u(n) and define E € C™(u(n)u X u(n)) by

E(X, Y)=§K<Y, Y)+K(4, X) .

Since (V,E)xrn=4, (V.E)xrn=7Y, we have
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Exn=0X, Y] [X AD .
Thus ¢—(X(¢), Y(¢)) is an integral curve of K if and only if
X=[X, Y], Y=[X, A].
These equations are equivalent to the Lax equation:
(X+ AN+ AN) ' =[X+ YA+ AN, Y+ A\]

for any parameter A (see [5, Lemma 3.1]). Let @,(X, Y) and (X, Y)
be the respective coefficients of A*7 and A*"? in the expansion of
Fo (X, YV)=Q/2ki*)tr{(X+ YN+ A\D)*} for k=2, 8, --+, n. Then ¢, and r,
are real-valued polynomial functions on %u(n).a X u(n):

(X, Y)=__21_k tr(A*1Y)
7
— 1 k—1 1 a b c
VX, V)= (47X + = 5 A YA YAY)

where the sum is taken over all triplets (a, b, ¢) of non-negative integers
satisfying a+b+c=k—2. Note that ,=F.

LEMMA 2.1 (cf. [5, Theorem 3.4]). The functions @, «++, ., Vs =+, v,
commute with each other in the Poisson bracket { , }.um.axum-

Proor (cf. [5, §3]). By Theorem 3.2 in [5], we have

{Fk,b Fl,y}u(n)adxu(n) =O

for any parameters A, . It follows that

{¢k’ Fl,y}u(n)adxu(‘n) =0 ’ {"/’k’ Fl,p}u(n)aqu(n) =0

for all p. Hence {Py, Pilumpaxum =05 {Pr Viluimeaxum =0 and
{“l"k’ "/"l}u(n)adxu(n) =0.

LEMMA 2.2.

(1) Pelamn=>1X, i(—2A4)], [Y, i(—<4)*"D,
k—2 .

@) Falan=( X T (—iay v(—iay=],

[X, i(—iAy]1+| Y, "5; (— i AY Y(—i A)k-,--z]) _
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PrOOF. Since for any X’, Y’ € u(n),

K(V®u) ix,p0 X')= [th"?’k(x +tX', Y)l=o =0

and
K20 .m0 Y’)=[—§;¢k<x, Y+t Y')]

=0

=K((—14)7, Y,

we have (V,@,)z.r=0 and (V,@,)xr =1%(—1A4)"'. Hence (i) follows. (ii)
is obtained similarly.

§3. Hamiltonian actions of Un)ss X u(n).

Let C*={z=%(, +--, z,)} be the complex n-space with the Hermitian
inner product ¢( , ) and the Euclidean inner product ( , > given by
{z, wy=2,Z;w; and <z, wyr=Relz, w), respectively. If we put z*=
Zy *-+ 2, for z=%z, +--, z,), then {z, w) =2z*w=tr wz*. The (co-)tangent
bundle of the unit sphere S**'={ze C"|<{z, z)=1} in C" is realized as

T*S* ' ={(z, w) € S* ' X C"|{z, wyr=0} .

The tangent bundle TT*S* ! of T*S?»*~' and the canonical symplectic
structure 25 on T*S**! are given by
TT*S* ' ={U, V)4 |(z w)e T*S*™, (U, V)eC"xC",

(z, U>R=O’<z’ V>R+<'wl U>R=0}
and

QS((Un Vl)(:,w)’ (Uzy Vz)(a,w))=<Uu V2>R—<V1’ U2>R ’

respectively.

If feC>(T*S*?), a smooth extension of f onto C*x C" is also denoted
by the same letter f. For (z, w)eC*xC" let us define f,=f,(z, w) and
Jo=Fu(2, w) € C* by

(grad f)(t,w) =(fs(z9 'M)), fw(?i w)) ’
where grad f is the gradient of f with respect to { , Dx.

LEmMA 38.1. Let f, fi, f,€C(T*S**"). Then the Hamiltonian vector
field generated by f is given by

( i ) XfI (s,0) — (fw_ <Z, fw>Rz9 _fs + <z’ fs>Rz_ <wn fw>nz + <zv fw>Rw)(:,w)
and the Poisson bracket of f, and f, is given by |
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i) (S fos(® W)= —fros frwrrt {foor Frwyrt+<2s [12) <% frwom
—<z, Jo2) RS2 frwyr+ <2, J10) REW;s frw) r— {25 fruw) REW, Siw)r
Sor (z, w)e T*S*,

Proor. It is easy to verify that the right-hand side of (i) is tangent
to T*S**. Let (U, V),uwe TT*S*™ . Then (2, Urg=0 and {2, V) r+
{w, Uyr=0. By the direct calculation, we then have

QS((fw_ <Z, fw>Rz_fz+ <Z, fz>Rz_ <w7 fw>Rz+ <z! fw>Rw)(z,w)! (U’ V)(s,w))
={fo Udrt<fuw VOr=[(d/dt)f(z+tU, w+tV)].—e=df (U, V)i,m) »
from which (i) follows.
Now, let us define an action @ of U(n)isxu(n) on T*S* ! by
D, x (2, w)=(92, gw—1Xgz+ {9z, 1.Xg2>9z) .

@ is well-defined and real-analytic. From the definition, the geometric
meaning of the action is easily observed. The infinitesimal generator is
given by
X(X’Y)l(z,w) = ('—Xz; - Xw + 7: YZ—‘ <Z, i Yz>z)(z,w)
for (X, Y) e u(n)ua X u(n), (2, w) € T*S?*»'. Let us define £ ¢ C=(T*S*)
by
FED (g, w)= — ( Xz, w)R—%@, iYZ .

LEMMA 3.2. @: Un)sa ¥Xun))x T*S*»*—T*S* 48 a Hamiltonian
actton with Lie algebra homomorphism: (X, Y)— f*¥, The moment
map J: T*S*™ ' 5 u(n)e X u(n) (Rw(n)w X u(n))*) is given by

J(z, w)=(izz*, zw*—wz*) .
PROOF. Since f/*Y=Xw—1Yz and f*'"=— Xz, we have by Lemma
3.1 that the Hamiltonian vector field generated by f*¥ coincides with

XY, It then follows that @ is symplectic, since Un)isXu(n) is con-
nected. By the direct calculation we have

FEV P, = fAlgn &)
for (X, Y)ecumn)uxumn), (9, Z) € Un)saxu(n). As to the moment map,
it follows from the definition that

K,z w), (X, ¥)) =", w)=—(Xe, wya—5z, 1 Y2)

= K(tzz*, Y)+K(zw*—wz*, X)
=K,((1zz*, zw*—wz*), (X, Y)) .
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Hence we have
J(z, w)=(122%, zw*—wz™) .

The complex projective space P*'=P"'(C) is a quotient space of
S?*~! by the S'-action z+—e*2. Thus P"'={[z]|z € S**'}, where [z] denotes
the equivalence class. Its cotangent bundle T*P*' with the canonical
symplectic structure 2, is identified with a reduced symplectic manifold
as follows: Let ¢eC=(T*S*") be defined by ¢(z, w)=<iz, w)z. The
Hamiltonian vector field X, induces an S'-action (2, w)— (e*z, ew) on
T*S>—', By the reduction procedure, we then obtain a symplectic manifold

¢ {0}/ ~ ={[2, w]|4(z, w)=0}
={[z, w]|<z, 2)=1, {z, w) =0}
— T*Pn—l

with the reduced symplectic structure equal to 2,, where [z, w] denotes
the equivalence class {(e'z, e“w)|t € R} (cf. [2, p. 377, Example 3]). The
canonical projection T*P"'— P is given by [z, w]—][z2]. Since the
action @ leaves the function ¢ invariant, it is reduced to give an action
of Un)ssxu(n) on T*P»', which we also denote by @. Thus

D .02 w]) =[92, gw—1Xgz+ <9z, 1 Xgz)gz]

for (g, X) € Un)ssxum), [z, wle T*P*'. Since f‘©¥ is invariant under
the S'-action (z, w)r (e*z, e*w), it induces a function on T*P"~', which
we also denote by f*Y;

FED((z, w]) = —<(Xz, 'W>R—-%-<z, iYe) .

Then as a corollary of Lemma 3.2, we have

PROPOSITION 3.8. @: (Un)aa X u(n)) X T*P**— T*P~ 4s a Hamilton-
ian action with Lie algebra homomorphism: (X, Y)r— f%¥, The moment
map J: T*P* ' > u(n)w X un) (mUn).a X uln))*) is given by

J([z, w])=(1zz*, zw*—wz™) .

If z=06V"n)d,1,---,1), then [z 0le T*P*' and J([z, 0])=
((1/%)‘(1, 1’ b '1)(11 1; AR 1), 0)-

THEOREM 3.4. [z, w]—J({z, w]) is a symplectic diffeomorphism of
T*P' onto the adjoint orbit of U(nm)sa X u(n) through ((¢/n)!1, 1, ---, 1) X
a,1, ---, 1), 0) with the Lie-Kirillov-Kostant-Souriau symplectic structure.
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Moreover we have
Jo D1 =Ad(a,x> o
fO’i" (9, X) € U(%)Adxu(n).

Proor. By Theorem 1.1, it suffices to show that @ is transitive and
that J is injective. Since the latter is easily shown, we have only to
show the former. If [z, w], [¢/, w']e T*P"?, then <(z, 2)=<(7, 2'>=1,
2, wy=<2", w')=0. Choose ge U(n) such that z=gz'. If we put X=
Hw—gw')z*+2z(w—gw')*}, then Xeu(n) and @, (2, w'])=[z w]. Hence
@ is transitive.

§4. Proof of the complete integrability.

Let (] ) be the canonical Riemannian metric on P*!. Then
([z, wl|[z, w')=<w, w'dr for [z, w], [z, w']e T*P**'. Let us fix a, a,, ---,
@, € R, and define a Hamiltonian function H e C*(T*P*") by

H([z, W])=—;—([z, w]| [z, W])+% gl a;lz;* .

The Hamiltonian system (T*P~, Q,, H) describes the motion of a point
on P*' under the influence of the potential U([z])=(1/2) 3| a;lz;?*. We
shall call this system the C. Neumann-type problem on the complex pro-

jective space. Let ¢, ¥, € C(u(n)wa X u(n)) be the functions defined in
Section 2 with A=diag(ia,, -, ia,). '

PROPOSITION 4.1 (cf. [5, Theorem 3.4]). The functions @,od, -+, @, o,
Yood(=H), «++, 9, oJ are constants of the motion in involution for the
C. Neumann-type problem (T*P*, 2, H) on the complex projective
space.

ProOF. Since the pull-back J*: C(u(n)w X un))—C=(T*P*7) is a
Lie algebra homomorphism, it follows from Lemma 2.1 that the functions
@yod, c, @ od, dryo0d, «+-, 4r. 0 are all in involution.

LEMMA 4.2. Let A=diag(ia, :--, ia,) with a, -+, a, all distinct.
Then d(@,od), «++, d(@,od), d(r,od), +++, d(,oJ) are linearly independ-
ent everywhere on an open dense set in T* P,

PROOF. Putz=1/1"n)'Q@,1, ---,1) and X=12z*. Then [z, 0] € T*P
and (X, 0)=J([2,0]). By Lemma 2.2, &x,=(X, i«(—t4)*'], 0) and
Vil x,0=(0, [X, {(—1A4)*']). Since



86 KIYOTAKA II AND AKIRA YOSHIOKA

0 af'—at?! afF'—at .- af'—at™
e 1 af ' —ak? 0 af'—a¥t ... gfFl—qgk™!
[X, «(—14) ]=‘n— ’
Hleaf” ar'—ad” arT'—aiTt e 0

we have that [X, i(—1A4)*'], k=2, 8, ---, n, are linearly independent if
and only if a, a,, ---, a, are all distinct. Hence @, -+, D,, o ***, ¥,
are linearly independent at (X, 0). It then follows that d(e,J), ---,
d(p,od), d(sod), -+, d(¢,oJ) are linearly independent at [z, 0]. Since
@, od, ¥,oJ are real-analytic, this completes the proof.

From Proposition 4.1 and Lemma 4.2, we have our main result (a
“complex projective space-version” of [5, Theorem 4.3]):

THEOREM 4.3. Let a,, *-+, a, be all distinct. Then the motion of a
point on the complex projective space P under the influence of the
potential U([z]) =(1/2) 3, a;lz;|* is completely integrable. Its 2(n—1) gener-
tecally independent integrals im involution are given by @,od, -+, @,od,
"/'2°J: oo, "/'1.°J-
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