On the Number of Parameters of Linear Differential Equations with Regular Singularities on a Compact Riemann Surface

Dedicated to Professor Kôtaro Oikawa on his 60th birthday
Michitake KITA

Kanazawa University
(Communicated by R. Takahashi)

Introduction

Let X be a compact Riemann surface of genus g and let Y be a divisor of X consisting of m distinct points p_{1}, \cdots, p_{m} of X. We suppose that $m \geqq 1$ and moreover $m \geqq 2$ when $g=0$. We recall a fundamental fact about linear differential equations with regular singularities; let $\Delta=$ $\{z \in C||z|<1\}$ be a unit dise in C and let

$$
\begin{equation*}
\frac{d^{n} w}{d z^{n}}+a_{1}(z) \frac{d^{n-1} w}{d z^{n-1}}+\cdots+a_{n}(z) w=0 \tag{1}
\end{equation*}
$$

be a linear differential equation of order n where $a_{i}(z)$ is holomorphic in $\Delta-\{0\}$. The origin 0 is said to be a regular singular point of the equation (1) if the functions $z^{i} a_{i}(z)(i=1,2, \cdots, n)$ are holomorphic at 0 . It is well known that this is equivalent to the condition that the equation (1), multiplied by z^{n}, can be written in the form

$$
\begin{equation*}
\left(z \frac{d}{d z}\right)^{n} w+b_{1}(z)\left(z \frac{d}{d z}\right)^{n-1} w+\cdots+b_{n}(z) w=0 \tag{2}
\end{equation*}
$$

where $b_{i}(z)(i=1, \cdots, n)$ are holomorphic at 0 . Using this fact, we define a linear differential equation on a compact Riemann surface X of order n with regular singularities along Y as follows; let $X=\cup_{j=1}^{N} U_{j}$ be a sufficiently fine finite open coordinate covering of X such that $p_{j} \in U_{3}$ ($j=1, \cdots, m$) and $z_{j}\left(p_{j}\right)=0$ for $j=1, \cdots, m$ and z_{j} is nowhere zero in U_{j} for $j=m+1, \cdots, N$. In each neighbourhood U_{j} we consider a linear differential equation

$$
\begin{equation*}
\left(z_{j} \frac{d}{d z_{j}}\right)^{n} w+b_{j, 1}\left(z_{j}\right)\left(z_{j} \frac{d}{d z_{j}}\right)^{n-1} w+\cdots+b_{j, n}\left(z_{j}\right) w=0 \tag{3}
\end{equation*}
$$

Received July 1, 1986
where $b_{j, k}\left(z_{j}\right)(k=1, \cdots, n)$ are holomorphic in U_{j}. A linear differential equation on X of order n with regular singularities along Y is, by definition, a collection of the equations (3) which are compatible in the sense that any two of them have the same solutions on their common domain of definition. T. Saito [2] decided the number of independent parameters of linear differential equations on X of order n with regular singularities along Y. In this note, we give another proof of the theorem of T. Saito by using the notion of eulerian jet bundles.
§1. Let $z_{j}\left(d / d z_{j}\right)$ be the eulerian vector field on $U_{j}(j=1, \cdots, N)$. When φ is a holomorphic function in $U_{j} \cap U_{k} \neq \varnothing$, by the chain rule of differentiation, we have

$$
\left(\begin{array}{c}
\varphi \\
z_{j} \frac{d}{d z_{j}} \varphi \\
\vdots \\
\left(z_{j} \frac{d}{d z_{j}}\right)^{n} \varphi
\end{array}\right)=P_{j k}^{(n)}(z)\left(\begin{array}{c}
\varphi \\
z_{k} \frac{d}{d z_{k}} \varphi \\
\vdots \\
\left(z_{k} \frac{d}{d z_{k}}\right)^{n} \varphi
\end{array}\right)
$$

where $P_{j k}^{(n)}(z)$ is the matrix-valued holomorphic functions in $U_{j} \cap U_{k}$, of the form

$$
P_{j k}^{(n)}(z)=\left(\begin{array}{ccccc}
1 & & & 0 \tag{4}\\
0 & \frac{z_{j}}{z_{k}} \frac{d z_{k}}{d z_{j}} & & 0 \\
0 & & \left(\frac{z_{j}}{z_{k}} \frac{d z_{k}}{d z_{j}}\right)^{2} & \\
\vdots & & \ddots & \\
\vdots & & \ddots & \left(\frac{z_{j}}{z_{k}} \frac{d z_{k}}{d z_{j}}\right)^{n}
\end{array}\right)
$$

which satisfies the cocycle conditions

$$
P_{j k}^{(n)}(z) P_{k j}^{(n)}(z)=E_{n+1} \quad \text { on } \quad U_{j} \cap U_{k}
$$

and

$$
P_{i j}^{(n)}(z) P_{j k}^{(n)}(z)=P_{i k}^{(n)}(z) \quad \text { on } \quad U_{i} \cap U_{j} \cap U_{k} .
$$

Thus the cocycle $\left\{P_{j k}^{(n)}(z)\right\}$ determines a holomorphic vector bundle $P_{Y}^{(n)}$ of rank $n+1$, which is called the eulerian jet bundle associated to Y. From
the form (4) of transition functions and the choice of the local coordinate $z_{j}(j=1, \cdots, N)$, it follows that the bundle $P_{Y}^{(n)}$ contains a subbundle $(K \otimes[Y])^{\otimes n}$ of rank one where K is the canonical bundle of X and [Y] is the line bundle associated to the divisor Y. On U_{j}, the sheaf $\mathcal{O}\left(P_{Y}^{(n)}\right)$ of germs of holomorphic sections of $P_{Y}^{(n)}$ is identified with $\mathcal{O}_{U_{j}}^{n+1}$ and we have a homomorphism

$$
\begin{align*}
D^{n}: \mathcal{O}_{U_{j}} & \left.\longrightarrow\left(P_{Y}^{(n)}\right)\right|_{U_{j}}=\mathcal{O}_{U_{j}}^{n+1} \tag{5}\\
& \varphi \longmapsto\left(\begin{array}{c}
\rho \\
z_{j} \frac{d}{d z_{j}} \varphi \\
\vdots \\
\left(z_{j} \frac{d}{d z_{j}}\right)^{n} \varphi
\end{array}\right)
\end{align*}
$$

It follows that these homomorphisms are compatible in the sense that any two of them define the same homomorphism in a common domain of definition and define a sheaf homomorphism

$$
D^{n}: \mathcal{O}_{X} \longrightarrow \mathcal{O}\left(P_{Y}^{(n)}\right)
$$

By using the eulerian jet bundle associated to Y and the formulation of P. Deligne [1, p. 24], we can formulate the notion of linear differential equations on X of order n with regular singularities along Y as follows:

Definition. A linear differential equation on X of order n with regular singularities along Y is a O_{X}-homomorphism

$$
E: O\left(P_{Y}^{(n)}\right) \longrightarrow \mathcal{O}\left((K \otimes[Y])^{\otimes n}\right)
$$

such that the restriction of E to the subsheaf $\mathcal{O}\left((K \otimes[Y])^{\otimes n}\right)$ is the identity: $\left.E\right|_{((K \otimes[Y])} ^{\otimes n)}=$ identity. Then a holomorphic function φ near z is a solution of the differential equation E if $E\left(D^{n}(\mathscr{P})\right)=0$.

Remark. Let z be a local coordinate of a small open neighbourhood U. Then we can identify $\left.\mathcal{O}\left(P_{Y}^{(n)}\right)\right|_{U}$ with \mathcal{O}_{U}^{n+1} and the homomorphism D^{n} can be written in the form

$$
\begin{aligned}
D^{n}: \mathscr{O}_{U} & \longrightarrow \mathcal{O}_{U}^{n+1} \\
& \longmapsto\left(\varphi, z \frac{d}{d z} \varphi, \cdots,\left(z \frac{d}{d z}\right)^{n} \varphi\right) .
\end{aligned}
$$

By the choice of the local coordinate z we can identify the locally free
sheaf $\left.\mathcal{O}\left((K \otimes[Y])^{\otimes n}\right)\right|_{U}$ with \mathcal{O}_{V} and the linear differential equation E can be written in the form

$$
\begin{aligned}
& E: \mathcal{O}_{U}^{n+1} \longrightarrow \mathcal{O}_{U} \\
& { }^{t}\left(\varphi_{n}, \cdots, \varphi_{0}\right) \longmapsto \sum_{i=0}^{n} b_{i}(z) \varphi_{i}(z)
\end{aligned}
$$

where $b_{0}(z)=1$. Then a solution φ of E in U is a holomorphic function in U which satisfies

$$
\left(z \frac{d}{d z}\right)^{n} \varphi+b_{1}(z)\left(z \frac{d}{d z}\right)^{n-1} \varphi+\cdots+b_{n}(z) \varphi=0
$$

Thus our definition of linear differential equation E on X of order n with regular singularities along Y is equivalent to the classical one.
§2. We show that the eulerian jet bundle $P_{Y}^{(n)}$ is decomposed into a direct sum of line bundles.

Theorem 1. We have

$$
\begin{equation*}
P_{Y}^{(n)}=1 \oplus(K \otimes[Y]) \oplus(K \otimes[Y])^{\otimes 2} \oplus \cdots \oplus(K \otimes[Y])^{\otimes n} \tag{6}
\end{equation*}
$$

where 1 is the trivial line bundle on X.
Proof. We shall prove Theorem 1 by the induction on the number n. When $n=1$, by (4) the transition function $P_{j k}^{(1)}(z)$ has the form

$$
P_{j k}^{(1)}(z)=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{z_{j}}{z_{k}} \frac{d z_{k}}{d z_{j}}
\end{array}\right) \text { in } U_{j} \cap U_{k}
$$

which shows that $P_{Y}^{(1)}=1 \oplus(K \otimes[Y])$. Supposing that the statement is true for $n-1$, we shall show that it is true for n. Since the line bundle $(K \otimes[Y])^{\otimes n}$ is the subbundle of $P_{Y}^{(n)}$ and the transition function $P_{j k}^{(n)}(z)$ has the form

$$
P_{j k}^{(n)}(z)=\left(\begin{array}{c|c}
& 0 \\
P_{j k}^{(n-1)} & \vdots \\
& 0 \\
\hline * \cdots * & \left(\frac{z_{j}}{z_{k}} \frac{d z_{k}}{d z_{j}}\right)^{n}
\end{array}\right)
$$

we have an exact sequence of vector bundles

$$
\begin{equation*}
0 \longrightarrow(K \otimes[Y])^{\otimes n} \longrightarrow P_{Y}^{(n)} \longrightarrow P_{Y}^{(n-1)} \longrightarrow 0 \tag{7}
\end{equation*}
$$

Since $\mathcal{O}\left(P_{Y}^{(n-1)}\right)$ is locally free, (7) induces an exact \mathcal{O}_{X}-sequence

$$
\begin{gather*}
0 \longrightarrow \mathscr{H o m}\left(P_{Y}^{(n-1)},(K \otimes[Y])^{\otimes n}\right) \longrightarrow \mathscr{H} \text { om }\left(P_{Y}^{(n-1)}, P_{Y}^{(n)}\right) \tag{8}\\
\longrightarrow \mathscr{\mathscr { C o m }}\left(P_{Y}^{(n-1)}, P_{Y}^{(n-1)}\right) \longrightarrow 0
\end{gather*}
$$

where \mathscr{H} om (V, W) is the sheaf of germs of local homomorphisms from the sheaf of germs of holomorphic sections of a holomorphic vector bundle V to that of a holomorphic vector bundle W. Thus we have an exact sequence of cohomology groups

$$
\begin{align*}
H^{0}\left(X, \mathscr{H} \operatorname{oom}\left(P_{Y}^{(n-1)}, P_{Y}^{(n)}\right)\right) \xrightarrow{\alpha} H^{0}\left(X, \mathscr{H}_{o m}\left(P_{Y}^{(n-1)}, P_{Y}^{(n-1)}\right)\right) \tag{9}\\
\quad \longrightarrow H^{1}\left(X, \mathscr{H} \text { om }\left(P_{Y}^{(n-1)},(K \otimes[Y])^{\otimes n}\right)\right) .
\end{align*}
$$

We denote by \mathscr{L} the locally free sheaf of germs of holomorphic sections of $K \otimes[Y]$ and by $\mathscr{L}^{\otimes^{n}}$ the tensor product $\mathscr{L} \otimes \cdots \otimes \mathscr{L}$ of \mathscr{L} with itself n times. From the assumption of the induction it follows that

$$
\begin{align*}
\mathscr{H o m} & \left(P_{Y}^{(n-1)},(K \otimes[Y])^{\otimes n}\right)=\mathscr{O}\left(P_{Y}^{(n-1)}\right)^{*} \otimes \mathscr{L}^{\otimes n} \tag{10}\\
& =\left[\mathcal{O} \bigoplus \mathscr{L} \oplus \cdots \oplus \mathscr{L}^{\otimes(n-1)}\right]^{*} \otimes \mathscr{L}^{\otimes n} \\
& =\mathscr{L}^{\otimes n} \oplus \mathscr{L}^{\otimes(n-1)} \oplus \cdots \bigoplus \mathscr{L}
\end{align*}
$$

As X is compact, we can identify $H^{2}(X, Z)$ with Z naturally and by this identification we consider the Chern class $c(\mathscr{L})$ of \mathscr{L} as a rational integer. Let F be a holomorphic line bundle on X. Then it is known that we have $H^{1}(X, \mathscr{O}(F))=0$ if $c\left(F \otimes K^{*}\right)>0$. As for $\mathscr{L}^{\otimes k}=\mathscr{O}\left((K \otimes[Y])^{\otimes k}\right)$, we have that

$$
c\left((K \otimes[Y])^{\otimes k} \otimes K^{*}\right)=(k-1)(2 g-2)+k m>0
$$

because we suppose that $m \geqq 1$ and moreover $m \geqq 2$ when $g=0$. Hence we have

$$
\begin{equation*}
H^{1}\left(X, \mathscr{L}^{\otimes k}\right)=0 \quad \text { for } \quad k=1, \cdots, n \tag{11}
\end{equation*}
$$

Thus, from (10) it follows that

$$
H^{1}\left(X, \mathscr{H} \operatorname{lom}\left(P_{Y}^{(n-1)},(K \otimes[Y])^{\otimes n}\right)\right)=0
$$

This means that the homomorphism α in (9) is surjective; hence by the standard argument we see that the exact sequence (9) splits and we have

$$
P_{Y}^{(n)}=P_{Y}^{(n-1)} \oplus(K \otimes[Y])^{\otimes n}
$$

$$
=1 \oplus(K \otimes[Y]) \oplus \cdots \oplus(K \otimes[Y])^{\otimes n} .
$$

This completes the induction.
Q.E.D.
§3. From the definition of a linear differential equation with regular singularities along Y, it follows the set of all linear differential equations of order n with regular singularities along Y is the affine subspace V of

$$
W=H^{0}\left(X, \mathscr{H}_{\operatorname{com}}\left(P_{Y}^{(n)},(K \otimes[Y])^{\otimes n}\right)\right)
$$

which consists of $E \in W$ such that $\left.E\right|_{(K \otimes[Y])} \otimes_{n}=$ identity. Since the exact sequence (7) splits, the restriction mapping

$$
W=H^{0}\left(X, \mathscr{C}_{m m}\left(P_{Y}^{(n)},(K \otimes[Y])^{\otimes n}\right)\right) \longrightarrow H^{0}\left(X, \mathscr{E}_{n d}\left((K \otimes[Y])^{\otimes n}\right)\right) \simeq C
$$

is surjective. Thus V is an affine subspace of W of codimension one. In a similar way to (10), by using Theorem 1, we have

$$
W=\bigoplus_{k=0}^{n} H^{0}\left(X, \mathscr{C}^{\otimes k}\right)
$$

By the Riemann-Roch theorem we have

$$
\operatorname{dim} H^{0}\left(X, \mathscr{L}^{\otimes k}\right)-\operatorname{dim} H^{1}\left(X, \mathscr{L}^{\otimes k}\right)=c\left(\mathscr{L}^{\otimes k}\right)-(g-1) .
$$

Then, from (11) it follows that for $k \geqq 1$, we have

$$
\begin{aligned}
\operatorname{dim} H^{0}\left(X, \mathscr{L}^{\otimes k}\right) & =k c(\mathscr{L})-(g-1) \\
& =k m+(2 k-1)(g-1) .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
\operatorname{dim} W & =1+\sum_{k=1}^{n} \operatorname{dim} H^{0}\left(X, \mathscr{L}^{\otimes k}\right) \\
& =1+\frac{n(n+1)}{2} m+n^{2}(g-1) ;
\end{aligned}
$$

hence we have

$$
\operatorname{dim} V=\frac{n(n+1)}{2} m+n^{2}(g-1)
$$

Thus we obtain the following
Theorem 2. Let X be a compact Riemann surface of genus g and let Y be a divisor of X consisting of m distinct points of X. We suppose that $m \geqq 1$ and moreover $m \geqq 2$ when $g=0$. Then the number of
independent parameters of linear differential equation on X of order n with regular singularities along Y is equal to

$$
\frac{n(n+1)}{2} m+n^{2}(g-1) .
$$

References

[1] P. Deligne, Equations différentielles à points singuliers, Lecture Notes in Math., 163, Springer-Verlag, 1970.
[2] T. Saito, A note on the linear differential equation of Fuchsian type with algebraic coefficients, Kodai Math. Sem. Rep., 10 (1958), 58-63.

Present Address:

College of Liberal Arts
Kanazawa University
Maru-no-uchi, Kanazawa 920

