Bloch Constants and Bloch Minimal Surfaces

Shinji YAMASHITA

Tokyo Metropolitan University

§ 1. Introduction.

The n-th Bloch constant $b_{n}(n \geqq 2)$ will be defined in terms of radii of certain disks on minimal surfaces in the Euclidean space \boldsymbol{R}^{n}. As will be seen, b_{2} is the familiar one in the complex analysis. We shall prove that

$$
\begin{equation*}
b_{n} \geqq n^{-1 / 2} b_{2}, \quad n \geqq 3 . \tag{1.1}
\end{equation*}
$$

Let each component x_{j} of a nonconstant map $x=\left(x_{1}, \cdots, x_{n}\right)$ from the disk $D=\{|w|<1\}$ in the complex plane $|w|<\infty, w=u+i v$, into the Euclidean space $R^{n}(n \geqq 2)$ be harmonic in D. Then, the set S of all pairs $(w, x(w)), w \in D$, or simply, the map x itself, is called a minimal surface if

$$
\begin{equation*}
x_{u} x_{v}=0, \quad x_{u} x_{u}=x_{v} x_{v} \quad \text { in } D, \tag{1.2}
\end{equation*}
$$

where

$$
x_{u}=\left(x_{1 u}, \cdots, x_{n u}\right), \quad x_{v}=\left(x_{1 v}, \cdots, x_{n v}\right)
$$

are partial derivatives and the products are inner; S is the one-to-one image of D by x.

Henceforward, $x: D \rightarrow \boldsymbol{R}^{n}$ always means a minimal surface, and somewhat informally, we regard S as a subset of \boldsymbol{R}^{n}.

The surface S is endowed with the metric

$$
d\left(x\left(w_{1}\right), x\left(w_{2}\right)\right)=\inf _{r} \int_{\gamma}\left|x_{u}(w) \| d w\right|
$$

where $x\left(w_{j}\right) \in S, j=1,2,\left|x_{u}\right|=\left(x_{u} x_{u}\right)^{1 / 2}$ and γ ranges over all (rectifiable) curves connecting w_{1} and w_{2} in D. One can also consider this a new metric in D other than the Euclidean metric. Obviously, $\left|x\left(w_{1}\right)-x\left(w_{2}\right)\right| \leqq$ $d\left(x\left(w_{1}\right), x\left(w_{2}\right)\right)$; the left-hand side is the Euclidean metric in \boldsymbol{R}^{n}.

[^0]The open disk of center $x\left(w_{0}\right)$ and radius $r>0$ in S is

$$
\Gamma_{a}\left(w_{0}, r\right)=\left\{x(w) ; d\left(x(w), x\left(w_{0}\right)\right)<r\right\}
$$

We shall later observe that the closure of $\Gamma_{x}\left(w_{0}, r\right)$ is

$$
\Gamma_{w}^{*}\left(w_{0}, r\right)=\left\{x(w) ; d\left(x(w), x\left(w_{0}\right)\right) \leqq r\right\} ;
$$

this is not necessarily compact. A point $x(w)$ is called regular or nonbranched if $x_{w}(w) \neq 0$, nonzero vector, and a subset $S_{1} \subset S$ is called regular if each point of S_{1} is regular. If $\Gamma_{z}\left(w_{0}, r\right)$ is regular and further if $\Gamma_{x}^{*}\left(w_{0}, r\right)$ is compact, then we call $\Gamma_{x}\left(w_{0}, r\right)$ admissible. Let $b(x)$ be the supremum of $r>0$ such that there exists an admissible $\Gamma_{x}\left(w_{0}, r\right)$ for some point $x\left(w_{0}\right)$. Let b_{n} be the infimum of $b(x)$ for all $x: D \rightarrow \boldsymbol{R}^{n}$ subject to the "pinning" condition $\left|x_{u}(0)\right|=1$. We then call b_{n} the n-th Bloch constant. Since $x: D \rightarrow \boldsymbol{R}^{n}$ can be regarded in the obvious way as $x: D \rightarrow \boldsymbol{R}^{n+1}$, it follows that $b_{n+1} \leqq b_{n}, n \geqq 2$.

A minimal surface $x: D \rightarrow \boldsymbol{R}^{2}$ can be regarded as a nonconstant holomorphic or antiholomorphic function f in D and vice versa. For the holomorphic case, an admissible $\Gamma_{x}\left(w_{0}, r\right)$ is the one-sheeted whole disk $\left\{\left|w-f\left(w_{0}\right)\right|<r\right\}$ on the Riemannian image, an elementary but never trivial fact. Therefore, b_{2} is just the Bloch constant [A2, p. 14] in the complex analysis.

Our first aim is to prove
Theorem 1. The inequality (1.1) holds.
It is familiar that [A1, p. 364], [AG, p.672], [H1], [H2, p. 60],

$$
0.433 \cdots=\frac{\sqrt{3}}{4}<b_{2} \leqq \frac{\Gamma(1 / 3) \Gamma(11 / 12)}{\left(1+3^{1 / 2}\right)^{1 / 2} \Gamma(1 / 4)}=0.471 \cdots
$$

The determination of b_{2} still remains an outstanding problem. Since $b_{3}>1 / 4=0.25$, we have an improvement of E.F. Beckenbach's [B, p. 456] earlier one: $b_{3} \geqq(16 \sqrt{3})^{-1}=0.036 \cdots$. His paper contains no definition of the Bloch constant b_{3}; the result is implicit.

A holomorphic function f in D is called Bloch if

$$
\mu(f) \equiv \sup _{w \in D}\left(1-|w|^{2}\right)\left|f^{\prime}(w)\right|
$$

is finite. The notion arises from the principal idea of proving the Bloch theorem due to E. Landau [L, pp.617-618]. The term "Bloch function" in the present meaning now prevails, ignoring R.M. Robinson's earlier paper [Rb].

We call $x: D \rightarrow \boldsymbol{R}^{n}$ Bloch if

$$
\mu(x) \equiv \sup _{w \in D}\left(1-|w|^{2}\right)\left|x_{u}(w)\right|
$$

is finite. Note that $\mu(f)=\mu(x)$ for nonconstant f. A typical example is a bounded minimal surface $x: D \rightarrow \boldsymbol{R}^{n}$, namely, $|x|$ is bounded in D. Another one is $x: D \rightarrow \boldsymbol{R}^{n}$ whose Gauss curvature $\kappa(w)$ is bounded: $\kappa(w) \leqq$ $-A(A>0), w \in D$. Then, $\mu(x) \leqq 2 A^{-1 / 2}$.

In Section 2 we prove Theorem 1. Section 2a is appended to Section 2, where the notion of n-th strong Landau constant is introduced. In Section 3 we propose some basic facts on Bloch minimal surfaces. In Section 4 we prove some results on Bloch minimal surfaces in connection with the present topics on disks on S. In Section 5 we prove that $x: D \rightarrow \boldsymbol{R}^{n}$ is Bloch if and only if x is of bounded mean oscillation in some sense; the result is analytic rather than geometric.

I wish to express my gratitude to my colleague Norio Ejiri for his criticism at an early stage of preparation.

§ 2. Proof of Theorem 1.

We begin with some basic properties of minimal surfaces; see [N], [O].
There exist holomorphic functions f_{j} such that $x_{j}=\operatorname{Re} f_{j}, 1 \leqq j \leqq n$, in D, so that the formulae in (1.2) can be unified as

$$
\begin{equation*}
\sum_{j=1}^{n}\left(f_{j}^{\prime}\right)^{2} \equiv 0 ; \tag{2.1}
\end{equation*}
$$

however, the correspondence $x \rightarrow\left(f_{1}, \cdots, f_{n}\right)$ is not necessarily one-to-one. We note that

$$
\begin{equation*}
\left|x_{u}\right|^{2} \equiv 2^{-1} \sum_{j=1}^{n}\left|f_{j}^{\prime}\right|^{2} \tag{2.2}
\end{equation*}
$$

We call $\left(f_{1}, \cdots, f_{n}\right)$ an admissible system for $x: D \rightarrow \boldsymbol{R}^{n}$.
Lemma 2.1. Let $\left(f_{1}, \cdots, f_{n}\right)$ be an admissible system for $x: D \rightarrow \boldsymbol{R}^{n}$. Then, for each curve γ in D,

$$
\begin{equation*}
\left\{2^{-1} \sum_{j=1}^{n}\left(\int_{r}\left|f_{j}^{\prime}(w)\right||d w|\right)^{2}\right\}^{1 / 2} \leqq \int_{r}\left|x_{u}(w)\right||d w| \tag{2.3}
\end{equation*}
$$

Proof. The Minkowski inequality for the integrals with the power $p=2^{-1}$ [BB, Section 18, p. 20 ff .] reads

$$
2\left(\int\left|x_{u}\right|\right)^{2}=\left\{\int\left(\sum\left|f_{j}^{\prime}\right|^{2}\right)^{1 / 2}\right\}^{2} \geqq \sum\left(\int\left|f_{j}^{\prime}\right|\right)^{2}
$$

which yields (2.3).
For $x: D \rightarrow \boldsymbol{R}^{n}$ and $w \in D$ we let $\Delta(w, x)$ be the supremum of $r>0$ such that an admissible $\Gamma_{x}(w, r)$ exists; if $x(w)$ is not regular, then we set $\Delta(w, x)=0$. Then, $b(x)=\sup \Delta(w, x)$, where w ranges over D. The quantity $\Delta(w, x)$ measures the distance from $x(w)$ either to the nearest branch point (possibly, $x(w)$ itself) or to the "boundary" of S. We denote $\Delta(w, f)=\Delta(w, x)$ for f holomorphic in D with $x=(\operatorname{Re} f, \operatorname{Im} f)$. Thus, $b(f)=b(x)$. If f is constant, then $\Delta(w, f) \equiv 0, b(f)=0$. The Liouville theorem applied to the inverse of f yields that $\Delta(w, f)<\infty$ at each $w \in D$.

Theorem 2. Let $\left(f_{1}, \cdots, f_{n}\right)$ be an admissible system for $x: D \rightarrow \boldsymbol{R}^{n}$. Then, at each $a \in D$, we have

$$
\begin{equation*}
\left\{2^{-1} \sum_{j=1}^{n} \Delta\left(a, f_{j}\right)^{2}\right\}^{1 / 2} \leqq \Delta(a, x) \tag{2.4}
\end{equation*}
$$

Proof. We may assume that $x(a)$ is regular. We pick up all j with $f_{j}^{\prime}(a) \neq 0$; for simplicity we assume that they are

$$
f_{j}^{\prime}(a) \neq 0, \quad j=1,2, \cdots, m(\leqq n)
$$

Then, for $1 \leqq j \leqq m$, the Riemannian image of D by f_{j} contains the onesheeted open disk of center $f_{j}(a)$ and radius $\Delta_{j} \equiv \Delta\left(a, f_{j}\right)>0$. Let $0<\varepsilon<$ $\min _{1 \leq j \leq m} \Delta_{j}$. Then, for $1 \leqq j \leqq m$, there exists a compact set δ_{j} in D, which contains a and which is mapped by f_{j} one-to-one onto the closed disk $\left\{\left|w-f_{j}(a)\right| \leqq \Delta_{j}-\varepsilon / 2\right\}$. The union $\delta=\delta_{1} \cup \cdots \cup \delta_{m}$ is, therefore, compact, so that $x(\delta)$ is compact.

We shall show that

$$
\begin{equation*}
\Gamma_{x}^{*}(a, A(\varepsilon)) \subset x(\delta) \tag{2.5}
\end{equation*}
$$

where

$$
A(\varepsilon)=\left\{2^{-1} \sum_{j=1}^{m}\left(\Delta_{j}-\varepsilon\right)^{2}\right\}^{1 / 2}
$$

Then, $\Gamma_{x}^{*}(a, A(\varepsilon))$ is compact and $\left|x_{u}\right|$ never vanishes in δ. Thus, $\Delta(a, x) \geqq$ $A(\varepsilon)$. On letting $\varepsilon \rightarrow 0$ we have (2.4).

Suppose that (2.5) is false. Then, there exists $w \in D \backslash \delta$ such that $d(x(w), x(a)) \leqq A(\varepsilon)<A((3 / 4) \varepsilon)$. We may find a curve γ connecting a and w in D such that

$$
\int_{\gamma}\left|x_{u}(\zeta)\right||d \zeta|<A\left(\frac{3}{4} \varepsilon\right) .
$$

For each $j, 1 \leqq j \leqq m$, the curve γ contains a subcurve γ_{j} connecting a and a boundary point of δ_{j} such that $\gamma_{j} \subset \delta_{j}$. Consequently,

$$
\int_{r}\left|f_{j}^{\prime}(\zeta)\right||d \zeta| \geqq \int_{r_{j}}\left|f_{j}^{\prime}(\zeta)\right||d \zeta| \geqq \Delta_{j}-\frac{\varepsilon}{2}, \quad 1 \leqq j \leqq m
$$

With the aid of (2.3) we now have

$$
A\left(\frac{\varepsilon}{2}\right) \leqq \int_{r}\left|x_{u}(\zeta)\right||d \zeta|<A\left(\frac{3}{4} \varepsilon\right)
$$

This contradiction completes the proof.
Proof of Theorem 1. Suppose that $x: D \rightarrow \boldsymbol{R}^{n}$ satisfy $\left|x_{u}(0)\right|=1$, and let $\left(f_{1}, \cdots, f_{n}\right)$ be an admissible system for x. We may suppose that $b(x)<\infty$. Since $2^{-1 / 2} b\left(f_{j}\right) \leqq b(x), 1 \leqq j \leqq n$, by (2.4), it follows that $b\left(f_{j}\right)<\infty$, $1 \leqq j \leqq n$. We then choose all f_{j} with $f_{j}^{\prime}(0) \neq 0$; again, for simplicity,

$$
p_{j} \equiv\left|f_{j}^{\prime}(0)\right| \neq 0, \quad 1 \leqq j \leqq m(\leqq n) .
$$

Applying the Bloch theorem: $b_{2}>0$, to each $f_{j} / f_{j}^{\prime}(0)$, we have $b\left(f_{j}\right) \geqq b_{2} p_{j}$, $1 \leqq j \leqq m$. Hence,

$$
b_{2} p_{j} \leqq b\left(f_{j}\right) \leqq 2^{1 / 2} b(x), \quad 1 \leqq j \leqq m
$$

Since $2=2\left|x_{u}(0)\right|^{2}=p_{1}^{2}+\cdots+p_{m}^{2}$, it now follows that

$$
2 b_{2}^{2} \leqq 2 n b(x)^{2}
$$

whence $b_{2} \leqq n^{1 / 2} b_{n}$. This completes the proof.
Although we shall not make use of, the fact that the closure of $\Gamma_{x}\left(w_{0}, r\right)$ is $\Gamma_{x}^{*}\left(w_{0}, r\right)$, described in Section 1, is of independent interest. We first note that, among the axioms of the distance, the one: $w_{1} \neq w_{2} \Rightarrow$ $\operatorname{dis}\left(x\left(w_{1}\right), x\left(w_{2}\right)\right)>0$, follows from (2.3); actually, at least one f_{j} is nonconstant.

We shall show that for each $x(w)$ with $d\left(x\left(w_{0}\right), x(w)\right)=r$, and each $\varepsilon>0$, there exists $x\left(w_{1}\right) \in \Gamma_{x}\left(w_{0}, r\right) \cap \Gamma_{x}(w, \varepsilon)$. First, there exists a compact disk δ of center w contained in D such that $x(\delta) \subset \Gamma_{x}(w, \varepsilon)$; we may assume $w_{0} \notin \delta$. Next, for each $k \geqq 2$, there exists a curve γ_{k} connecting w_{0} and w in D such that

$$
\int_{\gamma_{k}}\left|x_{u}(\zeta)\right||d \zeta|<r+k^{-1}
$$

Then, by a point w_{k} on the boundary circle $\partial \delta$ of δ, γ_{k} is divided into
subcurves $\gamma_{1 k}$ and $\gamma_{2 k} ; \gamma_{1 k}$ connects w_{0} and w_{k}, and $\gamma_{2 k}$ connects w_{k} and w. Therefore,

$$
\begin{align*}
d\left(x\left(w_{0}\right), x\left(w_{k}\right)\right) & \leqq \int_{r_{1 k}}=\int_{r_{k}}-\int_{r_{2 k}} \tag{2.6}\\
& <r+k^{-1}-d\left(x\left(w_{k}\right), x(w)\right) .
\end{align*}
$$

Choose a converging subsequence of $\left\{w_{k}\right\}$, which we denote again by $\left\{w_{k}\right\}$, such that $\left|w_{k}-w_{1}\right| \rightarrow 0, w_{1} \in \partial \delta$. It is easy to observe that

$$
d\left(x\left(w_{k}\right), x\left(w_{1}\right)\right) \rightarrow 0
$$

Letting $k \rightarrow \infty$ in (2.6) we finally have

$$
d\left(x\left(w_{0}\right), x\left(w_{1}\right)\right) \leqq r-d\left(x\left(w_{1}\right), x(w)\right)<r
$$

Remark. Beckenbach's proof of $b_{3}>0$ makes use of a method of cubic equations quite peculiar to the dimension $n=3$, which we call B method; see the proof of [B, Lemma 1]. One should surely feel, in the first reading of [B], that a particular property of the roots of a cubic equation appears to play an important role, so that, one would suspect the possibility of extending the result to higher dimensions by B method. It should be noted that B method (in spirit, we let, after rotation and translation and in our notation, $p_{1}=p_{2}=p_{3}$ in the proof of Theorem 1) yields no improvement of $b_{3} \geqq 3^{-1 / 2} b_{2}$. As another remark, we point out that Beckenbach assumed that $\left|x_{u}(0)\right| \geqq 1$ for $x: D \rightarrow \boldsymbol{R}^{n}$. On dividing: $\left|x_{k}(0)\right|^{-1} x$, one finds that $b(x) \geqq\left|x_{u}(0)\right| b_{n} \geqq b_{n}$.

§2a. The strong Landau constants.

Let $x: D \rightarrow R^{n}(n \geqq 2)$, let $w \in D$, and let $\Delta_{L}(w, x)$ be the supremum of $r>0$ such that $\Gamma_{z}^{*}(w, r)$ is compact; no regularity restriction on $\Gamma_{a}(w, r)$ is posed. Let $L(x)$ be the supremum of $\Delta_{L}(w, x)$ for $w \in D$. For $n \geqq 2$, the infimum L_{n} of $L(x)$ for all $x: D \rightarrow \boldsymbol{R}^{n}$ subject to the condition $\left|x_{u}(0)\right|=1$ is called the n-th strong Landau constant by the reason mentioned soon. Since $\Delta(w, x) \leqq \Delta_{L}(w, x)$, it follows that $b(x) \leqq L(x)$, and hence $b_{n} \leqq L_{n}, n \geqq 2$. It is easy to see that $L_{n} \leqq L_{n-1}, n \geqq 3$.

Without saying the details, we denote $\Delta_{L}(w, f)$ and $L(f)$ for f holomorphic, and possibly constant, in D. The constant L_{2} is then not greater than the Landau constant $L ; L$ is the supremum of the radii of all open Euclidean disks contained in the (set-theoretic) image of D by f holomorphic in D and normalized by $\left|f^{\prime}(0)\right|=1$. The constant L is introduced by E. Landau [L]. It is known that [A1, p. 364], [Rm, p. 389], [$\mathrm{P}, \mathrm{p} .690$],

$$
\begin{equation*}
2^{-1}<L \leqq \frac{\Gamma(1 / 3) \Gamma(5 / 6)}{\Gamma(1 / 6)}=0.543 \cdots ; \tag{2a.1}
\end{equation*}
$$

the right-hand side is said to be an unpublished result of Robinson [A1, p. 364]. Since $b_{2} \leqq L_{2} \leqq L$, it would be an interesting problem to prove $b_{2}<L_{2}<L$. We shall not be concerned with this but with

Theorem 1a. $\quad L_{n} \geqq n^{-1 / 2} L_{2}, n \geqq 3$.
The proof of Theorem 1a is similar to that of Theorem 1, once the following analogue of Theorem 2 is established.

Theorem 2a. Let $\left(f_{1}, \cdots, f_{n}\right)$ be an admissible system for $x: D \rightarrow \boldsymbol{R}^{n}$. Then, at each $a \in D$, we have

$$
\begin{equation*}
\left\{2^{-1} \sum_{j=1}^{n} \Delta_{L}\left(a, f_{j}\right)^{2}\right\}^{1 / 2} \leqq \Delta_{L}(a, x) \tag{2a.2}
\end{equation*}
$$

Proof. There is a nuisance of the possibility of $\Delta_{L}\left(a, f_{j}\right)=\infty$. We pick up all nonconstant f_{j}; for simplicity, we assume that they are f_{j}, $1 \leqq j \leqq m$. Then,

$$
\Delta_{j} \equiv \Delta_{L}\left(a, f_{j}\right)>0, \quad 1 \leqq j \leqq m(\leqq n)
$$

We first consider the case where all $\Delta_{j}<\infty, 1 \leqq j \leqq m$, and we let $0<\varepsilon<$ $\min _{1 \leq j \leq m} \Delta_{j}$ again. Let δ_{j} be the component, containing a, of the inverse image of

$$
\left\{\left|w-f_{j}(a)\right| \leqq \Delta_{j}-\varepsilon / 2\right\} \quad \text { by } \quad f_{j}, \quad 1 \leqq j \leqq m
$$

Since f_{j} is an open map, it follows that each δ_{j} is compact, so that $\delta=\delta_{1} \cup \cdots \cup \delta_{m}$ is compact. Following the same lines as in the proof of Theorem 2 up to proving (2.5) for our present Δ_{j}, we now have (2a.2) by the limiting process of $\varepsilon \rightarrow 0$.

To prove that $\Delta_{L}(a, x)=\infty$ in case there exists one $\Delta_{L}\left(a, f_{j}\right)=\infty$, we let $\delta(k)$ be the component, containing a, of the inverse image of $\left\{\left|w-f_{j}(a)\right| \leqq k+2\right\}$ by $f_{j}, k=1,2, \cdots$. Then, $x(\delta(k))$ is compact, and we can show that

$$
\Gamma_{x}^{*}\left(a, 2^{-1 / 2} k\right) \subset x(\delta(k))
$$

with the aid of

$$
2^{-1 / 2} \int_{\gamma}\left|f_{j}^{\prime}(w)\right||d w| \leqq \int_{\gamma}\left|x_{u}(w)\right||d w|
$$

resulting from (2.3). Thus, $\Delta_{L}(a, x) \geqq 2^{-1 / 2} k$, and hence the limiting process yields the requested.

Remark. There would be no "precise" extension of the Landau constant to $n \geqq 3$ because there is no fixed "surface" covered by S.

§ 3. Bloch minimal surfaces.

Let $\left(f_{1}, \cdots, f_{n}\right)$ be an admissible system for $x: D \rightarrow \boldsymbol{R}^{n}$. Then, it follows from (2.2) that

$$
\begin{equation*}
2^{-1 / 2} \mu\left(f_{j}\right) \leqq \mu(x) \leqq 2^{-1 / 2} \sum_{k=1}^{n} \mu\left(f_{k}\right), \quad 1 \leqq j \leqq n \tag{3.1}
\end{equation*}
$$

Therefore, x is Bloch if and only if all f_{j} are Bloch. It follows from (2.1) that if $n-1$ members of f_{1}, \cdots, f_{n} are Bloch, then the rest is Bloch.

If $x: D \rightarrow \boldsymbol{R}^{n}$ is bounded, then $\operatorname{Re} f_{j}$ is bounded, so that f_{j} is Bloch, $1 \leqq j \leqq n$; see the remark after Lemma 3.1 below. Therefore, x is Bloch by (3.1).

The Gauss curvature [O, p. 76] $\kappa(w)$ of $x: D \rightarrow \boldsymbol{R}^{n}$ at a regular point $x(w)$ is defined by

$$
\kappa(w)=-\left|x_{u}(w)\right|^{-2} \Delta \log \left|x_{u}(w)\right|
$$

Suppose that $\kappa(w) \leqq-A(A>0)$ at each regular point. We shall show that $\mu(x) \leqq 2 A^{-1 / 2}$. The proof follows the same lines as in the proof of [A1, Theorem A]; we include a sketch of it for completeness. For each $r, 0<r<1$, we set $\lambda(w)=r\left(r^{2}-|w|^{2}\right)^{-1}$. Let $y=2^{-1} A^{1 / 2} x$. Our aim is to show that

$$
\left|y_{u}(w)\right| \leqq \lambda(w) \quad \text { for } \quad|w|<r
$$

Then, letting $r \rightarrow 1$ we have the requested. We suppose that the open set $E=\left\{w ;|w|<r,\left|y_{u}(w)\right|>\lambda(w)\right\}$ is nonempty. Since $\left|y_{u}\right|$ never vanishes in E, we have

$$
\Delta \log \left(\left|y_{u}\right| / \lambda\right) \geqq 4\left(\left|y_{u}\right|^{2}-\lambda^{2}\right)>0 \quad \text { in } \quad E,
$$

so that the nonconstant and positive subharmonic function $s=\log \left(\left|y_{u}\right| / \lambda\right)$ has no maximum in E. We choose a sequence $\left\{w_{k}\right\}_{k \geq 1}$ of points in E such that $s\left(w_{k}\right)$ converges to the supremum $Q>0$ of s in E, and further $w_{k} \rightarrow w_{0},\left|w_{0}\right| \leqq r$. The two possibilities, $\left|w_{0}\right|=r$ and $\left|w_{0}\right|<r$, then lead us to a contradiction: $Q=-\infty$ and $Q=0$, respectively.

Many criteria for a holomorphic function in D to be Bloch are known
[P]; see some recent works [Y1], [Y2], [Y4], for example. It is not difficult, with the aid of (3.1) partially, to obtain analogous criteria for x to be Bloch. Among them we pick up three which might be noteworthy from a geometrical viewpoint.

The disk D is endowed with the Poincare metric, or the non-Euclidean hyperbolic metric; the distance is

$$
\sigma\left(w_{1}, w_{2}\right)=\tanh ^{-1} \frac{\left|w_{1}-w_{2}\right|}{\left|1-\bar{w}_{1} w_{2}\right|} .
$$

Let $U(a, r)$ be the disk of center $a \in D$ and the radius $\tanh ^{-1} r$, that is,

$$
U(a, r)=\left\{w ; \frac{|w-a|}{|1-\bar{a} w|}<r\right\}, \quad 0<r<1
$$

The area of the image $x(U(a, r))$ counting the multiplicities is then given by

$$
\text { Area } x(U(a, r))=\iint_{U(a, r)}\left|x_{u}(w)\right|^{2} d u d v
$$

Theorem 3. A minimal surface $x: D \rightarrow \boldsymbol{R}^{n}$ is Bloch if and only if there exists $r, 0<r<1$, such that

$$
\sup _{a \in D} \operatorname{Area} x(U(a, r))<\infty
$$

For the proof of the corresponding result for the holomorphic functions, see [Y1].

The next theorem is never obvious.
Theorem 4. A minimal surface $x: D \rightarrow \boldsymbol{R}^{n}$ is Bloch if and only if x is uniformly continuous as a map from D endowed with σ into the Euclidean space \boldsymbol{R}^{n}.

For the proof we shall make use of
Lemma 3.1. Let f be holomorphic and $|\operatorname{Re} f|<K$ in a disk $\{|w|<M\}$, $M>0$. Then, $\left|f^{\prime}(0)\right| \leqq M^{-1} e^{2 K}$.

Proof. We may assume that f is nonconstant. Then, $g(w)=$ $\exp \{f(M w)-K\}, w \in D$, is bounded, $|g|<1$. The Schwarz-Pick lemma now reads

$$
\left(1-|w|^{2}\right)\left|g^{\prime}(w)\right| \leqq 1-|g(w)|^{2}<1
$$

which, together with $|g|^{-1} \leqq e^{2 K}$, yields

$$
\left(1-|w|^{2}\right)\left|f^{\prime}(M w)\right| \leqq M^{-1} e^{2 K}, \quad w \in D
$$

The lemma follows on setting $w=0$.
Remark. If $|\operatorname{Re} f|<K$ in D, then f is Bloch by

$$
\left(1-|w|^{2}\right)\left|f^{\prime}(w)\right| \leqq e^{2 K}, \quad w \in D
$$

Let Φ be the family of all one-to-one conformal mappings from D onto D. Then,

$$
\left(1-|w|^{2}\right)\left|\phi^{\prime}(w)\right|=1-|\phi(w)|^{2}, \quad w \in D
$$

for each $\phi \in \Phi$. Therefore, $x: D \rightarrow \boldsymbol{R}^{n}$ is Bloch if and only if the composed minimal surface $x \circ \phi: D \rightarrow \boldsymbol{R}^{n}$ for some (and hence each) $\phi \in \Phi$, is Bloch by $\mu(x)=\mu(x \circ \phi)$.

Proof of Theorem 4. Suppose first that x is Bloch, $\mu=\mu(x)<\infty$. On integrating both sides of

$$
\left|x_{w}(w)\right||d w| \leqq \mu\left(1-|w|^{2}\right)^{-1}|d w|
$$

along the Poincaré geodesic γ connecting w_{1} and w_{2} in D we have

$$
\begin{align*}
\left|x\left(w_{1}\right)-x\left(w_{2}\right)\right| & \leqq d\left(x\left(w_{1}\right), x\left(w_{2}\right)\right) \leqq \int_{\gamma}\left|x_{\mu}(w)\right||d w| \tag{3.2}\\
& \leqq \mu \sigma\left(w_{1}, w_{2}\right),
\end{align*}
$$

so that x is uniformly continuous.
Conversely, suppose that x is uniformly continuous. Then, there exists $M, 0<M<1$, such that

$$
\sigma\left(w_{1}, w_{2}\right)<\tanh ^{-1} M \Longrightarrow\left|x\left(w_{1}\right)-x\left(w_{2}\right)\right|<1
$$

For each $a \in D$, we consider a particular member

$$
\phi_{a}(w)=\frac{w+a}{1+\bar{a} w}
$$

of Φ. Let $\left(f_{1}, \cdots, f_{n}\right)$ be an admissible system. Then,

$$
|w|<M \Longrightarrow \sigma\left(\phi_{a}(w), \phi_{a}(0)\right)=\tanh ^{-1}|w|<\tanh ^{-1} M,
$$

so that, the real part $x_{j} \circ \phi_{a}-x_{j}(a)$ of $f_{j} \circ \phi_{a}-f_{j}(a)$ is bounded by 1 for $|w|<M$ because

$$
\left|x_{j} \circ \phi_{a}(w)-x_{j}(a)\right| \leqq\left|x \circ \phi_{a}(w)-x \circ \phi_{a}(0)\right|<1 .
$$

It follows from Lemma 3.1 that $\left(1-|a|^{2}\right)\left|f_{j}^{\prime}(a)\right| \leqq M^{-1} e^{2}$. Since a is arbitrary, $\mu\left(f_{j}\right) \leqq M^{-1} e^{2}, 1 \leqq j \leqq n$, whence, (3.1) ;shows that x is Bloch. This completes the proof.

We fix n. A family \mathscr{M} of minimal surfaces $x: D \rightarrow \boldsymbol{R}^{n}$ is called normal (in the sense of P . Montel) if each sequence $\left\{x^{(k)}\right\}_{k \geqq 1}$ extracted from \mathscr{M} contains a subsequence $\left\{y^{(k)}\right\}_{k \geq 1}$ such that, for each $\varepsilon>0$ and for each compact set $\delta \subset D$, there exists a number $J=J(\delta, \varepsilon)$ with the property:

$$
\sup _{w \in \dot{\delta}}\left|y^{(j)}(w)-y^{(k)}(w)\right|<\varepsilon
$$

for all $j, k>J$. Given $x: D \rightarrow \boldsymbol{R}^{n}$ we consider the family of minimal surfaces

$$
\mathscr{M}(x)=\{x \circ \phi-x \circ \phi(0) ; \phi \in \Phi\} .
$$

Theorem 5. For $x: D \rightarrow \boldsymbol{R}^{n}$ to be Bloch it is necessary and sufficient that $\mathscr{M}(x)$ is normal.

Proof. Suppose that x is Bloch with $\mu=\mu(x)$. We shall show that (i) for each $a \in D$ and each $y \in \mathscr{N}(x)$,

$$
|y(a)| \leqq \mu \sigma(a, 0) ;
$$

(ii) for each $a \in D$ and each $\varepsilon>0$, there exists $r>0$ such that

$$
|w-a|<r \Longrightarrow|y(w)-y(a)|<\varepsilon \text { for all } y \in \mathscr{M}(x) .
$$

Then, $\mathscr{N}(x)$ is uniformly bounded at each point $a \in D$ by (i) and equicontinuous by (ii). The Ascoli-Arzelà's diagonal process theorem (see [Ry, p. 155]) then shows that $\mathscr{M}(x)$ is normal.

Since $\sigma(a, 0)=\sigma(\phi(a), \phi(0))$, (i) is a consequence of (3.2). Choose $r>0$ so that

$$
|w-a|<r \Longrightarrow \sigma(w, a)<\varepsilon / \mu
$$

Since $\sigma(w, a)=\sigma(\phi(w), \phi(a))$, (ii) is again a consequence of (3.2).
To prove the sufficiency we assume that $\mathscr{A}(x)$ is normal, yet x is not Bloch. Then, there exists a sequence $\left\{a_{k}\right\}_{k \geqq 1}$ with $\left(1-\left|a_{k}\right|^{2}\right)\left|x_{k}\left(a_{k}\right)\right| \rightarrow \infty$. Let

$$
\phi_{k}(w)=\frac{w+a_{k}}{1+\bar{a}_{k} w}, \quad w \in D
$$

Then,

$$
y^{(k)} \equiv x \circ \phi_{k}-x\left(a_{k}\right) \in \mathscr{N}(x),
$$

so that there exists a subsequence of $\left\{y^{(k)}\right\}$, which we denote again by $\left\{y^{(k)}\right\}$ such that $\left\{y^{(k)}\right\}$ converges to a map y from D into \boldsymbol{R}^{n} uniformly on each compact set in D; each component of y is harmonic in D. After the componentwise observation, it follows that $\left(y^{(k)}\right)_{u}$ also converges to y_{u} locally and uniformly. In particular, $\left(y^{(k)}\right)_{u}(0) \rightarrow y_{u}(0)$, so that $\left|\left(y^{(k)}\right)_{u}(0)\right|=$ $\left(1-\left|a_{k}\right|^{2}\right)\left|x_{u}\left(a_{k}\right)\right| \rightarrow \infty$; this is a contradiction.

§ 4. Disks on Bloch minimal surfaces.

We begin with a characterization of b_{n} in terms of $\mu(x)$ and $b(x)$.
Proposition 1. Fix $n \geqq 2$. Then,

$$
\begin{equation*}
\mu(x) \leqq b_{n}^{-1} b(x) \tag{4.1}
\end{equation*}
$$

for each $x: D \rightarrow \boldsymbol{R}^{n}$. This is sharp in the sense that if $c>0$ satisfies $\mu(x) \leqq c b(x)$ for each $x: D \rightarrow \boldsymbol{R}^{n}$, then $b_{n}^{-1} \leqq c$.

In the case $n=2$ we obtain

$$
\begin{equation*}
\mu(f) \leqq b_{2}^{-1} b(f) \leqq 4 \cdot 3^{-1 / 2} b(f) \tag{4.2}
\end{equation*}
$$

for each f holomorphic in D. Proposition 1 has
Corollary 4.1. If $b(x)<\infty$ for $x: D \rightarrow \boldsymbol{R}^{n}$, then x is Bloch.
We note that for f holomorphic in D, we have

$$
\begin{equation*}
b(f) \leqq \mu(f) \tag{4.3}
\end{equation*}
$$

with the aid of W. Seidel and J. L. Walsh's theorem [SW, Theorem 2, p. 133]. This, combined with (4.2), yields the well-known criterion: f is Bloch if and only if $b(f)<\infty$. It is open whether or not the converse of Corollary 4.1 is true in case $n \geqq 3$.

Proof of Proposition 1. The sharpness is immediate. For x with $\left|x_{u}(0)\right|=1$, we have $1 \leqq c b(x)$, so that the definition of b_{n} shows that $c^{-1} \leqq b_{n}$. Now, we must prove that

$$
\begin{equation*}
\left(1-|a|^{2}\right)\left|x_{u}(\alpha)\right| \leqq b_{n}^{-1} b(x), \quad a \in D \tag{4.4}
\end{equation*}
$$

Assuming that $x(\alpha)$ is regular, we set

$$
y=\left(1-|a|^{2}\right)^{-1}\left|x_{u}(a)\right|^{-1} x \circ \phi_{a}
$$

in D. Then, $\left|y_{u}(0)\right|=1$, so that, by the definition of b_{n}, there exists w in D such that $\Delta(w, y) \geqq b_{n}$. Therefore,

$$
\begin{aligned}
b(x) \geqq \Delta\left(\phi_{a}(w), x\right) & =\left(1-|a|^{2}\right)\left|x_{u}(a)\right| \Delta(w, y) \\
& \geqq b_{n}\left(1-|a|^{2}\right)\left|x_{u}(a)\right|,
\end{aligned}
$$

whence (4.4).
Let q stand for b or μ and let c_{q} be the infimum of $c>0$ such that

$$
\left(1-|w|^{2}\right)\left|f^{\prime}(w)\right| \leqq c q(f)^{1 / 2} \Delta(w, f)^{1 / 2}, \quad w \in D
$$

for each f holomorphic and Bloch in D. Actually, c_{q} is the minimum in the sense that

$$
\begin{equation*}
\left(1-|w|^{2}\right)\left|f^{\prime}(w)\right| \leqq c_{q} q(f)^{1 / 2} \Delta(w, f)^{1 / 2}, \quad w \in D \tag{4.5}
\end{equation*}
$$

for each f Bloch in D.
The first result, perhaps, of estimating c_{b} explicitly, would be [SW, Theorem 10, p. 208], where

$$
c_{b} \leqq 2 \cdot 5^{1 / 2} b_{2}^{-1 / 2} ;
$$

the right term is at least, $6.51 \cdots$. L. V. Ahlfors implicitly proved that

$$
\begin{equation*}
\left(1-|w|^{2}\right)\left|f^{\prime}(w)\right| \leqq 2 \cdot 3^{-1 / 2}\{\Delta(w, f) / b(f)\}^{1 / 2}\{3 b(f)-\Delta(w, f)\} \tag{4.6}
\end{equation*}
$$

if $b(f)<\infty$ (see [A1, pp. 363-364], [A2, pp. 12-15]). It now follows that

$$
\left(1-|w|^{2}\right)\left|f^{\prime}(w)\right| \leqq 2 \cdot 3^{1 / 2} b(f)^{1 / 2} \Delta(w, f)^{1 / 2}, \quad w \in D
$$

so that $c_{b} \leqq 2 \cdot 3^{1 / 2}=3.46 \cdots$. C. Pommerenke [P, Theorem 1, (i)] improved the Ahlfors estimate (4.6); he proved that the right-hand side of (4.6) can be multiplied by an absolute constant $P, 0<P<1$, so that $c_{b}<2 \cdot 3^{1 / 2}$. However, it appears to be difficult to find more explicit estimate of P than $0<P<1$ by his method. It is easy to prove that

$$
1 \leqq c_{\mu} \leqq c_{b} \leqq b_{2}^{-1 / 2} c_{\mu} .
$$

For the c_{μ} part, we observed in [Y3, Theorem 1] that

$$
c_{\mu} \leqq \min _{r>0} 2 r^{1 / 2}(\tanh r)^{-1}=2.62 \ldots
$$

Our next task is to extend (4.5) to \boldsymbol{R}^{n}.
Proposition 2. If $x: D \rightarrow \boldsymbol{R}^{n}$ is Bloch, then at each $w \in D$,

$$
\left(1-|w|^{2}\right)\left|x_{w}(w)\right| \leqq c_{q} n^{1 / 4} q(x)^{1 / 2} \Delta(w, x)^{1 / 2},
$$

where $q=b$ or μ.
Proof. It follows from (2.4) and (3.1) that

$$
q\left(f_{j}\right) \leqq 2^{1 / 2} q(x), \quad 1 \leqq j \leqq n .
$$

Squaring both sides of (4.5) for f_{j}, summing up with respect to j, and considering the Schwarz inequality, we have

$$
\begin{aligned}
& 2\left(1-|w|^{2}\right)^{2}\left|x_{w}(w)\right|^{2}=\left(1-|w|^{2}\right)^{2} \sum\left|f_{j}^{\prime}(w)\right|^{2} \\
& \quad \leqq c_{q}^{2} \sum q\left(f_{j}\right) \Delta\left(w, f_{j}\right) \leqq c_{q}^{2} 2^{1 / 2} q(x) n^{1 / 2}\left(\sum \Delta\left(w, f_{j}\right)^{2}\right)^{1 / 2} \\
& \quad \leqq c_{q}^{2} q(x) n^{1 / 2} \Delta(w, x),
\end{aligned}
$$

where (2.4) is considered.
Remark 1. The L_{n} version of Proposition 1 is valid:

$$
\mu(x) \leqq L_{n}^{-1} L(x)
$$

holds for each $x: D \rightarrow \boldsymbol{R}^{n}(n \geqq 2)$. If $c>0$ satisfies $\mu(x) \leqq c L(x)$ for each $x: D \rightarrow \boldsymbol{R}^{n}$, then $L_{n}^{-1} \leqq c$.

Remark 2. With the aid of the inequality $2^{-1} b\left(f_{j}\right)^{2} \leqq b(x)^{2}, 1 \leqq j \leqq n$, resulting from (2.4), Proposition 1 teaches us another proof of Theorem 1. We have

$$
\begin{aligned}
\left(1-|w|^{2}\right)^{2}\left|x_{w}(w)\right|^{2} & =2^{-1} \sum\left(1-|w|^{2}\right)^{2}\left|f_{j}^{\prime}(w)\right|^{2} \\
& \leqq 2^{-1} \sum b_{2}^{-2} b\left(f_{j}\right)^{2} \leqq n b_{2}^{-2} b(x)^{2},
\end{aligned}
$$

whence, $\mu(x) \leqq n^{1 / 2} b_{2}^{-1} b(x)$. Therefore, $b_{n}^{-1} \leqq n^{1 / 2} b_{2}^{-1}$, or, $b_{n} \geqq n^{-1 / 2} b_{2}$. Similarly, we have another proof of Theorem 1a, which we leave as an exercise.

Remark 3. We may show that $c_{b} \geqq b_{2}^{-1}=2.11 \cdots$. Actually, $\mu(f) \leqq$ $c_{b} b(f)$, together with Proposition 1, shows that $c_{b} \geqq b_{2}^{-1}$. As a consequence, we further obtain

$$
c_{\mu} \geqq b_{2}^{1 / 2} c_{b} \geqq b_{2}^{-1 / 2} \geqq 1.45 \cdots .
$$

In conclusion,

$$
\begin{aligned}
& 2.11 \cdots \leqq c_{b}<3.46 \cdots, \\
& 1.45 \cdots \leqq c_{\mu} \leqq 2.62 \cdots
\end{aligned}
$$

§ 5. Integral criteria.

We shall show that $x: D \rightarrow \boldsymbol{R}^{n}$ is Bloch if and only if x is of bounded mean oscillation in D, that is,
(A)

$$
\sup _{\substack{a \in D \\ 0<\rho \leq 1}} m D(a, \rho)^{-1} \iint_{D(a, \rho)}|x(w)-x(a)| d u d v<\infty
$$

where

$$
\begin{aligned}
& D(a, \rho)=\{|w-a|<\rho(1-|a|)\} \\
& m D(a, \rho)=\pi \rho^{2}(1-|a|)^{2}, \quad \text { the area of } D(a, \rho)
\end{aligned}
$$

We shall actually prove much more.
TheOrem 6. For $x: D \rightarrow \boldsymbol{R}^{n}$ the following are mutually equivalent.
(B) x is Bloch.
(C) There exists $c>0$ such that

$$
\sup _{a \in D} m D(a, 1)^{-1} \iint_{D(a, 1)} \exp (c|x(w)-x(a)|) d u d v<\infty
$$

(D) There exists $\rho, 0<\rho<1$, such that

$$
\sup _{a \in D} m D(a, \rho)^{-1} \iint_{D(a, \rho)} \log |x(w)-x(a)| d u d v<\infty
$$

As will be apparent, we may say that (C) is the strongest and (D) is the weakest condition in integrals; the case $n=2$ in Theorem 6 yields criteria for a holomorphic function in D to be Bloch.

Postponing the proof of the theorem we show that $(C) \Rightarrow(A) \Rightarrow(D)$. As will be proved later in Lemma $5.1, \log |x-x(a)|$ is subharmonic in D. Therefore,

$$
\begin{aligned}
& |x-x(a)|^{p}=\exp (p \log |x-x(a)|), \quad p>0, \\
& \exp (c|x-x(a)|), \quad c>0
\end{aligned}
$$

are subharmonic in D. With the aid of

$$
\log X \leqq X \leqq c^{-1} e^{c X}, \quad X \geqq 0
$$

and the fact that, for a fixed $a \in D$, the area mean in $D(a, \rho)$ of a subharmonic function in D is a nondecreasing function of $\rho(1-|a|)$, hence of $\rho,[\operatorname{Rd}, \mathrm{p} .8]$, we have $(\mathrm{C}) \Rightarrow(\mathrm{A}) \Rightarrow(\mathrm{D})$.

Lemma 5.1. For $x: D \rightarrow \boldsymbol{R}^{n}$, and for each fixed $x_{0} \in \boldsymbol{R}^{n}, \log \left|x-x_{0}\right|$ is a subharmonic function in D.

Proof. See [BR, p. 653] for the case $n=3$. We may suppose that $n \geqq 3$ and $x_{0}=0$. Since $\log |x(w)|=-\infty$ if $x(w)=0$, we consider w with $x(w) \neq 0$. At this point, we have

$$
\begin{equation*}
2^{-1}|x|^{4} \Delta \log |x|=\left|x_{u}\right|^{2}|x|^{2}-\left(x x_{u}\right)^{2}-\left(x x_{v}\right)^{2} \tag{5.1}
\end{equation*}
$$

To prove $\Delta \log x \geqq 0$ at w, we may further assume that $x_{u}(w) \neq 0$. Let e_{1}, \cdots, e_{n} be an orthonormal basis in \boldsymbol{R}^{n} such that

$$
e_{1}=\frac{x_{u}(w)}{\left|x_{u}(w)\right|}, \quad e_{2}=\frac{x_{v}(w)}{\left|x_{v}(w)\right|}
$$

Let

$$
x(w)=\sum_{j=1}^{n} c_{j} e_{j}
$$

In view of (1.2) we observe that the right-hand side of (5.1) at w is

$$
\left|x_{k}\right|^{2}\left(\sum_{j=3}^{n} c_{j}^{2}\right) \geqq 0
$$

Proof of Theorem 6. (B) $\Rightarrow(\mathrm{C})$. There exists $c>0$ with $c \mu<2, \mu=$ $\mu(x)$. For each fixed $a \in D$,

$$
w=a+(1-|a|) \zeta \in D(a, 1) \Longleftrightarrow \zeta \in D .
$$

Therefore,

$$
\left|\phi_{-a}(w)\right|=\frac{|w-a|}{|1-\bar{a} w|} \leqq|\zeta|,
$$

and for each $w \in D(a, 1)$,

$$
\begin{equation*}
|x(w)-x(a)| \leqq \mu \tanh ^{-1}\left|\phi_{-a}(w)\right| \leqq \mu \tanh ^{-1}|\zeta|, \tag{5.2}
\end{equation*}
$$

so that

$$
\exp (c|x(w)-x(a)|) \leqq\left(\frac{1+|\zeta|}{1-|\zeta|}\right)^{c \mu / 2}
$$

Consequently,

$$
\begin{aligned}
& m D(a, 1)^{-1} \iint_{D(a, 1)} \exp (c|x(w)-x(a)|) d u d v \\
& \quad \leqq \pi^{-1} \iint_{D}\left(\frac{1+|\zeta|}{1-|\zeta|}\right)^{c \mu / 2} d \xi d \eta, \quad \zeta=\xi+i \eta
\end{aligned}
$$

the right-hand side is a positive constant independent of a, so that (C) holds.

Since $(C) \Rightarrow(D)$ is trivial by Lemma 5.1, it remains to be proved that $(\mathrm{D}) \Rightarrow(\mathrm{B})$. Let K be the supremum in (D). To estimate $\left(1-|a|^{2}\right)\left|x_{u}(a)\right|$ at a, we note that $-\infty \leqq \log \left|x_{u}(a)\right|<+\infty$. It then follows from (1.2) that

$$
\begin{equation*}
\frac{|x(w)-x(a)|}{|w-a|} \rightarrow\left|x_{u}(a)\right| \quad \text { as } \quad w \rightarrow a . \tag{5.3}
\end{equation*}
$$

Set

$$
V(w)=\log |x(w)-x(a)|-\log |w-a|
$$

for $w \in D \backslash\{a\}$. Then, V is subharmonic in $D \backslash\{a\}$ and is bounded from above in a small punctured disk $\{0<|w-a|<r\}$. From M. Brelot's removable singularity theorem [Rd, Section 7.15, p. 48] it follows that we may define $V(a)$ so that V is subharmonic in the whole disk D. By the upper semicontinuity of V at a, we then have by (5.3),

$$
\log \left|x_{u}(a)\right| \leqq V(a)
$$

Therefore,

$$
\begin{align*}
& \log \left|x_{u}(a)\right| \leqq V(a) \leqq m D(a, \rho)^{-1} \iint_{D(a, \rho)} V(w) d u d v \tag{5.4}\\
& =m D(a, \rho)^{-1} \iint_{D(a, \rho)} \log |x(w)-x(a)| d u d v \\
& \quad-\log (1-|a|) \rho+2^{-1}
\end{align*}
$$

whence

$$
\begin{aligned}
& \left|x_{u}(a)\right| \leqq e^{1 / 2+K}\{(1-|a|) \rho\}^{-1}, \quad \text { or }, \\
& \left(1-|a|^{2}\right)\left|x_{u}(a)\right| \leqq 2 \rho^{-1} e^{1 / 2+K},
\end{aligned}
$$

which completes the proof of the theorem.
Remark 1. It would be of interest to compare

$$
\|x\| \equiv \sup _{a \in D} m D(a, 1)^{-1} \iint_{D(a, 1)}|x(w)-x(a)| d u d v
$$

with $\mu(x)$; the result is

$$
\begin{equation*}
2^{-1} e^{-1 / 2} \mu(x) \leqq\|x\| \leqq \mu(x) \tag{5.5}
\end{equation*}
$$

Suppose that $\mu=\mu(x)<\infty$. It then follows from (5.2) that at each $a \in D$,

$$
\begin{aligned}
& m D(a, 1)^{-1} \iint_{D(a, 1)}|x(w)-x(a)| d u d v \\
& \leqq \mu \pi^{-1} \iint_{D} \tanh ^{-1}|\zeta| d \xi d \eta=\mu
\end{aligned}
$$

whence the right-hand side of (5.5) follows.

Suppose next that $\|x\|<\infty$. At each point a, and for $0<\rho<1$, it follows from (5.4) that

$$
\begin{aligned}
& \left|x_{\psi}(a)\right|=\exp \log \left|x_{\mu}(a)\right| \\
& \quad \leqq(1-|a|)^{-1} \rho^{-1} e^{1 / 2} m D(a, \rho)^{-1} \iint_{D(a, \rho)}|x(w)-x(a)| d u d v \\
& \quad \leqq(1-|a|)^{-1} \rho^{-1} e^{1 / 2}\|x\|
\end{aligned}
$$

whence

$$
\left(1-|a|^{2}\right)\left|x_{\psi}(\alpha)\right| \leqq 2 \rho^{-1} e^{1 / 2}\|x\|
$$

Letting $\rho \rightarrow 1$ we obtain the left-hand side of (5.5).
Remark 2. We have the following Schwarz lemma:
For $x: D \rightarrow \boldsymbol{R}^{n}$, bounded, $|x|<1$, in D, with $x(0)=0$,

$$
\begin{equation*}
|x(w)| \leqq|w| \tag{5.6}
\end{equation*}
$$

holds for each $w \in D$ and $\left|x_{u}(0)\right| \leqq 1$. The equality in (5.6) holds for a $w_{0}, 0<\left|w_{0}\right|<1$, or $\left|x_{\mu}(0)\right|=1$ if and only if x maps D one-to-one onto a unit disk lying in a plane.

See [BR, pp. 656-657] for the case $n=3$. The subharmonic function V in D for the present x with $a=0$ (hence, $-\infty \leqq \log \left|x_{u}(0)\right| \leqq V(0)$) considered in the proof of Theorem 6 has the nonpositive supremum in D. Hence, $\log |x(w)| \leqq \log |w|$ for $0<|w|<1$, and $\log \left|x_{u}(0)\right| \leqq 0$. The "if" part in the second half is obvious because x can be considered as a holomorphic or antiholomorphic function in D after a rotation of the plane about the origin. To prove the "only if" part, we first note that $V(w) \equiv 0$ by the maximum principle, whence $|x(w)|^{2} \equiv|w|^{2}$. Then, for an admissible system (f_{1}, \cdots, f_{n}) for x we have

$$
2 \sum\left|f_{j}^{\prime}(w)\right|^{2}=4\left|x_{u}(w)\right|^{2}=\Delta\left(|x(w)|^{2}\right) \equiv 4
$$

Therefore, $f_{j}(w) \equiv c_{j} w+d_{j}$, where $c_{j}=\alpha_{j}+i_{\beta_{j}}$ and d_{j} are constants with Re $d_{j}=0$ by $x(0)=0(1 \leqq j \leqq n)$, and

$$
\sum\left(\alpha_{j}^{2}-\beta_{j}^{2}+2 i \alpha_{j} \beta_{j}\right) \equiv \sum\left(f_{j}^{\prime}(w)\right)^{2} \equiv 0
$$

Thus, $x_{j}(w)=\alpha_{j} u-\beta_{j} v, 1 \leqq j \leqq n$, so that, $x(D)$ is contained in the plane generated by the (real) orthonormal vectors

$$
\left(\alpha_{1}, \cdots, \alpha_{n}\right) \quad \text { and } \quad\left(\beta_{1}, \cdots, \beta_{n}\right)
$$

After a suitable rotation, we can regard x as a holomorphic or antiholomorphic function, and the Schwarz lemma in the complex analysis now shows the conclusion.

Added in proof.

On the basis of pp. 184-185 in D. Gnuschke-Hauschild and C. Pommerenke's paper: "On Bloch functions and gap series", J. reine angew. Math. 367 (1986), 172-186, the sentence citing Pommerenke's paper just after the display (4.6) should be deleted.

References

[A1] L. V. Ahlfors, An extension of Schwarz's lemma, Trans. Amer. Math. Soc., 43 (1938), 359-364.
[A2] L. V. Ahlfors, Conformal Invariants-Topics in geometric function theory, McGrawHill, New York, 1973.
[AG] L. V. Ahlfors and H. Grunsky, Uber die Blochsche Konstante, Math. Z., 42 (1937), 671-673.
[B] E. F. Beckenbach, Bloch's theorem for minimal surfaces, Bull. Amer. Math. Soc., 39 (1933), 450-456.
[BB] E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin, 1965.
[BR] E. F. Beckenbach and T. Rad6, Subharmonic functions and minimal surfaces, Trans. Amer. Math. Soc., 35 (1933), 648-661.
[H1] M. Heins, A class of conformal metrics, Bull. Amer. Math. Soc., 67 (1961), 475-478.
[H2] M. Heins, On a class of conformal metrics, Nagoya Math. J., 21 (1962), 1-60.
[L] E. Landau, Uber die Blochsche Konstante und zwei verwandte Weltkonstanten, Math. Z., 30 (1929), 608-634.
[N] J.C.C. Nitsche, Vorlesungen über Minimalfächen, Springer-Verlag, New York, 1975.
[O] R. Osserman, A Survey of Minimal Surfaces, Van Nostrand Reinhold, New York, 1969.
[P] C. Pommerenke, On Bloch functions, J. London Math. Soc., 2 (1970), 689-695.
[Rd] T. Rad6, Subharmonic Functions, Springer-Verlag, Berlin, 1937.
[Rm] H. Rademacher, On the Bloch-Landau constant, Amer. J. Math., 65 (1943), 387-390.
[Rb] R. M. Robinson, Bloch functions, Duke Math. J., 2 (1936), 453-459.
[Ry] H. L. Royden, Real Analysis, MacMillan, New York, 1963.
[SW] W. Seidel and J. L. Walsh, On the derivatives of functions analytic in the unit circle and their radii of univalence and of p-valence, Trans. Amer. Math. Soc., 52 (1942), 128-216.
[Y1] S. Yamashita, Criteria for functions to be Bloch, Bull. Austral. Math. Soc., 21 (1980), 223-227.
[Y2] S. Yamashita, Area criteria for functions to be Bloch, normal, and Yosida, Proc. Japan Acad., 59 (1983), 462-464.
[Y3] S. Yamashita, Constants for Bloch, normal, and Yosida functions, Math. Japonica, 30 (1985), 405-418.
[Y4] S. Yamashita, Normality and the Shimizu-Ahlfors characteristic function, Ann. Acad. Sci. Fenn. Ser. AI Math., 11 (1986), 207-213.

Present Address:

Department of Mathematics, Tokyo Metropolitan University Fukazawa, Setagaya-ku, Tokyo 158, Japan

[^0]: Received June 25, 1987

