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Introduction

Various number theoretical transformations, such as transformations
for simple continued fraction [1], nearest integers continued fractions [10],
complex continued fractions [2] [7], Jacobi-Perron’s Algorithm [14], ete.,
have the following structure: Let XcR” and T be a map of X onto
itself. Then there exist a partition {X,:ae Tl } of X, and a finite number
of range sets U, ---, U, such that T (X, NTX,,N--+N Tr-*vX,)e
{Ui:0=<¢=N}. The system (X, T, {U,, ---, Uy}, {X,; a€l}) with such a
structure will be called a number theoretical transformation with finite
range structure (see the definition in §1).

In this paper, we first summarize ergodic properties of number
theoretical transformations with finite range structure which have already
been obtained in [10] and [8]. Namely, Theorem 1 in §1 states that the
number theoretical transformation satisfying a transitivity condition and
Renyi’s condition is ergodic, exact, and admits a finite invariant measure
whose density is bounded. Moreover, according to a result of Schweiger
[15], Theorem 2 gives a sufficient condition in order that such a trans-
formation possesses a o-finite invariant measure. The maps defined by

rom=(-{-]-4[-5k-9

T.(6, ¢)=(—[—%:|*‘;“' %“[%’])

are interesting examples in view of number theoretical applications [18]
(cf. (3)).
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In §3 and §5, we verify that these maps are number theoretical
transformations with finite range structure and satisfy conditions of
Theorem 2, and therefore, they possess o-finite invariant measures.

In §4 and §6, we give the density functions of the invariant
measures g, and g, for T, and T, explicitly as follows:

2—6

—==7 6
dp, _)2A—06F =7
dn .

2—6 .
o) 1

Our method of determining the density is to construct the dual algorithm
or natural extension [10], [56], [9]. This method is very useful for
determining explicitly the density of an invariant measure in the case of
maps defined on higher dimensional spaces. In the papers [3], [19] the
densities of invariant measures for some number theoretical transforma-
tions on a 2-dimensional space were computed by using this method.

§1. A class of number theoretical transformations.

In this section, we propose a class of transformations, whose element
will be called a number theoretical transformation with finite range
structure.

Let Y be a bounded measurable subset with piecewise smooth
boundary of R" and A\(:) be the normalized Lebesgue measure on Y. Let
I be a countable set. In this section, let us consider a map S: Y—Y
satisfying the following conditions:

(0) There exists a countable partition £={Y,:ac I} with an index set
I elements Y, of which are measurable and connected subsets of Y
with piecewise smooth boundary such that S|y, is injective, of class
C* and det(DS|y,)+#0.

We introduce some notations and definitions: A cylinder of rank n with

respect to S is defined by
Y, wu=Y,NS'Y,N---NS Y, if

(Yal)o N (S—l Yaz)o n e (S—(n—l) Ya”)o;ﬁ @ .
™ denotes the family of all cylinders Y,,...., of rank n, and % denotes
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L. If Y, .., 2™, we call the sequence @y +++, a,) S-admis-
sible. Denote the set of all S-admissible sequences of length n by A(n).
Using the notation as above, we give the definition of number
theoretical transformation with finite range structure as follows.
For a map S satisfying (0), if there exists a finite number of subsets
Vo -+, Vy of Y with positive measure such that for each #» and for all
(@, - -a,) € A(n)

Sn Yal---a,,. (<] {Vo; MR VN} )

then we call S a number theoretical transformation with finite range
structure. Hereafter, we denote such a system by (Y, S, (Vo =++, Vil
{Y.: a € I}) throughout this paper. In case there exists k=0 such that
all range sets are <#*-measurable, that is,

Vi= U Y, .. for all ¢ with 0Zi<N,
Yoy apVi
we call S a number theoretical transformation with Markov structure
and call such a system (Y, S, {V, ---, Val, {Y.; a € I}) a number theoretical
Markov system (abbrev. N. M. S.). In particular, in case k=0, that is,
S"Y, ..., =Y for all n and (a,-- ‘a,) € A(n), we call such an S a number
theoretical transformation with Bernoulli structure.
We write &', for (Sly,)™* and define inductively

Ceoan=Tpa,_ oW

Thus ¥,,...,, is a map of S» Y., ..., onto Y, ..., for all (a,---a,) e A(n), and
the domain of v,,..., is contained in {V,, ---, V,}.

Given a constant C=1, we call a cylinder Y,,..., an “R.C-cylinder”
if it satisfies “Renyi’s condition”, i.e.

sup |det D?, ..., ()| <C inf |det D',...., ()] .
xeSnYal...an zesnl’al...an

R(C.S) denotes the set of all R.C-cylinders.

With the above notation, we give the next theorem which is an
improvement of Nakada’s theorem [8] due to Waterman [21].

.. THEOREM 1. Suppose that (S, Y, {Voy =+, Vyh {Y.; @ € I}) is @ number
theoretical tramsformation with finite range structure and satisfies the
following conditions: ‘
(C.1) (tramsitivity condition):
Vo=Y and for each j with 0<j<N, there exists a Y.

a0, Vi
~and S% Y,,l...a”.: Y. v - '
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(C.2) (generator condition):
Ve, 8 ™t=¢, i.e. the partition into points.
(C.8) (Renyti's condition):
There exists a constant C=1 such that R(C.S)=_F.
Then S is ergodic, exact with respect to » and admits a finite invariant
measure v~ such that its density is bounded above and below.

Before proving Theorem 1, we give a remark and several lemmas.

REMARK 1. The following formula will be used often throughout
this paper.

Yo, apapsron=Tarap(S* Yorap N Y,

wrv1an)
if
(S Y pa)° 0 (Y yoa) # D -

Thus we find the following symbolical property:
(@, +a,) € A(n) if and only if (a,---a;) € Ak), (@4 * - @) € A(R—K),
and (S*Y,,...,)° N(Y,, rrean) E D

LEMMA 1.1. Put s=L.C.M. c;<v{s;}. Then for each j there exists a
Y,,...a, SUch that

Y, uCV; and S'Y,.,=Y.

e
ProoF. By using Remark 1, we can easily verify that

Y, is well defined, and S'Y,, ... . 0p:0,;,= ¥ - O

a1:ag e “@1:° 8g

Ny—
8

LEMMA 1.2. Put A°(n)={(a,*--a,) € An):S"Y,,...,=Y}. Then,
for any Y, ..., € Z¥ there exists
Yy, 0,0, SUCH that Yy ..4p0..0, € A(K+5) .

ProoF. Let S*Y;..;=V;. Lemma 1.1 implies that there exists
Y.,.., which is contained in V; and so the result follows from Remark 1
immediately. O

Thus, for all n=s, we have A°(n)* Q. Next, for the proof of
Theorem 1, we need the following lemma, which corresponds to the
condition (¢) in [21].

LEMMA 1.3. There is a constant D such that for any Y,,... and all
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MY, )= DMY,,..0,) -

ceeapbyeeeb
(byee+bpy)} 1R m
(@gessapbyeeby) e A0(k+m)

In particular, e, .5 e0m M Yo,..,) ZD.

Proor oF LEMMA 1.3. For convenience, we denote a(n)=(a,::-a,),
b(m)=(b;--+b,), and a(n)b(m)=(a,---a,b,-+-b,) € A(n+m). First, let us
suppose m=s. Using the fact from Remark 1 that
(1) {b(s): Yy € £, a(k)b(s) € Ak +s)}

D{b(s): b(s) € A%(s), Y,y ©S* Y.y}

we obtain from (C.3)

o )E N Ya(k)b(a))—>_—b( ) > Moy Yoi)
8); 8)s
a(k)b(s) e 40(k+a) Yb(s) S8k )

b(a) € A0(a)

z = | idet DT @A)
b(s); Yb(s)

Yp(s) SSEY g k)

b(s) e 40(s)

= Z 7\1( Yb(s;) * LY;@Q‘ .
b(s)3 C

Yo (e) C8EY 4 ()
b(a) € 40(s)

Put V;=8*Y,4. Then by Lemma 1.1 there exists
b,(s)e A%s) such that Y3, Vi,
and hence
MY,
IV AN PRLCOTINNG
b(8); C
a(k)b(s) € A% (k+s)
Put D=C""min,¢;<y{\Y53;,)}. Then we have
( 2 ) Z 7\’( Ya(k)b(a))gD ° 7\'( Ya(k)) .

b(s)s
a(k)b(8) € A0 (k+8)

Next we prove the lemma in case m>s. Let (b;-:-b,_,) be S-admis-
sible such that a(k)b,-:-b,_,€ A(k+m—s). Then by Lemma 1.1 there
exists (bn_,+1°*"bn) such that (b,_,.i---b,) € A%s) and S** ™ ° Y b, mee D
Ys,_,i1-bn This implies

a(k)b, b, _by_gii b€ A(k+m) ,
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so we obtain the following:

bm) Z N( Ya(k)b(m))
a(k)b(m) ¢ A0(k+m)
= >
byeebyy—gt byy—g+1°" by € A%(2)

a(k)byseoby g€ A(k+m—s) S"+""—"Y¢,(k)bl...bm_‘Dme_'_'_l...bm

From this and (2), we have

M Yaunal---bm-.a,,._.ﬂ---bm))

s pY MYowsm) = - )Z. (D M Yarpy b m—y))
a(k)b(m) € 40 (k+m) a(k)b g€ Alk+m—s)
=D * X( Ya(k)) .

ProOF OF THEOREM 1. First we prove the ergodicity.

STE=F and \M(E)>0. For all m=0 and a(m)c A(m),

|
Suppose that

7\'(E N Y,.(,,,)g 2 Iz(x)d\(zx)
cinib(e) € AO0(mta) © T BIMIBD)
where I is the indicator function of E.
Since S'E=E, we obtain
MENY.m)= 2 I(S™**x)dn\ ()
i bie) € A0(mtay T BmIB(8)
= = |, 1det DT s @) L@)dN@) -

b(s);
a(m)b(s) € AQ(m+s)

By (C.3) we have

SY |det D, 100 (@)| Lz()dN(2) _Z_%)V( Yoimsw) - ME) ,

and so by Lemma 1.3
MENYom)ZC' D N Yoim) * ME)

It follows from this that S is ergodic with respect to .
Next we show the existence of an invariant measure.
we obtain for all k=s

AMSTFE) = 3 )7\,(S"‘Er‘| Y.w)

a(k) e A(k

= |det DT, ., ()| d\(x)

a(k) € A (k) SEnskY.,(,,,

z 5 | ldet DU (@)ldr@)

T a(k) € A0(k)

By Lemma 1.3
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> M V) ME)

T atk) e 40(k) C

=C*t-D-\NEF).
On the other hand, since for any a(k) € A(k)
inf |det DY, ()] - MS* Yau) =M Yawry)

zeYq (k)

holds, by (C.8) we see
MSTE) s 3  Sup [det DT, ()| - M(E)

a(k) e Ak

= >, C-.inf|det DV, (®)| - M(E)

T atk) € Ak

MYaw) | o,
T awedto N(S*Y, ) CME)

=(min (V)7 -C-\E) .
1sjsN

IA

Put G=max{C(min; \(V;))"}, CD™*}. Then we have
G ANME)SENMSEE)SG - A\E) for all k=s.

This inequality implies that there exists an invariant measure g and
the measure ¢ is equivalent to .

The proof of exactness is similar to that of Theorem 5.8 in [21] and
is, therefore, omitted. [

At the end of this section, we make a remark on the assumptions
made in Theorem 1, and give examples of number theoretical transforma-
tions with finite range structure.

For various number theoretical transformations, the assumptions of
Theorem 1 are satisfied. On the other hand, we also know some examples
not satisfying them, that is, examples for which S"Y, .., #Y for any
Y. . ..., € They sometimes appear in the dual algorithm. In view of
these examples, we weaken the assumption (C.1) of Theorem 1, and
obtain an analogue of Theorem 1 as follows.

THEOREM 1*. Suppose that (Y, S, {Vy -+, Vyl, {Y;ael})) is a
number theoretical tramsformation with finite range structure and the
following conditions are satisfied: 5

(C.1)* There exist V,, -+, V,, and Y=UL,V,,. And for each pair

Viand V,,, there exists a Y.ii,y € such that You.,,C V;
and S* Y,6,045=V,,
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(C.2)* V=, S me=e.
(C.83)* There exists a constant C=1 such that R(C.S)=_<%.

Then S is ergodic, exact with respect to N and admits a finite invariant
measure y~n such that its density s bounded.

The proof of this theorem is quite similar to that of Theorem 1, and
hence it is omitted.

A typical and important example of number theoretical transforma-
tion with Bernoulli structure satisfying the conditions (C.1) and (C.2) is
a simple continued fraction transformation [12]. The transformation
which induces n-adic expansion or decimal expansions [6] are included in
this class.

As examples of N.M.S. satisfying the conditions (C.1), (C.2) and (C.3),
we mention the nearest integer continued fraction transformation [10],
Jacobi-Perron algorithm [14] and a skew product transformation 7T, of

(0, 1)* defined by
rev-(2-[2}2-[2) @.

We remark that a nonsingular continued fraction expansion [10], which
gives a dual algorithm to the nearest integer continued fraction trans-
formation, is a simple example of N.M.S. satisfying (C.1)*, (C.2), and
(C.3).

As examples of number theoretical transformations with finite range
structure satisfying the conditions (C.1), (C.2) and (C.3), we know complex
continued fraction expansions on Z(3) or Z((1+1v"37)/2) ([2], [8], [17]) and
a skew product transformation T, of (0, 1)* defined by

rev-(A-[1} (-2 ®.

§2. Number theoretical transformations with o-finite invariant
measure.

In §1, we have treated the class of maps which satisfy “Renyi’s
condition”, (C.8). On the other hand, we can find many interesting
examples not satisfying (C.3). For this reason, we direct our attention
now to the class of maps which do not satisfy (C.3).

Now let (X, T, {U, ---, Uy}, {X,:a€I}) be a number theoretical
transformation with finite range structure and assume that the conditions
(C.1), (C.2) are satisfied.
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Given a constant C=1. We define

Z,={X4y.00, € L Xoyoa; € L\R(C.T) for 1=j=m},
D,= U Xovay s

Ko an€Pn

Ba=1{Xsy 0, € L™ Xyoay
B.= U X

PR
Xgprapnhn

€ D,_,, Xopou, € RC.T)} ,

It is easy to see that for each n U?, B;UD, is a disjoint covering of X.
Using the above notations, we prove the following theorem.

THEOREM 2. Suppose that (X, T, {U,, -+, Uy}, {X,: a € I}) is a number
theoretical transformation with finite range structure and the conditions
(C.1), (C.2) are satisfied. Assume that there is a constant C=1 such that

(C.3), lim,..\(D,)=0,

C.3) if Xiw,€R(C.T), then X;..44..e,€R(C.T) for any

(by+++bra,---a, € Alk+n),
(C.8), there is an element of the partition, X, such that

TX,=X and X,eR(C.T).

Then T 1is ergodic with respect to n and admits a o-finite invariant
measure Mt~n.

REMARK 2. If we replace (C.3), by

(C.3)* SMD)< oo,

n=1
then p is finite.

In case T has a Bernoulli structure, that is,
T*X,,..,.=X (=U, for all k¥ and X,,...., ,

F. Shweiger obtained the same result as this theorem in ([15]). Therefore
this theorem is a generalization of Schweiger’s. But the process of the
proof is essentially that of Schweiger’s ([15], [16]).

LEMMA 2.1. Any cylinder is within a set of n-measure zero a disjoint
union of R.C-cylinders.

Proor. Since X=UZ%,B;UD,, if X,. € F\RC.T) and T"X,.,=U,
then we see
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Xa(n) =W¢(n) (Xn Ut)
=U (BN U)UT,y(Dn N U

=1

=U U o Koy N UYUT (D N UY)
§=1 Xp(j5) €85
=U U X-(n)b(i) U Wa(n)(Dm N U{) .

=1 Xprjyeb;

(C.3), and (C.8), imply X, €R(C.T) and lim, .. A& ewm(D.N U))=0.
Thus Lemma 2.1 is proved. []

REMARK 3. X=U B; (mod0).
=1

Now let us consider a new map T defined by
(3) Trx=Tix for xe€B;.
Then, T can be considered as a map of U3, B; with a partition indexed
by
J="('=jl (@ -a) e Am): X, ..o, € B} -

Hereafter for a=(a,---a,) €J we denote
X=X, .ap -
It is easy to see that a cylinder X, ..., of rank n with respect to T is
given by
(4) Xoooan=Xal

1'”“;:(1)"'“?""’;:(1‘) )
where a1=(a}- . 'a}gu)), c an':(a;.l' * 'aiz(n))) and

TE(X., ) = kW +---+k(n) (X“i"'“z(n)) .

JRRRY- 7%

Therefore
TH(Xa,...a) €{Us Uy, =+, Uy} for all n=1 and X,,..., -

Put {U;, .-+, Ux}={TR(X,,....,): all n=1 and all X, ..., }. Then the system
(U, By, Tx, {U;, + -+, U}, {X,; @€ J}) is a number theoretical transforma-
tion with finite range structure.

LEMMA 2.2 (Main lemma). (U3, Bj, T, {Us, +++, U}, {Xa: @€ J}) satis-
fies the assumptions of Theorem 1.
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To prove (C.2) we prepare the next sublemma. (See [15]).

SUBLEMMA. Let & ™ denote the o-algebra generated by all the
cylinders of rank m with respect to T and let 7 =\, ™ denote their

joim. And define Fp=\Ve., Z&" similarly with respect to Tp. Then
F = Fx.

PrOOF. It is clear that sc.&. Hence to prove Sublemma it
suffices to show that every cylinder with respect to T is a disjoint union
of cylinders with respect to 7. The equality D,=B,,,UD,,, shows D, =
Uizt Boypmod 0. If X, .., €7, then

Xal...a”= U ( U Xb(n+k) N Xal-na,,)

k=1 Xy(n+k)€Bn+k

(=]
= U( U Xoyapbpigbary (mod0) .
k=1 bypyeebptps
G]_"'G“bn+1"'bn+keﬁ'ﬂr+k

Let X,...., ¢ Z,. Then there is a maximal k,e[1, n] such that Xoyoa, €
R(C.T). The condition (C.3), implies that Xopoiroan € Dosye In fact if
Xepgir-an € Doipr then there is a number I<n such that X, .. .. ..., €
R(C.T) by (C.8),. This contradicts the choice of k,. Thus

Xak0+1-r--a”=kgl Bn—k0+k N X”ko+1"'“n (mOd O) ’

and hence

Xopoan=Xayroagg N T 0 By > -

mod 0. This gives a disjoint union representation by ecylinders with
respect to T%. ]

ProOOF oF LEmMMA 2.2. Using Sublemma, we can verify that the
system (U3, Bj, Tg {Us, « ¢+, Uy}, {X,; @cJ}) satisfies (C.2) immediately.
From the definition of T, (4) and (C.8),, we can also verify that the
system satisfies (C.3). For each 1<j<M, from the condition (C.1) of
(X, T, {U, ---, Uy}, {X,;a€I}) we find a cylinder Xo,-wa,; Such that

Xopa;,CU; and X, A%s)) .

Let X, satisfy (C.3),., Then by Remark 1 we see X,,l...%jﬁﬁg and
T‘a'“X,,l...%ja::X. Further we can see that there are a,, ---, a;€J such
that ‘Xal"'“ag‘“ = Xal...ul- Indeed if Xal...a‘”. = Xb(k)d(a,‘—-k) ) Where b(k) =

(a,---a¢,) €J™ and Xd(sj_k) € -@,j_k, then by (C.3), Xd(nj-k)a;/: @ and
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Xaj—ira € Boj—1+1» Thus for all U; there exists a X, c U; such that

1"'&,50,

TiXa.p=X and X, ... cR(C.Ts).
This completes the proof of Lemma 2.2. O

PrROOF oF THEOREM 2. The proof is similar to that of theorem 4
and 5 in [15], and so we give only a sketch of the proof. It follows
from Lemma 2.2 that T is ergodic with respect to A and admits a finite

invariant measure y~\.
Let T'E=F, then the relation

i Q’l (B,NT"E)

implies T7;'E=E. Therefore T is ergodic too. We put D,= U2, B, and
define

p(A)= % v(D,NT"A) .

Then we can see (T 'A)=p(A), since D,=X and y is an invariant

measure for T%.
For every X,., € R(C.T) from (C.3),, we have
U (T_"X.,(,,.) N Xk(n)) = U Xk(n)a(m)
Xk(n)€Pn Xxin)€Zp

;Dn\Dn+m .

Therefore
#(Xa(m)) ég ”(Dn\Dn+m)

= D)< .

n=1

Thus for X, ., € 8. the measure f(X,.,) is finite. Since U, B;=Xmod 0,
this implies that g is a o-finite invariant measure. This completes the
proof of Theorem 2. |

If 3= 2D, <, the following inequality shows that p is finite:
HA=(A)+ 3 (D,)

for any measurable set A.
We have the next result which corresponds to Theorem 1*.
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THEOREM 2*. Suppose that (X, T,{U, -+, Uy, {X,:a€l}) is the
number theoretical transformation with finite range structure and satisfies
(C.2), (C.3),, (C.8), and the following conditions:

(C.1)** There exists U,, -+, U,, and X= Ui, U,,.

And for each j with 0<j<N, there exists a X,
Xoyoa; CUs and TU9X,,..,,.=X.
(C.8)¥ There are X+ X,, such that X, e R(C.T) and TX,=U,,
(l=1---K).
Then T 1is ergodic with respect to N and admits a o-finite invariant
Measure th~n.

such that

1"'“83’

The proof of this theorem is quite similar to that of Theorem 2.
Therefore it is omitted.

A typical and important example of number theoretical transforma-
tions with Bernoulli structure satisfying the conditions (C.1), (C.2) and
(C.3) is a transformation T of (0, 1) defined by Tw=—[—(1/2)]— (/).
The density of the invariant measure is known:

h(z) =ﬁ .

This transformation is conjugate to a transformation 7T defined by Tx=
(®/(1—x)) (mod1l), whose invariant measure has the density given by
T(x)=1—z ([11)).

As an example of number theoretical transformations with Bernoulli
structure satisfying (C.1), (C.2) and (C.3)*, we mention the transforma-
tion T of D defined by

e o=(E-[ 152 [-2] -[-£]-2).

D={(z, ¥); 0=sy=<1l, —y=sx<-—-y+1},

where

which induces a inhomogeneous linear approximation. The density of the
invariant measure is known:

1

© h , —
@ 9) 2log 2(1—x?)

(4D -

As an example of N.M.S which satisfies the conditions (C.1) (C.2) and
(C.3)* we mention the complex continued fraction transformation of
Z(1+1) ([19]). More detailed investigation will be found in [20].
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In the rest of this paper, we will give two examples of number
theoretical transformations with finite range structure satisfying (C.1),
(C.2), (C.3),, (C.3), and (C.3),. We remark that one of the examples is
N.M.S.

§3. Definition of a map 7, and its ergodic properties.

In this section we give the first example which satisfies conditions
of Theorem 2.

Let X={(, ¥): 060, <1} and functions a(d) on [0, 1] and b(9, ) on
X be defined by

(5) a@)=—[ -1 ] and b, p)=—-2],

where [x]=max{n;n=x, nec Z}. Let us define a map T, of X onto itself
by

(6) .6, ¢)=(——;—+a(0), —2150, #)). (See Figure 1).
It is well known that the first coordinate map (6— —(1/6)+a(f)) has a
o-finite invariant measure whose density is (1/(1—6)). We define for
8, ) € X the sequences a,=a,(@) and b,=0b,(0, ) by a.(0)=a(r,_,(6)) and
b0, @)=b(r,_,(0), s,_.(0, »)), where r.,0) and s,(0, ) are components of
T8, ¢), that is,

(r.00), 8,00, P))=T70, ) (n=0).

Note that T7*(0, #) ¢ X may occur for some n. To avoid these difficulties
we must consider the Algorithm on the restricted set

(7) X, ={(6, p) € X: T*6, p) e X for n=1,2, ---}.

Since the Lebesgue measure of this set X, is equal to 1, we denote for
convenience X, by X throughout this paper. From the definition of
a0, b0, ¢), r.(0) and s,0, ) it is easy to see that a,6)=2 and for
each (4, p)e X

(8) o= 1

a’1(0 ) -

az(a) -
__1
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g)::kz=1 (—=1)*7'66, + -6,_,b,(6, @)
+(— 1)71.001. * '017,—181;(0? q)) ’

where
1
Ori= .
| a4(6)— 1
ak+1(0) -
D S
a,(0)—r,(0)
We denote
(9) .0) @@ — (n=1)
_ 1
a.(6)
(10) a,(0)=q,(0) - 0—p,(6) (n=1) .

Then we have

(11) {qn(ﬁ) = (0)q—1(6) — q,—5(6)

P.(0)=a,(0)p,_.(0)—p,_.0) ,
where (g,(9), ¢_.(6))=(1, 0) and (p,(8), p_.(6))=(0, —1), and

(12) Y 046,40, 40,=a,6) .

In the sequel for simplicity we sometimes write a,, b,, Dns Any Try Sn, and «,
for a,(0), .00, @), p.(0), 2.(0), 7.(0), 8.6, #) and «a,(d), respectively. By
induction we can easily see that

(13) qpni1= @pt10n—qp_; > q, -

Thus the sequence {g,},., is monotone increasing. From the identity (9)
and the relation (11) and (12), it follows that the expansion (8) of
(@, ®) € X can be written in the form

0_.pn—_'rnp'n—1

- ’

L/ Pl N/

T
k=1 Q7 0n

(14)
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We call p,/q, and >3i-, (—1)*'a,_,b, the n-th approximants of 6 and @
respectively, with respect to the algorithm 7. The second expression

of (14) represents the approximation of the real number ¢ corresponding
to the following geometric picture:

P «(0)| [(0)]
NN SN
0 7]

e\ 1
bue(0)—boax(1) bl a(0)]

It is easy to see that

o a,(0):--a.6) '\,
An)= {(blco, ) ;o>>' 6 P)e X} ’

and for an n-tuple of pairs %1: :g")
1 n

a.(0) ) (a.i) . E
X o ean= 100, ®): = , 1150
(s {( ?) (bxe, #) =\,
is a eylinder of rank » with respect to 7, in the sense of §2. Moreover
we can easily verify that each T,-admissible sequence (al: :g""> € A(n)

b
satisfies the following: '
(A) a, b, are positive integers such that

a¢22 ’ aizbigl (lé‘ién) ’

B) if a,=b,, then b, ,#1.
Let U, be the set {(4, #): 0<6<1 and 6<p=1} and U,=X. Then

Uo if a#_-b
1X a\ = .
T (b) U1 1f a=b ,
and
(15) U1= U X('H'"“,.) o
(@uign)eatm  (bireion
9%1

Moreover we have

LEMMA 3.1. For “bl:::g'")eA‘(n), we have
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U, if a,#b,
3.1 TP X .0 .
(3.1) ( 1 n) {Ul of a,=b, .

that s, the tramsformation T, is a number theoretical transformation
with Markov structure.

: Q- a, . a(n) .
. .We denote sometimes (bl' ) 'bn) € A'(n) by (b( n)) for the sake of sim
plicity.
Now for each (ggzg) € A'(n) we define a map a/r(a(,., by

b(n)

V@ P=(22L=d, 51 (— 1 000.60)- -0,

+(=170(0) -+ 0,09 ,
where

A=k=n).

0k—1(6) =

a;

1
a,—0

From (14) and Lemma 8.1 we see that the map cp(,,(,,) is the inverse map
of T on T X = U, or U,

b(n)

"/’(gfzg)(TfX(a(n))):Xa(m ’

b(n) b(n)

and on each U,(1=0, 1) its Jacobian J(q/p(,,(n))) is

1

(16) J("ﬁ‘(g{:;))(al @):m :

LEMMA 3.2. Let C=2. Then for each( g%) € A(n) such that a,=2
we have

sup  J («/f(;gz;))(ﬁ, p)<C - inf J (qk(m;))(ﬁ, P ,

@, ‘p)eTlx(a(n) 0, WGTIX a(n)

b(n) ' b(n)

that is, X(gr--gu) Jor a,+2 belongs to R(C, T)).

Proor. The result follows from the following inequalities:
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1 1 _ 1 <l o

< - 3
o a(1-Le) qf.<1————1 e>* @

qn—z

LEMMA 3.3. For C=2%, =, defined in §1 satisfies

S, MXam)—0 a8 n——> o0,

Xan)€Zn
where \ 8 the Lebesgue measure on X.
PROOF. Let &, be
@:,::—{Xz 2 eee2 ); (b]_' . 'b,‘)=(1' . '1, 2' . '2), Oékén} .
bg bgeebdy, e ~———

k n—k

Then from Lemma 3.2, (A) and (B) we have &2, =,. Therefore to prove
Lemma 3.3 it suffices to prove

E %(X a(u)))—-’o as n——roco ,
X ra(m) b(n)
b(n)

By Lemma 3.1 and (16) we obtain

X MX(:%:%)): ,,”=22‘ Sw e U dk+s 22002 we dx

(2523)39;‘ X(:g:})egf'n b(n) 11
dodo dodp
<n- SS ——————+§S —_—,
L261 (qn— q'n—le)a Uo (q'n— qn—le)s
Note that ¢,=n+1 if a,=a,=--+=a,=2. Therefore we have
___dédp __dédp
= |, +]
.(§ MX bzn;)) " v; (m+1— na)‘ v (n+1— nﬂ)‘
b(n)
-1, 1
8n 16n*
This completes the proof of Lemma 38.3. O

COROLLARY 3. The pa'rtition. {X(,,.); (l’,:') € A‘(l)} 18 a genmerator with
respect to the map T,.

PROOF. Let Y be the set: ,
Y={(4, ®) € X; there exists n=n(0, #) such that a,(0)=2 for all m=n} .
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Then from the proof of Lemma 8.3 we see that \(Y)=0. Since for
(6, #) € X\Y there exist infinitely many =, such that a, (6)=3, we have

qn,— an—l = (ank - 1)an—1 - an—2
g 2an—1 - an—2 > an—l M
Thus

17) lim (¢, ~gn)="c° .
(14) and (17) imply that if (9, ¢) € X\Y, then

lim (2=, 3 (~1)~'a,_b,) =6, 9) -

n—ee \ g,
This gives Corollary 3. ]

With these facts in hand, we can now verify the assumptions of
Theorem 2 immediately, and obtain the following.

THEOREM 3. The map T, on X is ergodic with respect to \ and
admits a o-finite invariant measure pti~x.
§4. Dual algorithm and natural extension of a map T..

In this section, we construct a natural extension 7, of the map T,
by means of a dual algorithm and derive the invariant density function
for T, explicitly. We define

D={(& 7): 0=¢<1, e<n<e+1}, E={¢ :0=£<1, <9<},

and the sets D,,, which will be called the basic neighbourhood of the
integer vector (m, n), as follows:

D - {D——(m, n) for m=n and n=#1
" |\E—(m, n) for n=1
where
: D—_(m’ n)={(5: 1])—(m, ’n): (5’ 77) GD}
and
E—(m, n)={¢& 7)—(m, n): & 1) c¢E}.

These neighbourhoods {D,,,: m=n=1, m, n € N} give a disjoint covering of
the domain R={(¢, 7): ¢<—1, ¢<%<0}; that is, D,,,N D,...,=@ for (m, n)*
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(m', »') and U n Dp.=R.
Now we define a map T*: D— D which will be called a “dual algorithm
with respect to 7,” as follows:

T* (e, 77)=(m———;-,n+5—?2) if (—%,i;_”)epm.

Note that this map T* is constructed from a map S: (&, )—(—1/g, (6—1)/8)
and the map S satisfies S(D)=R. (See Figure 2).
Let functions ¢(£), d(¢ 7)) on D be defined by

{°(5)=m if (—l,i—_”)epm
deE, n=n g & "

and define for (& ) € D the sequences c,(¢) and d,(& 1) by c,(&)=c(t.-.(8)
and d.(& 7)=d(t,_.(&), u._.(&, 7)) for n=1 where t,(&) and u,(& ) are the
components of (T¥)*(¢ %), that is, (¢, (&), U (& M) = (Tl*)"(é, 7) (n=0). For

each (& 7)€ D we denote fll(é),é{ e d ((5)77)> by ( (cl") for convenience.

We can easily see that the sequence of integer vectors (01 ) d) satisfies
the following properties:
(A) e¢,d,eN and ¢,=d, =1,
B)’ if d,=1, then aliﬂ;ar&cw1
This implies that (c‘z’"’ fl"—l’ ) d € A'(n), that is, the sequence of integer
C,***C, ny n—1

vector ( d---d ) is a word dual to the one in A'(n) (or the word in A'(n)

read backwardg); in other words, the map T7 is the dual algorithm with
respect to T,. Now we consider for each (m, n) the map ¢(m) and its

range Y(,,,), which will be the inverse map of T} and the dome;:in of T¥,
respectively, i.e., we define by

1 (n+l1)—7y
m—e& m—¢

¢’(m(€» 7])=( ) on D for m=n=2
and define similarly on E for n=1. We denote q'J(m)(D) and ¢(,,,)(E) by
Y(,;). By the definition of T we see that the family {Y, (=: tm=n=1}
has the following properties:

(a) {Y(’,’.‘): m=n=1} is a partition of D, that is, Y(,:)ﬂ Y,:;)=® if
(m, n)#=(m', n') and UY( my = =D,

b)) {Y ™ :m#n} is a partition of E, that is, Un,«, (,,.)-E',

@ THYe)={g it mot—
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We put (m)-—Tl( (,,,)) and (m)_Tl(X(m)), and let the set M be
defined by

e,(8) a,(6) ) }
M=, n, 6, Yx X; A2
(&7, 6, 9)e ¥ (d(s,m b6, 2)) 4P

Then, the set M is seen to have the following two partitions:

M= Vo X

= U w X U Imy .
(’77)641(1) (n) ('n)
Now we define the map T,: M— M as follows:

T.(& 7 0, @)= @& 7 T6, )

=(ip DT, -1, - 2)

for (&, 7, 6, p) e V(,;: X X(,:).

THEOREM 4. The map T, defined above is a natural extension of
T, and it has an invariant measure % such that

de ___C
dx  (1A—¢6) ’

where X is the Lebesgue measure on M, furthermore, T, is ergodic.

PrROOF. By the definition of 7, and from the properties (A) and (B)’
we can show that for each V( X X(,,.) T, is a one to one map of V (,,) (,,.)

onto Y,,\ X U/m\. Therefore the map T is a natural extension of 7,. Let
the kernel function K(, 1, 6, ) on M be defined by

1 .
(1—¢6)°

Then, since the Jacobian JT\(g, 7, 6, @)=1/((m—¢)*6®) we have the following:

K(T(& 7, 6, 9)) - [T, 1, 6, P)]
1 1

) R

=K(& 7, 0, 9)

K¢, 7, 0, )=
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for each (&, 7, 0, p) € V( )XX(,..)
This means that K(g, 7, 6, ) is an invariant density function for T.
Ergodicity of T, is due to Theorem in [13]. O

COROLLARY 4. The map T. of X has the following invariant density
function: L

2—60

_2-0 5 ¢
dp, | ZA—06y D
dhn | .
—2Z-]T}—T)' if 0> .

PrROOF. The result is obtained by calculating

§5. Definition of the map T, and its ergodic properties.

In this section we give another number theoretical algorithm T, which
is similar to the algorithm 7,. This algorithm gives us an example of
number theoretical transformation with finite range structure (not Markov

structure).
Let X={(4, ); 06, o<1} and functions a(8) on [0, 1] and b(, ) on
X be defined by

. 1 @
a(6) =] and b0, 9)=|Z
Let us define a second map 7T, of X onto itself by
| (-1 2_ e
(6, q>)-<a(0) 2, 26, ¢)) . (See Figure 3).

Let r.(6) and s,(0, #) be given by (r,(0), 8.6, P))= T30, P)(n=0) and let
a.(0)=a(r._(6)), b0, P)=b(r,(6), 8._.(6, #)) (n=1). Then we have the
following expansions similar_to (12) in §3: :

g= P20y
qn - rn(a)qn—l

p=3 a, ()b, p)+—20: D)
k=1 ) q,.—’r',.(ﬁ)qn_l

where p,, q, are as in §3. The second identity above, which gives the
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approximation of the real number ® by means of the algorithm T,
corresponds to the following geometric picture:

|a(0)] | 2(0) et N
N T TN e

; ) : s
0 o ba0) 1

[

7P
by(0)+ bo(1)

Now we put

o ([a(®  -ea ) \
4 (n)_ {(bl(ay @) b 'b,,,(ﬁ, ?)). (e, qj) © X} )

We can easily see that each 7T,-admissible sequence, (%’1 b) A*(n),
satisfies the following properties: 1 "
(A)" a,eN, b,e NU{0}, and a,>b,, ‘
(B)” if there exists a £k (1<k=<n—1) such that a,,—-b,,—l then
Qpi1—br1 =2, and if there exists a j 1=sj=n—k—1) such that
Gpri— by, =2 for 1=<9<7, then a,, ;1,—bryj=2.
The set of T,-admissible sequences A*n) can . be decomposed as follows:
A*(m)=B,(n)U B(n), where : :

<al. . '“n) € A*(n): there exists a k (1<k<n) such ‘that
By(n)=1\b,- b, .

a,—b,>2 and a;—b;=2 for k<j=<mn

and

(a1~ . -a,,,> € A*(n); there exists a &k (1<k<n) such that
1('”') = b1' * 'bn

a,—b,=1 and a;—b;=2 for k<j<n
In parffbular B (1)—-{(1) ), a,— blzz} and B(1)= {(b ) a,—b, —1} With
the above definitions and multi-Markov properties, we have

LEMMA 5.1.

(6.1.1) If (‘Z )eBo(n—i—l) and a,.,—b,.,=2, then

Oy 'b-n+1

/ a,--a,
. '-Bo .‘
PLE
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(6.1.2) If (:""“"“)eBl(nﬂ) , then

° b'n+1

(a" ' ﬂ") € By(n) when @4 ;—b, =1
b,--+b : ‘

n

(:‘7 ) 'a,.> € B,(n) when a,.,—b,.,=2.

>

n

We denote sometimes (%I g':) € A(n) by (283) for the sake of

simplicity. Let us define for (‘Z‘: :g'") € A¥(n)
1 n

(0 . .
X :2:§)=X(5;-'-‘Si‘:)={(”’ 2 (bzo(, c)p))=(‘;¢) ’ lézén} '

Then {X(m; (ggzg) eAz(n)} forms a partition of X. Let U,=X and

U,={, ) € X; 6+p=1}, then we have

LEMMA 5.2.
a(n)

(5.2) TeX@mm=Us if (b(n)

) €B,n) (2=0,1).

ProOF. By induction on n». If n=1, then by the definition of T,

U, if a,—b,=2
T, X un= )
(3 {Ul if a,—b=1.

Suppose that (5.2) holds for all 1<k<n. Then, if (gg:ijl,g) € B,(n+1)
it follows from (56.1.1) that
T X gy = T X g 0 Xy

{ 1'2( UO N X(“n+1)) or Tz( Ul P ¢ a,,+1)) when Qg1 — bn+1 >2

by +1 bpt1
)) when QApp1— bn+1 =2

T(U,n X
=U,.

Cu+1
bp+ti

If (‘1:2:18) € B,(n+1), it follows from (5.1.2) that

dn+1

Tz( U1 NX a,‘.H)) when Qpi1— bn+1 =2

bn+1

Tf?-HX a(n+1)\ —

b(n+1)

{ 112( Uo n X aﬁ+l)) When Qpi1— bn+1= 1
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For each (gg:g € A*(n), we have a map 1&‘(,,(,., by

b(n)

pn pﬂ—la S ——?i_-)
13\(“("))(0 P)= (—_——_10 ’ 7:-21 bkﬂ 0,00 0,_,(0)+ 7.—q.0 .

Then we see easily that "F(,(,.; is the inverse map of 77 on X(,,(,,)). Its
b(n b(n)

Jacobian J('\/J‘(gén;)) is given by (14) and we can see that the result of

Lemma 3.2 holds (the corresponding arguments are analogous to the proof

of Lemma 3.2).
2...9
{X(,,f:::fn); (bl- . -b,,> €A (")} .

Let &, be
Then by (B)” we see that
.@,'F{X(bg...§ y (by+++b,)=(0---010---0) or (00---00)}
and
,.cC=z, .

Therefore we obtain

dx .

Z )\,(X(a(n)))_" Uy dk+S (2 -2 (U").

by=1
X rain) i ¥ a(n)
b(n) s ez, b(n)

LEMMA b.3.

(5.3.1) S 7\,(X(.,(,.,))———»0 as m—>co .

a(n)) € Zn

b(n)

(5.8.2) The partition { (a) ( )eAz(l)} 18 a generator with respect
to the map T,.

The proof of Lemma 5.8 is similar to that of Corollary 3.

THEOREM 5. The map T, on X 18 ergodic with respect to N and
admits a o-finite invariant measure Ly~
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§6. Natural extension of the map 7, and its invariant density
function.

In this section, we construct a natural extension T, of the map 7,
and derive the invariant density function for T, explicitly. Since the
properties of T,-admissibility are more complicated than those of T,, we
need some lemmas about T;-admissibility.

Let B,; (3, =1, 2) be subsets of Uy, A*(n) defined as follows:

B,= {(Z’) eA”(l): a,—b1>2} ,

B,=0 {(‘;Z"’“) € A*(k+1): a;—b,=2, 1=j=<k and a,,+1—b,,+1>2} ,
- 1°° *Ok+1
Bu={< ) Ax(1): a,—b,= 1}
b,
© N\ [Are e Qpyy .
Bn=kL_J1 {(b b )eA(k+1) a;—b;=2,1=<j<Fk and a,,,+1—b,,+1-1}
- k+1

We put B,=B,UB, and B,=B, UB,,
LEMMA 6.1. Under the above nmotations, we have the following:

a,

(6.1.1) of b

) €B,, then (Zl) - ¢ is admassible for all ce B,UB,,
1 .

|

1) B, , then (Zl) -c 18 admassible for all ce B, ,
1 . ’

b,
a,- ak+1) eB,, then (az' . 'a'k+1> c {Bu zf k=1
by - b by -« *byss B, if k=2,

...

(6.1.3)

S

(
(6.1.2) zf (
7

Qy* e Qpyy
b1 e bk+1

Let D={(& 7): 0=¢, <1}, E={(% 1): 0<%, <1 and £+7<1} and define
a map S on D by

) e B e e then (az‘-‘..'.ak+1> c {Bﬂ if k=1
22 9

(6.1.4) zf( by bess)  |\B, if k=2.

Se =~ 1)

Then S(D)={(g, ): < —1, =0 and g+7<0}, S(EY={(& 7): 6<—1, =0 and
£+n<—1}. For both S(D) and S(¥), let us consider the partitions eon-
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sisting of the basic neighbourhoods of integer vectors (m, n). Namely,
let the partltlon {D,,: m—1=n=0} of S(D) be defined by

{X—%—( m,n) if m—1>n=0
" \U+(—m, n) if m—1=n,

and the partition {E,.: m—2=n=0} of S(Z) be defined by

X+(—m,n) if m—2>n=0

En= {U+( m, n) if m—2=n.

Next we define maps <PE") (=1, 2) by svg,i,)(s, n)= '(1/(m-§), (n+79)/(m—§))
for each (m, n) where the domains and ranges of @&’2,) are as follows:

{qagg.) D—D if m—n>1,
g::‘(l,},) E—D if m—n=1,
{99?,2,) D—E if m—n>2,
¢‘(2,1.) E—>FE if m—n=2 (See Figure 4) .

We denote qaé")(D) and ¢>E")(E) by Y(m) and gv(,,,)(D) and @é’f’,}.)(E) by Z(m).
Then Y(,,,) and Z<,,.) satlsfy the following:

S( Y(m)) Dmn ’ S(Z(m)) Emn "

That is, {Y(,,,) m—1=n=0} and {(Z (m? m——2_2_n;0} give the partition‘s of
D and FE, respectively. '

-~ Now we consider a set M which will be the domain of the natural
extension T,: M=Dx U,U E x U,, where U,=X\U..

Let
Z{"={X,saeB, and be BUB,}U{X,:ac B,},
7' ={X.:ae B},
ZP = {X,.b: a€B, and be B}U{X,:ac B,},
and

2P ={X,:acB,).

It is easy to see that Z{? (i=1, 2) are partltlons of U; and Z# is a
refinement of Z{?. "Let 7 and & be the partitions of Dx U, and Ex U,,
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respectively, given as follows:
={Dxv;ve%}, F={Exv;vez®}.
Define a partition &2 on M given by
P=FUZ.

And let &, and &, be another partition of Dx U, and E x U,, respectively,
given as follows:

={Y, (,,.)xv; vez, m—1=n=0},
é;={Z(,,.)><'u;'ve?/‘” m—2=2n=0} .

Let €=&,U&,. We denote elements of <~ D><X(4,1 21) or Ex X(a,1 )
by A(a1 o) and elements of &, (,l) (.,2 41) OF Z( )><X(,,2 ) by I @ren)”
Now deﬁne the map T, on M by

Ty& 7, 6, 2)=(@ (& 1), Tu0: 2)

___( 15 b,+7 a, %g_bl)

a,—¢& )

for (¢, 7, 6, @) eA(,,1 ) such that <b bz) € B,. It is easy to verify that
aye *
for A( ) such that (b2 b)eB“ TZ(A(,,1 a,))- (gl)xX .a{)eg; and

a2 a;
for A(,,1 27) such that (bz )eBz, T(.d(.,1 .,,)) (,,1) (,,2 ,,)eg’ Thus
T, is a one to one and onto map from 4 (.,1 ,,,) (,,1 21y’ that is, the
map T, is a natural extension of T,.

THEOREM 6. The natural extension T, defined above has an invariant
measure 1 such that
ar _ 1
dx  (1—e6)p® ’

where X\ is the Lebesgue measure on M; furthermore, T, is ergodic.

COROLLARY 6. The map T, of X has the following invariant density
function:

2—0

_ﬁ.z —
ax L if 0+@>1.

2(1—9)
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The proofs of Theorem 6 and Corollary 6 are similar to the proofs

of Theorem 4 and Corollary 4 and hence are omitted.

@
1
X
4,1 | G | @D
@2 | 32 |%2
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FIGURE 1
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