Токуо Ј. Матн. Vol. 11, No. 1, 1988

Bloch Constants and Bloch Minimal Surfaces

Shinji YAMASHITA

Tokyo Metropolitan University

§1. Introduction.

The *n*-th Bloch constant b_n $(n \ge 2)$ will be defined in terms of radii of certain disks on minimal surfaces in the Euclidean space \mathbb{R}^n . As will be seen, b_2 is the familiar one in the complex analysis. We shall prove that

$$(1.1) b_n \ge n^{-1/2} b_2 , n \ge 3.$$

Let each component x_j of a nonconstant map $x = (x_1, \dots, x_n)$ from the disk $D = \{|w| < 1\}$ in the complex plane $|w| < \infty$, w = u + iv, into the Euclidean space \mathbb{R}^n $(n \ge 2)$ be harmonic in D. Then, the set S of all pairs $(w, x(w)), w \in D$, or simply, the map x itself, is called a minimal surface if

(1.2)
$$x_u x_v = 0$$
, $x_u x_u = x_v x_v$ in D ,

where

$$x_u = (x_{1u}, \dots, x_{nu})$$
, $x_v = (x_{1v}, \dots, x_{nv})$

are partial derivatives and the products are inner; S is the one-to-one image of D by x.

Henceforward, $x: D \rightarrow \mathbb{R}^n$ always means a minimal surface, and somewhat informally, we regard S as a subset of \mathbb{R}^n .

The surface S is endowed with the metric

$$d(x(w_1), x(w_2)) = \inf_{\tau} \int_{\tau} |x_u(w)| |dw|$$
,

where $x(w_j) \in S$, j=1, 2, $|x_u| = (x_u x_u)^{1/2}$ and γ ranges over all (rectifiable) curves connecting w_1 and w_2 in D. One can also consider this a new metric in D other than the Euclidean metric. Obviously, $|x(w_1) - x(w_2)| \leq d(x(w_1), x(w_2))$; the left-hand side is the Euclidean metric in \mathbb{R}^n .

Received June 25, 1987

The open disk of center $x(w_0)$ and radius r>0 in S is

$$\Gamma_{x}(w_{0}, r) = \{x(w); d(x(w), x(w_{0})) < r\}$$

We shall later observe that the closure of $\Gamma_x(w_0, r)$ is

$$\Gamma_x^*(w_0, r) = \{x(w); d(x(w), x(w_0)) \leq r\};$$

this is not necessarily compact. A point x(w) is called regular or nonbranched if $x_{\mathbf{x}}(w) \neq 0$, nonzero vector, and a subset $S_1 \subset S$ is called regular if each point of S_1 is regular. If $\Gamma_x(w_0, r)$ is regular and further if $\Gamma_x^*(w_0, r)$ is compact, then we call $\Gamma_x(w_0, r)$ admissible. Let b(x) be the supremum of r > 0 such that there exists an admissible $\Gamma_x(w_0, r)$ for some point $x(w_0)$. Let b_n be the infimum of b(x) for all $x: D \to \mathbb{R}^n$ subject to the "pinning" condition $|x_{\mathbf{x}}(0)|=1$. We then call b_n the *n*-th Bloch constant. Since $x: D \to \mathbb{R}^n$ can be regarded in the obvious way as $x: D \to \mathbb{R}^{n+1}$, it follows that $b_{n+1} \leq b_n, n \geq 2$.

A minimal surface $x: D \to \mathbb{R}^2$ can be regarded as a nonconstant holomorphic or antiholomorphic function f in D and vice versa. For the holomorphic case, an admissible $\Gamma_x(w_0, r)$ is the one-sheeted whole disk $\{|w-f(w_0)| < r\}$ on the Riemannian image, an elementary but never trivial fact. Therefore, b_2 is just the Bloch constant [A2, p. 14] in the complex analysis.

Our first aim is to prove

THEOREM 1. The inequality (1.1) holds.

It is familiar that [A1, p. 364], [AG, p. 672], [H1], [H2, p. 60],

$$0.433\cdots = \frac{\sqrt{3}}{4} < b_2 \leq \frac{\Gamma(1/3)\Gamma(11/12)}{(1+3^{1/2})^{1/2}\Gamma(1/4)} = 0.471\cdots$$

The determination of b_2 still remains an outstanding problem. Since $b_3 > 1/4 = 0.25$, we have an improvement of E. F. Beckenbach's [B, p. 456] earlier one: $b_3 \ge (16\sqrt{3})^{-1} = 0.036 \cdots$. His paper contains no definition of the Bloch constant b_3 ; the result is implicit.

A holomorphic function f in D is called Bloch if

$$\mu(f) \equiv \sup_{w \in D} (1 - |w|^2) |f'(w)|$$

is finite. The notion arises from the principal idea of proving the Bloch theorem due to E. Landau [L, pp. 617-618]. The term "Bloch function" in the present meaning now prevails, ignoring R. M. Robinson's earlier paper [Rb].

BLOCH CONSTANTS

We call $x: D \rightarrow \mathbf{R}^n$ Bloch if

$$\mu(x) \equiv \sup_{w \in D} (1 - |w|^2) |x_u(w)|$$

is finite. Note that $\mu(f) = \mu(x)$ for nonconstant f. A typical example is a bounded minimal surface $x: D \to \mathbb{R}^n$, namely, |x| is bounded in D. Another one is $x: D \to \mathbb{R}^n$ whose Gauss curvature $\kappa(w)$ is bounded: $\kappa(w) \leq -A$ $(A>0), w \in D$. Then, $\mu(x) \leq 2A^{-1/2}$.

In Section 2 we prove Theorem 1. Section 2a is appended to Section 2, where the notion of *n*-th strong Landau constant is introduced. In Section 3 we propose some basic facts on Bloch minimal surfaces. In Section 4 we prove some results on Bloch minimal surfaces in connection with the present topics on disks on S. In Section 5 we prove that $x: D \to \mathbb{R}^n$ is Bloch if and only if x is of bounded mean oscillation in some sense; the result is analytic rather than geometric.

I wish to express my gratitude to my colleague Norio Ejiri for his criticism at an early stage of preparation.

§2. Proof of Theorem 1.

We begin with some basic properties of minimal surfaces; see [N], [O]. There exist holomorphic functions f_j such that $x_j = \operatorname{Re} f_j$, $1 \leq j \leq n$, in D, so that the formulae in (1.2) can be unified as

(2.1)
$$\sum_{j=1}^{n} (f'_{j})^{2} \equiv 0 ;$$

however, the correspondence $x \rightarrow (f_1, \dots, f_n)$ is not necessarily one-to-one. We note that

(2.2)
$$|x_u|^2 \equiv 2^{-1} \sum_{j=1}^n |f'_j|^2$$
.

We call (f_1, \dots, f_n) an admissible system for $x: D \rightarrow \mathbb{R}^n$.

LEMMA 2.1. Let (f_1, \dots, f_n) be an admissible system for $x: D \to \mathbb{R}^n$. Then, for each curve γ in D,

(2.3)
$$\left\{2^{-1}\sum_{j=1}^{n}\left(\int_{\gamma}|f_{j}'(w)||dw|\right)^{2}\right\}^{1/2} \leq \int_{\gamma}|x_{u}(w)||dw|.$$

PROOF. The Minkowski inequality for the integrals with the power $p=2^{-1}$ [BB, Section 18, p. 20 ff.] reads

$$2\left(\int |x_{u}|\right)^{2} = \left\{\int (\sum |f'_{j}|^{2})^{1/2}\right\}^{2} \ge \sum \left(\int |f'_{j}|\right)^{2},$$

which yields (2.3).

For $x: D \to \mathbb{R}^n$ and $w \in D$ we let $\Delta(w, x)$ be the supremum of r > 0such that an admissible $\Gamma_x(w, r)$ exists; if x(w) is not regular, then we set $\Delta(w, x) = 0$. Then, $b(x) = \sup \Delta(w, x)$, where w ranges over D. The quantity $\Delta(w, x)$ measures the distance from x(w) either to the nearest branch point (possibly, x(w) itself) or to the "boundary" of S. We denote $\Delta(w, f) = \Delta(w, x)$ for f holomorphic in D with $x = (\operatorname{Re} f, \operatorname{Im} f)$. Thus, b(f) = b(x). If f is constant, then $\Delta(w, f) \equiv 0$, b(f) = 0. The Liouville theorem applied to the inverse of f yields that $\Delta(w, f) < \infty$ at each $w \in D$.

THEOREM 2. Let (f_1, \dots, f_n) be an admissible system for $x: D \to \mathbb{R}^n$. Then, at each $a \in D$, we have

(2.4)
$$\left\{2^{-1}\sum_{j=1}^{n} \varDelta(a, f_j)^2\right\}^{1/2} \leq \varDelta(a, x) .$$

PROOF. We may assume that x(a) is regular. We pick up all j with $f'_j(a) \neq 0$; for simplicity we assume that they are

$$f'_{j}(a) \neq 0$$
, $j=1, 2, \cdots, m \ (\leq n)$.

Then, for $1 \leq j \leq m$, the Riemannian image of D by f_j contains the onesheeted open disk of center $f_j(a)$ and radius $\Delta_j \equiv \Delta(a, f_j) > 0$. Let $0 < \varepsilon < \min_{1 \leq j \leq m} \Delta_j$. Then, for $1 \leq j \leq m$, there exists a compact set δ_j in D, which contains a and which is mapped by f_j one-to-one onto the closed disk $\{|w-f_j(a)| \leq \Delta_j - \varepsilon/2\}$. The union $\delta = \delta_1 \cup \cdots \cup \delta_m$ is, therefore, compact, so that $x(\delta)$ is compact.

We shall show that

(2.5) $\Gamma_x^*(a, A(\varepsilon)) \subset x(\delta)$,

where

$$A(arepsilon) = \left\{ 2^{-1} \sum_{j=1}^m \left(\varDelta_j - arepsilon
ight)^2
ight\}^{1/2}$$
 .

Then, $\Gamma_x^*(a, A(\varepsilon))$ is compact and $|x_u|$ never vanishes in δ . Thus, $\Delta(a, x) \ge A(\varepsilon)$. On letting $\varepsilon \to 0$ we have (2.4).

Suppose that (2.5) is false. Then, there exists $w \in D \setminus \delta$ such that $d(x(w), x(a)) \leq A(\varepsilon) < A((3/4)\varepsilon)$. We may find a curve γ connecting a and w in D such that

$$\int_{\gamma} |x_u(\zeta)| |d\zeta| < A\left(\frac{3}{4}\varepsilon\right).$$

For each j, $1 \leq j \leq m$, the curve γ contains a subcurve γ_j connecting a and a boundary point of δ_j such that $\gamma_j \subset \delta_j$. Consequently,

$$\int_r |f_j'(\zeta)| \, |\, d\zeta| \!\geq\! \int_{r_j} \! |f_j'(\zeta)| \, |\, d\zeta| \!\geq\! arDelta_j \!-\! rac{arepsilon}{2} \,, \qquad 1\!\leq\! j\!\leq\! m \,\,.$$

With the aid of (2.3) we now have

$$A\left(\frac{\varepsilon}{2}\right) \leq \int_{\gamma} |x_u(\zeta)| |d\zeta| < A\left(\frac{3}{4}\varepsilon\right).$$

This contradiction completes the proof.

PROOF OF THEOREM 1. Suppose that $x: D \to \mathbb{R}^n$ satisfy $|x_u(0)|=1$, and let (f_1, \dots, f_n) be an admissible system for x. We may suppose that $b(x) < \infty$. Since $2^{-1/2}b(f_j) \leq b(x)$, $1 \leq j \leq n$, by (2.4), it follows that $b(f_j) < \infty$, $1 \leq j \leq n$. We then choose all f_j with $f'_j(0) \neq 0$; again, for simplicity,

$$p_j \equiv |f'_j(0)| \neq 0$$
, $1 \leq j \leq m (\leq n)$.

Applying the Bloch theorem: $b_2 > 0$, to each $f_j/f_j'(0)$, we have $b(f_j) \ge b_2 p_j$, $1 \le j \le m$. Hence,

$$b_{2}p_{i} \leq b(f_{i}) \leq 2^{1/2}b(x)$$
, $1 \leq j \leq m$.

Since $2=2|x_u(0)|^2=p_1^2+\cdots+p_m^2$, it now follows that

 $2b_2^2 \leq 2nb(x)^2$,

whence $b_2 \leq n^{1/2} b_n$. This completes the proof.

Although we shall not make use of, the fact that the closure of $\Gamma_x(w_0, r)$ is $\Gamma_x^*(w_0, r)$, described in Section 1, is of independent interest. We first note that, among the axioms of the distance, the one: $w_1 \neq w_2 \Rightarrow \operatorname{dis}(x(w_1), x(w_2)) > 0$, follows from (2.3); actually, at least one f_j is non-constant.

We shall show that for each x(w) with $d(x(w_0), x(w)) = r$, and each $\varepsilon > 0$, there exists $x(w_1) \in \Gamma_x(w_0, r) \cap \Gamma_x(w, \varepsilon)$. First, there exists a compact disk δ of center w contained in D such that $x(\delta) \subset \Gamma_x(w, \varepsilon)$; we may assume $w_0 \notin \delta$. Next, for each $k \ge 2$, there exists a curve γ_k connecting w_0 and w in D such that

$$\int_{\tau_k} |x_u(\zeta)| \, |\, d\zeta| \, < r + k^{-1} \; .$$

Then, by a point w_k on the boundary circle $\partial \delta$ of δ , γ_k is divided into

subcurves γ_{1k} and γ_{2k} ; γ_{1k} connects w_0 and w_k , and γ_{2k} connects w_k and w_k . Therefore,

(2.6)
$$d(x(w_0), x(w_k)) \leq \int_{\tau_{1k}} = \int_{\tau_k} - \int_{\tau_{2k}} < r + k^{-1} - d(x(w_k), x(w)).$$

Choose a converging subsequence of $\{w_k\}$, which we denote again by $\{w_k\}$, such that $|w_k - w_1| \rightarrow 0$, $w_1 \in \partial \delta$. It is easy to observe that

 $d(x(w_k), x(w_1)) \rightarrow 0$.

Letting $k \rightarrow \infty$ in (2.6) we finally have

$$d(x(w_0), x(w_1)) \leq r - d(x(w_1), x(w)) < r$$
.

REMARK. Beckenbach's proof of $b_3>0$ makes use of a method of cubic equations quite peculiar to the dimension n=3, which we call B method; see the proof of [B, Lemma 1]. One should surely feel, in the first reading of [B], that a particular property of the roots of a cubic equation appears to play an important role, so that, one would suspect the possibility of extending the result to higher dimensions by B method. It should be noted that B method (in spirit, we let, after rotation and translation and in our notation, $p_1=p_2=p_3$ in the proof of Theorem 1) yields no improvement of $b_3 \ge 3^{-1/2}b_2$. As another remark, we point out that Beckenbach assumed that $|x_u(0)|\ge 1$ for $x: D \to \mathbb{R}^n$. On dividing: $|x_u(0)|^{-1}x$, one finds that $b(x)\ge |x_u(0)|b_n\ge b_n$.

§ 2a. The strong Landau constants.

Let $x: D \to \mathbb{R}^n$ $(n \ge 2)$, let $w \in D$, and let $\Delta_L(w, x)$ be the supremum of r > 0 such that $\Gamma_x^*(w, r)$ is compact; no regularity restriction on $\Gamma_x(w, r)$ is posed. Let L(x) be the supremum of $\Delta_L(w, x)$ for $w \in D$. For $n \ge 2$, the infimum L_n of L(x) for all $x: D \to \mathbb{R}^n$ subject to the condition $|x_u(0)| = 1$ is called the *n*-th strong Landau constant by the reason mentioned soon. Since $\Delta(w, x) \le \Delta_L(w, x)$, it follows that $b(x) \le L(x)$, and hence $b_n \le L_n$, $n \ge 2$. It is easy to see that $L_n \le L_{n-1}$, $n \ge 3$.

Without saying the details, we denote $\Delta_L(w, f)$ and L(f) for f holomorphic, and possibly constant, in D. The constant L_2 is then not greater than the Landau constant L; L is the supremum of the radii of all open Euclidean disks contained in the (set-theoretic) image of D by f holomorphic in D and normalized by |f'(0)|=1. The constant L is introduced by E. Landau [L]. It is known that [A1, p. 364], [Rm, p. 389], [P, p. 690],

(2a.1)
$$2^{-1} < L \leq \frac{\Gamma(1/3)\Gamma(5/6)}{\Gamma(1/6)} = 0.543 \cdots;$$

the right-hand side is said to be an unpublished result of Robinson [A1, p. 364]. Since $b_2 \leq L_2 \leq L$, it would be an interesting problem to prove $b_2 < L_2 < L$. We shall not be concerned with this but with

THEOREM 1a. $L_n \ge n^{-1/2} L_2, n \ge 3.$

The proof of Theorem 1a is similar to that of Theorem 1, once the following analogue of Theorem 2 is established.

THEOREM 2a. Let (f_1, \dots, f_n) be an admissible system for $x: D \to \mathbb{R}^n$. Then, at each $a \in D$, we have

(2a.2)
$$\left\{2^{-1}\sum_{j=1}^{n} \Delta_{L}(a, f_{j})^{2}\right\}^{1/2} \leq \Delta_{L}(a, x) .$$

PROOF. There is a nuisance of the possibility of $\Delta_L(a, f_j) = \infty$. We pick up all nonconstant f_j ; for simplicity, we assume that they are f_j , $1 \le j \le m$. Then,

$$\Delta_j \equiv \Delta_L(a, f_j) > 0 , \qquad 1 \leq j \leq m (\leq n) .$$

We first consider the case where all $\Delta_j < \infty$, $1 \le j \le m$, and we let $0 < \varepsilon < \min_{1 \le j \le m} \Delta_j$ again. Let δ_j be the component, containing a, of the inverse image of

$$\{|w-f_j(a)| \leq \Delta_j - \varepsilon/2\}$$
 by f_j , $1 \leq j \leq m$.

Since f_j is an open map, it follows that each δ_j is compact, so that $\delta = \delta_1 \cup \cdots \cup \delta_m$ is compact. Following the same lines as in the proof of Theorem 2 up to proving (2.5) for our present Δ_j , we now have (2a.2) by the limiting process of $\varepsilon \to 0$.

To prove that $\Delta_L(a, x) = \infty$ in case there exists one $\Delta_L(a, f_j) = \infty$, we let $\delta(k)$ be the component, containing a, of the inverse image of $\{|w-f_j(a)| \leq k+2\}$ by f_j , $k=1, 2, \cdots$. Then, $x(\delta(k))$ is compact, and we can show that

$$\Gamma_x^*(a, 2^{-1/2}k) \subset x(\delta(k))$$

with the aid of

$$2^{-1/2} \int_{r} |f'_{j}(w)| |dw| \leq \int_{r} |x_{u}(w)| |dw|$$

resulting from (2.3). Thus, $\Delta_L(a, x) \ge 2^{-1/2}k$, and hence the limiting process yields the requested.

REMARK. There would be no "precise" extension of the Landau constant to $n \ge 3$ because there is no fixed "surface" covered by S.

§ 3. Bloch minimal surfaces.

Let (f_1, \dots, f_n) be an admissible system for $x: D \to \mathbb{R}^n$. Then, it follows from (2.2) that

(3.1)
$$2^{-1/2}\mu(f_j) \leq \mu(x) \leq 2^{-1/2} \sum_{k=1}^n \mu(f_k) , \quad 1 \leq j \leq n .$$

Therefore, x is Bloch if and only if all f_j are Bloch. It follows from (2.1) that if n-1 members of f_1, \dots, f_n are Bloch, then the rest is Bloch.

If $x: D \to \mathbb{R}^n$ is bounded, then $\operatorname{Re} f_j$ is bounded, so that f_j is Bloch, $1 \leq j \leq n$; see the remark after Lemma 3.1 below. Therefore, x is Bloch by (3.1).

The Gauss curvature [O, p. 76] $\kappa(w)$ of $x: D \to \mathbb{R}^n$ at a regular point x(w) is defined by

$$\kappa(w) = -|x_u(w)|^{-2} \Delta \log |x_u(w)|.$$

Suppose that $\kappa(w) \leq -A$ (A>0) at each regular point. We shall show that $\mu(x) \leq 2A^{-1/2}$. The proof follows the same lines as in the proof of [A1, Theorem A]; we include a sketch of it for completeness. For each r, 0 < r < 1, we set $\lambda(w) = r(r^2 - |w|^2)^{-1}$. Let $y = 2^{-1}A^{1/2}x$. Our aim is to show that

 $|y_u(w)| \leq \lambda(w)$ for |w| < r.

Then, letting $r \to 1$ we have the requested. We suppose that the open set $E = \{w; |w| < r, |y_u(w)| > \lambda(w)\}$ is nonempty. Since $|y_u|$ never vanishes in E, we have

$$\Delta \log(|y_u|/\lambda) \ge 4(|y_u|^2 - \lambda^2) > 0$$
 in E ,

so that the nonconstant and positive subharmonic function $s = \log(|y_u|/\lambda)$ has no maximum in E. We choose a sequence $\{w_k\}_{k\geq 1}$ of points in E such that $s(w_k)$ converges to the supremum Q>0 of s in E, and further $w_k \rightarrow w_0$, $|w_0| \leq r$. The two possibilities, $|w_0| = r$ and $|w_0| < r$, then lead us to a contradiction: $Q = -\infty$ and Q = 0, respectively.

Many criteria for a holomorphic function in D to be Bloch are known

[P]; see some recent works [Y1], [Y2], [Y4], for example. It is not difficult, with the aid of (3.1) partially, to obtain analogous criteria for x to be Bloch. Among them we pick up three which might be noteworthy from a geometrical viewpoint.

The disk D is endowed with the Poincaré metric, or the non-Euclidean hyperbolic metric; the distance is

$$\sigma(w_1, w_2) = \tanh^{-1} \frac{|w_1 - w_2|}{|1 - \overline{w}_1 w_2|}$$
.

Let U(a, r) be the disk of center $a \in D$ and the radius $\tanh^{-1} r$, that is,

$$U(a, r) = \left\{w; \frac{|w-a|}{|1-\bar{a}w|} < r
ight\}, \quad 0 < r < 1.$$

The area of the image x(U(a, r)) counting the multiplicities is then given by

Area
$$x(U(a, r)) = \iint_{U(a,r)} |x_u(w)|^2 du dv$$
.

THEOREM 3. A minimal surface $x: D \rightarrow \mathbb{R}^n$ is Bloch if and only if there exists r, 0 < r < 1, such that

$$\sup_{a \in D} \operatorname{Area} x(U(a, r)) < \infty .$$

For the proof of the corresponding result for the holomorphic functions, see [Y1].

The next theorem is never obvious.

THEOREM 4. A minimal surface $x: D \rightarrow \mathbb{R}^n$ is Bloch if and only if x is uniformly continuous as a map from D endowed with σ into the Euclidean space \mathbb{R}^n .

For the proof we shall make use of

LEMMA 3.1. Let f be holomorphic and |Re f| < K in a disk $\{|w| < M\}$, M > 0. Then, $|f'(0)| \le M^{-1}e^{2K}$.

PROOF. We may assume that f is nonconstant. Then, $g(w) = \exp\{f(Mw) - K\}, w \in D$, is bounded, |g| < 1. The Schwarz-Pick lemma now reads

$$(1\!-\!|w|^{\scriptscriptstyle 2})|g'(w)|\!\leq\!\!1\!-\!|g(w)|^{\scriptscriptstyle 2}\!<\!1$$
 ,

which, together with $|g|^{-1} \leq e^{2K}$, yields

$$(1-|w|^2)|f'(Mw)| \leq M^{-1}e^{2K}$$
, $w \in D$.

The lemma follows on setting w=0.

REMARK. If
$$|\text{Re } f| < K$$
 in *D*, then *f* is Bloch by

$$(1-|w|^2)|f'(w)| \leq e^{2K}$$
, $w \in D$.

Let Φ be the family of all one-to-one conformal mappings from D onto D. Then,

$$(1-|w|^2)|\phi'(w)|=1-|\phi(w)|^2$$
, $w\in D$,

for each $\phi \in \Phi$. Therefore, $x: D \to \mathbb{R}^n$ is Bloch if and only if the composed minimal surface $x \circ \phi: D \to \mathbb{R}^n$ for some (and hence each) $\phi \in \Phi$, is Bloch by $\mu(x) = \mu(x \circ \phi)$.

PROOF OF THEOREM 4. Suppose first that x is Bloch, $\mu = \mu(x) < \infty$. On integrating both sides of

 $|x_{\mathbf{u}}(w)||dw| \leq \mu (1-|w|^2)^{-1}|dw|$

along the Poincaré geodesic γ connecting w_1 and w_2 in D we have

(3.2)
$$|x(w_1) - x(w_2)| \leq d(x(w_1), x(w_2)) \leq \int_{\gamma} |x_{*}(w)| |dw|$$
$$\leq \mu \sigma(w_1, w_2) ,$$

so that x is uniformly continuous.

Conversely, suppose that x is uniformly continuous. Then, there exists M, 0 < M < 1, such that

$$\sigma(w_1, w_2) < \tanh^{-1}M \Longrightarrow |x(w_1) - x(w_2)| < 1$$
.

For each $a \in D$, we consider a particular member

$$\phi_a(w) = \frac{w+a}{1+\bar{a}w}$$

of Φ . Let (f_1, \dots, f_n) be an admissible system. Then,

$$|w| < M \longrightarrow \sigma(\phi_a(w), \phi_a(0)) = \tanh^{-1}|w| < \tanh^{-1}M$$

so that, the real part $x_j \circ \phi_a - x_j(a)$ of $f_j \circ \phi_a - f_j(a)$ is bounded by 1 for |w| < M because

$$|x_{j} \circ \phi_{a}(w) - x_{j}(a)| \leq |x \circ \phi_{a}(w) - x \circ \phi_{a}(0)| < 1$$
.

BLOCH CONSTANTS

It follows from Lemma 3.1 that $(1-|a|^2)|f'_j(a)| \leq M^{-1}e^2$. Since *a* is arbitrary, $\mu(f_j) \leq M^{-1}e^2$, $1 \leq j \leq n$, whence, (3.1) shows that *x* is Bloch. This completes the proof.

We fix *n*. A family \mathscr{M} of minimal surfaces $x: D \to \mathbb{R}^n$ is called normal (in the sense of P. Montel) if each sequence $\{x^{(k)}\}_{k\geq 1}$ extracted from \mathscr{M} contains a subsequence $\{y^{(k)}\}_{k\geq 1}$ such that, for each $\varepsilon > 0$ and for each compact set $\delta \subset D$, there exists a number $J=J(\delta, \varepsilon)$ with the property:

$$\sup_{w \in \delta} |y^{(j)}(w) - y^{(k)}(w)| < \varepsilon$$

for all j, k > J. Given $x: D \rightarrow \mathbb{R}^n$ we consider the family of minimal surfaces

$$\mathcal{M}(x) = \{x \circ \phi - x \circ \phi(0); \phi \in \Phi\}$$
.

THEOREM 5. For $x: D \rightarrow \mathbb{R}^n$ to be Bloch it is necessary and sufficient that $\mathscr{M}(x)$ is normal.

PROOF. Suppose that x is Bloch with $\mu = \mu(x)$. We shall show that (i) for each $a \in D$ and each $y \in \mathcal{M}(x)$,

$$|y(a)| \leq \mu \sigma(a, 0);$$

(ii) for each $a \in D$ and each $\varepsilon > 0$, there exists r > 0 such that

$$|w-a| < r \implies |y(w)-y(a)| < \varepsilon \text{ for all } y \in \mathscr{M}(x)$$
.

Then, $\mathcal{M}(x)$ is uniformly bounded at each point $a \in D$ by (i) and equicontinuous by (ii). The Ascoli-Arzelà's diagonal process theorem (see [Ry, p. 155]) then shows that $\mathcal{M}(x)$ is normal.

Since $\sigma(a, 0) = \sigma(\phi(a), \phi(0))$, (i) is a consequence of (3.2). Choose r > 0 so that

$$|w-a| < r \implies \sigma(w, a) < \varepsilon/\mu$$
.

Since $\sigma(w, a) = \sigma(\phi(w), \phi(a))$, (ii) is again a consequence of (3.2).

To prove the sufficiency we assume that $\mathcal{M}(x)$ is normal, yet x is not Bloch. Then, there exists a sequence $\{a_k\}_{k\geq 1}$ with $(1-|a_k|^2)|x_u(a_k)| \to \infty$. Let

$$\phi_k(w) = rac{w+a_k}{1+ar{a}_k w}$$
 , $w \in D$.

Then,

$$y^{(k)} \equiv x \circ \phi_k - x(a_k) \in \mathscr{M}(x) ,$$

so that there exists a subsequence of $\{y^{(k)}\}$, which we denote again by $\{y^{(k)}\}$ such that $\{y^{(k)}\}$ converges to a map y from D into \mathbb{R}^n uniformly on each compact set in D; each component of y is harmonic in D. After the componentwise observation, it follows that $(y^{(k)})_u$ also converges to y_u locally and uniformly. In particular, $(y^{(k)})_u(0) \to y_u(0)$, so that $|(y^{(k)})_u(0)| = (1-|a_k|^2)|x_u(a_k)| \to \infty$; this is a contradiction.

§4. Disks on Bloch minimal surfaces.

We begin with a characterization of b_n in terms of $\mu(x)$ and b(x).

PROPOSITION 1. Fix $n \ge 2$. Then,

$$(4.1) \qquad \qquad \mu(x) \leq b_n^{-1} b(x)$$

for each $x: D \to \mathbb{R}^n$. This is sharp in the sense that if c > 0 satisfies $\mu(x) \leq cb(x)$ for each $x: D \to \mathbb{R}^n$, then $b_n^{-1} \leq c$.

In the case n=2 we obtain

(4.2)
$$\mu(f) \leq b_2^{-1} b(f) \leq 4 \cdot 3^{-1/2} b(f)$$

for each f holomorphic in D. Proposition 1 has

COROLLARY 4.1. If $b(x) < \infty$ for $x: D \to \mathbb{R}^n$, then x is Bloch.

We note that for f holomorphic in D, we have

$$(4.3) b(f) \leq \mu(f)$$

with the aid of W. Seidel and J. L. Walsh's theorem [SW, Theorem 2, p. 133]. This, combined with (4.2), yields the well-known criterion: f is Bloch if and only if $b(f) < \infty$. It is open whether or not the converse of Corollary 4.1 is true in case $n \ge 3$.

PROOF OF PROPOSITION 1. The sharpness is immediate. For x with $|x_u(0)|=1$, we have $1 \leq cb(x)$, so that the definition of b_n shows that $c^{-1} \leq b_n$. Now, we must prove that

$$(4.4) (1-|a|^2)|x_u(a)| \leq b_n^{-1}b(x), \quad a \in D.$$

Assuming that x(a) is regular, we set

$$y = (1 - |a|^2)^{-1} |x_u(a)|^{-1} x \circ \phi_a$$

in D. Then, $|y_u(0)|=1$, so that, by the definition of b_n , there exists w in D such that $\Delta(w, y) \ge b_n$. Therefore,

$$b(x) \ge \varDelta(\phi_a(w), x) = (1 - |a|^2) |x_u(a)| \varDelta(w, y)$$

 $\ge b_n (1 - |a|^2) |x_u(a)|,$

whence (4.4).

Let q stand for b or μ and let c_q be the infimum of c>0 such that

$$(1-|w|^2)|f'(w)| \leq cq(f)^{1/2} \varDelta(w, f)^{1/2}, \qquad w \in D$$

for each f holomorphic and Bloch in D. Actually, c_q is the minimum in the sense that

$$(4.5) (1-|w|^2)|f'(w)| \leq c_q q(f)^{1/2} \Delta(w, f)^{1/2}, \quad w \in D,$$

for each f Bloch in D.

The first result, perhaps, of estimating c_{δ} explicitly, would be [SW, Theorem 10, p. 208], where

$$c_{\scriptscriptstyle b} {\leq} 2 {\cdot} 5^{{\scriptscriptstyle 1/2}} b_{\scriptscriptstyle 2}^{-{\scriptscriptstyle 1/2}}$$
 ;

the right term is at least, 6.51.... L. V. Ahlfors implicitly proved that

$$(4.6) \qquad (1-|w|^2)|f'(w)| \leq 2 \cdot 3^{-1/2} \{ \Delta(w, f)/b(f) \}^{1/2} \{ 3b(f) - \Delta(w, f) \}$$

if $b(f) < \infty$ (see [A1, pp. 363-364], [A2, pp. 12-15]). It now follows that

$$(1-|w|^2)|f'(w)| \leq 2 \cdot 3^{1/2} b(f)^{1/2} \varDelta(w, f)^{1/2}$$
 , $w \in D$,

so that $c_b \leq 2 \cdot 3^{1/2} = 3.46 \cdots$. C. Pommerenke [P, Theorem 1, (i)] improved the Ahlfors estimate (4.6); he proved that the right-hand side of (4.6) can be multiplied by an absolute constant P, 0 < P < 1, so that $c_b < 2 \cdot 3^{1/2}$. However, it appears to be difficult to find more explicit estimate of Pthan 0 < P < 1 by his method. It is easy to prove that

$$1 \! \leq \! c_{\mu} \! \leq \! c_{b} \! \leq \! b_{2}^{-1/2} c_{\mu}$$
 .

For the c_{μ} part, we observed in [Y3, Theorem 1] that

$$c_{\mu} \leq \min_{r>0} 2r^{1/2}(\tanh r)^{-1} = 2.62\cdots$$

Our next task is to extend (4.5) to \mathbb{R}^n .

PROPOSITION 2. If $x: D \rightarrow \mathbb{R}^n$ is Bloch, then at each $w \in D$,

 $(1-|w|^2)|x_u(w)| \leq c_q n^{1/4} q(x)^{1/2} \Delta(w, x)^{1/2}$,

where q=b or μ .

PROOF. It follows from (2.4) and (3.1) that

$$q(f_j) \leq 2^{1/2} q(x)$$
, $1 \leq j \leq n$.

Squaring both sides of (4.5) for f_j , summing up with respect to j, and considering the Schwarz inequality, we have

$$\begin{aligned} & 2(1-|w|^2)^2 |x_u(w)|^2 = (1-|w|^2)^2 \sum |f_j'(w)|^2 \\ & \leq c_q^2 \sum q(f_j) \Delta(w,f_j) \leq c_q^2 2^{1/2} q(x) n^{1/2} (\sum \Delta(w,f_j)^2)^{1/2} \\ & \leq 2c_q^2 q(x) n^{1/2} \Delta(w,x) , \end{aligned}$$

where (2.4) is considered.

REMARK 1. The L_n version of Proposition 1 is valid:

$$\mu(x) \leq L_n^{-1} L(x)$$

holds for each $x: D \to \mathbb{R}^n$ $(n \ge 2)$. If c > 0 satisfies $\mu(x) \le cL(x)$ for each $x: D \to \mathbb{R}^n$, then $L_n^{-1} \le c$.

REMARK 2. With the aid of the inequality $2^{-1}b(f_j)^2 \leq b(x)^2$, $1 \leq j \leq n$, resulting from (2.4), Proposition 1 teaches us another proof of Theorem 1. We have

$$\begin{aligned} &(1 - |w|^2)^2 |x_u(w)|^2 \!=\! 2^{-1} \sum (1 - |w|^2)^2 |f_j'(w)|^2 \\ &\leq \! 2^{-1} \sum b_2^{-2} b(f_j)^2 \!\leq \! n b_2^{-2} b(x)^2 , \end{aligned}$$

whence, $\mu(x) \leq n^{1/2} b_2^{-1} b(x)$. Therefore, $b_n^{-1} \leq n^{1/2} b_2^{-1}$, or, $b_n \geq n^{-1/2} b_2$. Similarly, we have another proof of Theorem 1a, which we leave as an exercise.

REMARK 3. We may show that $c_b \ge b_2^{-1} = 2.11 \cdots$. Actually, $\mu(f) \le c_b b(f)$, together with Proposition 1, shows that $c_b \ge b_2^{-1}$. As a consequence, we further obtain

$$c_{\mu} \geq b_{2}^{1/2} c_{b} \geq b_{2}^{-1/2} \geq 1.45 \cdots$$

In conclusion,

$$2.11 \cdots \leq c_b < 3.46 \cdots,$$
$$1.45 \cdots \leq c_{\mu} \leq 2.62 \cdots.$$

§ 5. Integral criteria.

We shall show that $x: D \rightarrow \mathbb{R}^n$ is Bloch if and only if x is of bounded mean oscillation in D, that is,

$$\sup_{\substack{a \in D \\ 0 < \rho \leq 1}} mD(a, \rho)^{-1} \iint_{D(a,\rho)} |x(w) - x(a)| \, du \, dv < \infty$$

c c

where

$$\begin{split} D(a, \rho) = &\{ |w-a| < \rho(1-|a|) \}, \\ mD(a, \rho) = &\pi \rho^2 (1-|a|)^2, \text{ the area of } D(a, \rho). \end{split}$$

We shall actually prove much more.

THEOREM 6. For $x: D \rightarrow \mathbf{R}^n$ the following are mutually equivalent.

- (B) x is Bloch.
- (C) There exists c > 0 such that

$$\sup_{a \in D} mD(a, 1)^{-1} \iint_{D(a, 1)} \exp(c |x(w) - x(a)|) du dv < \infty$$

(D) There exists ρ , $0 < \rho < 1$, such that

$$\sup_{a \in D} mD(a, \rho)^{-1} \iint_{D(a, \rho)} \log |x(w) - x(a)| \, du \, dv < \infty \; .$$

As will be apparent, we may say that (C) is the strongest and (D) is the weakest condition in integrals; the case n=2 in Theorem 6 yields criteria for a holomorphic function in D to be Bloch.

Postponing the proof of the theorem we show that $(C) \Rightarrow (A) \Rightarrow (D)$. As will be proved later in Lemma 5.1, $\log |x - x(a)|$ is subharmonic in D. Therefore,

$$|x-x(a)|^p = \exp(p \log |x-x(a)|), \quad p>0,$$

 $\exp(c |x-x(a)|), \quad c>0,$

are subharmonic in D. With the aid of

$$\log X \leq X \leq c^{-1} e^{cX} , \qquad X \geq 0 ,$$

and the fact that, for a fixed $a \in D$, the area mean in $D(a, \rho)$ of a subharmonic function in D is a nondecreasing function of $\rho(1-|a|)$, hence of ρ , [Rd, p. 8], we have $(C) \Rightarrow (A) \Rightarrow (D)$.

LEMMA 5.1. For $x: D \rightarrow \mathbb{R}^n$, and for each fixed $x_0 \in \mathbb{R}^n$, $\log |x-x_0|$ is a subharmonic function in D.

PROOF. See [BR, p. 653] for the case n=3. We may suppose that $n \ge 3$ and $x_0=0$. Since $\log |x(w)|=-\infty$ if x(w)=0, we consider w with $x(w) \ne 0$. At this point, we have

(5.1)
$$2^{-1} |x|^4 \Delta \log |x| = |x_u|^2 |x|^2 - (xx_u)^2 - (xx_v)^2.$$

To prove $\Delta \log x \ge 0$ at w, we may further assume that $x_u(w) \ne 0$. Let e_1, \dots, e_n be an orthonormal basis in \mathbb{R}^n such that

$$e_1 = \frac{x_u(w)}{|x_u(w)|}$$
, $e_2 = \frac{x_v(w)}{|x_v(w)|}$.

Let

$$x(w) = \sum_{j=1}^{n} c_{j} e_{j}$$
 .

In view of (1.2) we observe that the right-hand side of (5.1) at w is

$$|x_{u}|^{2}\left(\sum_{j=3}^{n}c_{j}^{2}\right)\geq 0$$
.

PROOF OF THEOREM 6. (B) \Rightarrow (C). There exists c>0 with $c\mu<2$, $\mu=\mu(x)$. For each fixed $a \in D$,

$$w = a + (1 - |a|)\zeta \in D(a, 1) \iff \zeta \in D$$
.

Therefore,

$$|\phi_{-a}(w)| = \frac{|w-a|}{|1-\bar{a}w|} \leq |\zeta|$$
,

and for each $w \in D(a, 1)$,

(5.2)
$$|x(w)-x(a)| \leq \mu \tanh^{-1} |\phi_{-a}(w)| \leq \mu \tanh^{-1} |\zeta|$$

so that

$$\exp(c|x(w)-x(a)|) \leq \left(\frac{1+|\zeta|}{1-|\zeta|}\right)^{c\mu/2}$$

Consequently,

$$mD(a, 1)^{-1} \iint_{D(a, 1)} \exp(c |x(w) - x(a)|) du dv$$

$$\leq \pi^{-1} \iint_{D} \left(\frac{1 + |\zeta|}{1 - |\zeta|} \right)^{c \mu/2} d\xi d\eta , \qquad \zeta = \xi + i\eta ;$$

the right-hand side is a positive constant independent of a, so that (C) holds.

Since $(C) \Rightarrow (D)$ is trivial by Lemma 5.1, it remains to be proved that $(D) \Rightarrow (B)$. Let K be the supremum in (D). To estimate $(1-|a|^2)|x_*(a)|$ at a, we note that $-\infty \leq \log |x_*(a)| < +\infty$. It then follows from (1.2) that

(5.3)
$$\frac{|x(w)-x(a)|}{|w-a|} \to |x_u(a)| \quad \text{as} \quad w \to a \; .$$

 \mathbf{Set}

$$V(w) = \log |x(w) - x(a)| - \log |w - a|$$

for $w \in D \setminus \{a\}$. Then, V is subharmonic in $D \setminus \{a\}$ and is bounded from above in a small punctured disk $\{0 < |w-a| < r\}$. From M. Brelot's removable singularity theorem [Rd, Section 7.15, p. 48] it follows that we may define V(a) so that V is subharmonic in the whole disk D. By the upper semicontinuity of V at a, we then have by (5.3),

$$\log |x_u(a)| \leq V(a)$$

Therefore,

(5.4)
$$\log |x_{u}(a)| \leq V(a) \leq mD(a, \rho)^{-1} \iint_{D(a,\rho)} V(w) du dv$$
$$= mD(a, \rho)^{-1} \iint_{D(a,\rho)} \log |x(w) - x(a)| du dv$$
$$-\log(1 - |a|)\rho + 2^{-1},$$

whence

$$|x_u(a)| \leq e^{1/2+K} \{ (1-|a|)
ho \}^{-1}$$
 , or ,
 $(1-|a|^2) |x_u(a)| \leq 2
ho^{-1} e^{1/2+K}$,

which completes the proof of the theorem.

REMARK 1. It would be of interest to compare

$$||x|| \equiv \sup_{a \in D} mD(a, 1)^{-1} \iint_{D(a,1)} |x(w) - x(a)| dudv$$

with $\mu(x)$; the result is

(5.5)
$$2^{-1}e^{-1/2}\mu(x) \leq ||x|| \leq \mu(x) .$$

Suppose that $\mu = \mu(x) < \infty$. It then follows from (5.2) that at each $a \in D$,

$$mD(a, 1)^{-1} \iint_{D(a, 1)} |x(w) - x(a)| du dv$$

$$\leq \mu \pi^{-1} \iint_{D} \tanh^{-1} |\zeta| d\xi d\eta = \mu ,$$

whence the right-hand side of (5.5) follows.

Suppose next that $||x|| < \infty$. At each point *a*, and for $0 < \rho < 1$, it follows from (5.4) that

$$|x_{*}(a)| = \exp \log |x_{*}(a)|$$

$$\leq (1 - |a|)^{-1} \rho^{-1} e^{1/2} m D(a, \rho)^{-1} \iint_{D(a,\rho)} |x(w) - x(a)| du dv$$

$$\leq (1 - |a|)^{-1} \rho^{-1} e^{1/2} ||x|| ,$$

whence

$$(1-|a|^2)|x_{u}(a)| \leq 2\rho^{-1}e^{1/2}||x||$$
.

Letting $\rho \rightarrow 1$ we obtain the left-hand side of (5.5).

REMARK 2. We have the following Schwarz lemma:

For
$$x: D \rightarrow \mathbb{R}^n$$
, bounded, $|x| < 1$, in D, with $x(0) = 0$
(5.6) $|x(w)| \leq |w|$

holds for each $w \in D$ and $|x_u(0)| \leq 1$. The equality in (5.6) holds for a w_0 , $0 < |w_0| < 1$, or $|x_u(0)| = 1$ if and only if x maps D one-to-one onto a unit disk lying in a plane.

See [BR, pp. 656-657] for the case n=3. The subharmonic function V in D for the present x with a=0 (hence, $-\infty \leq \log |x_{*}(0)| \leq V(0)$) considered in the proof of Theorem 6 has the nonpositive supremum in D. Hence, $\log |x(w)| \leq \log |w|$ for 0 < |w| < 1, and $\log |x_{*}(0)| \leq 0$. The "if" part in the second half is obvious because x can be considered as a holomorphic or antiholomorphic function in D after a rotation of the plane about the origin. To prove the "only if" part, we first note that $V(w) \equiv 0$ by the maximum principle, whence $|x(w)|^2 \equiv |w|^2$. Then, for an admissible system (f_1, \dots, f_n) for x we have

$$2\sum |f'_{j}(w)|^{2} = 4 |x_{u}(w)|^{2} = \Delta(|x(w)|^{2}) = 4$$
.

Therefore, $f_j(w) \equiv c_j w + d_j$, where $c_j = \alpha_j + i\beta_j$ and d_j are constants with Re $d_j = 0$ by x(0) = 0 $(1 \leq j \leq n)$, and

$$\sum (\alpha_j^2 - \beta_j^2 + 2i\alpha_j\beta_j) \equiv \sum (f'_j(w))^2 \equiv 0$$
.

Thus, $x_j(w) = \alpha_j u - \beta_j v$, $1 \le j \le n$, so that, x(D) is contained in the plane generated by the (real) orthonormal vectors

$$(\alpha_1, \cdots, \alpha_n)$$
 and $(\beta_1, \cdots, \beta_n)$.

BLOCH CONSTANTS

After a suitable rotation, we can regard x as a holomorphic or antiholomorphic function, and the Schwarz lemma in the complex analysis now shows the conclusion.

Added in proof.

On the basis of pp. 184-185 in D. Gnuschke-Hauschild and C. Pommerenke's paper: "On Bloch functions and gap series", J. reine angew. Math. 367 (1986), 172-186, the sentence citing Pommerenke's paper just after the display (4.6) should be deleted.

References

- [A1] L. V. AHLFORS, An extension of Schwarz's lemma, Trans. Amer. Math. Soc., 43 (1938), 359-364.
- [A2] L. V. Ahlfors, Conformal Invariants—Topics in geometric function theory, McGraw-Hill, New York, 1973.
- [AG] L. V. AHLFORS and H. GRUNSKY, Über die Blochsche Konstante, Math. Z., 42 (1937), 671-673.
- [B] E. F. BECKENBACH, Bloch's theorem for minimal surfaces, Bull. Amer. Math. Soc., 39 (1933), 450-456.
- [BB] E. F. BECKENBACH and R. BELLMAN, Inequalities, Springer-Verlag, Berlin, 1965.
- [BR] E.F. BECKENBACH and T. RADÓ, Subharmonic functions and minimal surfaces, Trans. Amer. Math. Soc., **35** (1933), 648-661.
- [H1] M. HEINS, A class of conformal metrics, Bull. Amer. Math. Soc., 67 (1961), 475-478.
- [H2] M. HEINS, On a class of conformal metrics, Nagoya Math. J., 21 (1962), 1-60.
- [L] E. LANDAU, Über die Blochsche Konstante und zwei verwandte Weltkonstanten, Math.
 Z., 30 (1929), 608-634.
- [N] J. C. C. NITSCHE, Vorlesungen über Minimalflächen, Springer-Verlag, New York, 1975.
- [0] R. OSSERMAN, A Survey of Minimal Surfaces, Van Nostrand Reinhold, New York, 1969.
- [P] C. POMMERENKE, On Bloch functions, J. London Math. Soc., 2 (1970), 689-695.
- [Rd] T. RADÓ, Subharmonic Functions, Springer-Verlag, Berlin, 1937.
- [Rm] H. RADEMACHER, On the Bloch-Landau constant, Amer. J. Math., 65 (1943), 387-390.
- [Rb] R. M. ROBINSON, Bloch functions, Duke Math. J., 2 (1936), 453-459.
- [Ry] H. L. ROYDEN, Real Analysis, MacMillan, New York, 1963.
- [SW] W. SEIDEL and J. L. WALSH, On the derivatives of functions analytic in the unit circle and their radii of univalence and of *p*-valence, Trans. Amer. Math. Soc., 52 (1942), 128-216.
- [Y1] S. YAMASHITA, Criteria for functions to be Bloch, Bull. Austral. Math. Soc., 21 (1980), 223-227.
- [Y2] S. YAMASHITA, Area criteria for functions to be Bloch, normal, and Yosida, Proc. Japan Acad., **59** (1983), 462-464.
- [Y3] S. YAMASHITA, Constants for Bloch, normal, and Yosida functions, Math. Japonica, **30** (1985), 405-418.
- [Y4] S. YAMASHITA, Normality and the Shimizu-Ahlfors characteristic function, Ann. Acad. Sci. Fenn. Ser. AI Math., 11 (1986), 207-213.

Present Address:

DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY FUKAZAWA, SETAGAYA-KU, TOKYO 158, JAPAN