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Abstract. A weighted endomorphism of an algebra is an endomorphism followed by a
multiplier. In [6] and [4], H. Kamowitz characterized compact weighted endomorphisms of
C(X) and the disc algebra. In this note we define a weighted composition operator on a
function algebra as a generalization of a weighted endomorphism, and characterize compact
weighted composition operators on a function algebra satisfying a certain condition [Theorem
2]. This theorem not only includes Kamowitz’s results as corollaries, but also has an appli-
cation to compact weighted composition operators on the Hardy class H>(D).

Introduction.

Let A be a function algebra on a compact Hausdorff space X, that
is, a uniformly closed subalgebra of C(X) which contains the constants and
separates the points of X. By M, we denote the maximal ideal space
of A and by M2 the union of M, and the zero functional # on A. Then
M9 is considered as a subset of the dual space of A, so M3 is equipped
with the relative topologies induced by the weak* topology and norm
topology respectively. We shall understand M% is given the weak*
topology unless otherwise qualified. For each fe A, we put f(fm,)=m(f)
for any m € M<, and supp f={x € X: f(x)*0}. Note that supp.f is open.

A weighted endomorphism of an algebra is defined to be a linear oper-
ator which is an endomorphism followed by a multiplier. Thus, if B is
an algebra, then T is a weighted endomorphism of B if there are an ele-
ment 4 in B and an endomorphism S of B such that

Tf=u-Sf feB.

Recently, weighted endomorphisms for various algebras were studied by
Kamowitz ([4] and [6]) and Kitover ([7]).
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If S is an endomorphism of a function algebra A, then S has the
representation;

Sf@)=F@(x) xeX, feA,
for some continuous map @ from X into M<=. In fact, @ is given by
O(x)=S8*(Z) zxeX,

where S* is the adjoint of S and # is the evaluation functional at x, i.e.,
Z(f)=f(x) for each fc A. (We note that when S1=1, ® maps X into
M,.) Consequently, a weighted endomorphism T of A has the form;

Tf(x)=u(x)f(®(x)) =xeX, feA,

for some uc A and some continuous map @ from X into M%. The map
T will be denoted by uC,.

Now we define weighted composition operators, which involve weighted
endomorphisms.

DEFINITION. Let T be a bounded linear operator from A to A. We
call T a weighted composition operator on A if there are an element
in A and a continuous map @ from supp « into M3 such that

uw(@) f(px))  «esuppu

Ti@)= {O x € X\supp u

for each fe A. We write uC, for T.

In this paper we discuss compact weighted composition operators on
a function algebra. A linear operator T on a Banach space B is called
compact if, for the unit ball B, of B, TB, is relatively compact in B.
We begin with the following lemma.

LEMMA 1. Let uC, be a weighted composition operator on A. uC,
18 compact if and only if ¢ is a continuous map from supp u into M
with respect to the norm topology.

PROOF. Put A,={f € A:| f||=<1}. The compactness of uC, implies that
uC,A, is relatively compact in A4, and so is in C(X). By the Ascoli-Arzeld
theorem, it is equivalent to the fact that uC,A, is equicontinuous, that is,

(1) ?E}Z [uCof () —uC, f ()] — 0

as r,—z in X,
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Let uC, be a compact operator. For any z, x, € supp %, we have
o) —p@)| =—1—-Hu<x>sz><x,,> —u(@)p(@)||

(lux) —ux,)| || + |l ulr)e(@.) —u@)p)])

<
l(l
1
I(I

By the continuity of # and (1), ||¢(x,) —@(x)|| —0 as x,—«. This proves
the “only if” part of the lemma.

Conversely, assume that ¢ is a continuous map from supp u into M3
with the norm topology. We shall show (1). Suppose x € X and {x,} is
a net with z,—x. If xesuppu«, we can assume that {x,}Csupp u, be-
cause supp # is open. Then we have

sup [uCof (0,) —uCof ()| = || () P(2,) — u(x)P()|
=lux,)| |p@,) — @) + [u@w.) —ux)| [Pl
=llull llpa) — @) + [u(@,) —u(x)| —0

(Julw) —ule,)] +sup [uCof (20,) —uCof (2)]) .

as x,—«. On the other hand, if x ¢ supp «,

sup [uCo f (x,) —uCof ()| = sup [uCof(,)|
_ {lu(wa)l lp(@s)| < |u(z,)]  when =,€suppu
o when x,¢suppu .

Hence supye, |[uCof () —uCof(x)|—0 as x,—2. Thus the lemma is proved.

§1. Relations to Gleason parts.

In this section we investigate relations between compact weighted
composition operators and Gleason parts.

It is known that M, is divided into (Gleason) parts {P,} for A, as
follows;

MA=UP0,, Paan':@ (a;&B)-

The part P containing m,c M, is defined by

Clearly, each part is open in M, with the norm topology, and is therefore
open in M with the norm topology. Since {¢} is so, we consider {6} as
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a part for A. Thus we divide M into parts, and each part is open
and closed in MS with the norm topology.

THEOREM 1. Let uC, be a wetghted composition operator on A. If
uC, 18 compact, then for each commected component C of suppu, there
exist an open set VCsuppu and a part P for A such that

ccv, p(V)CP.

Proor. Let C be a connected component of suppu, and fix x,€C.
Then o(x,) belongs to some part P for A. Put V={x €supp u: ¢(x) € P}.
By Lemma 1, @ is a continuous map from supp # into M with the norm
topology, and P is open and closed in MS with the norm topology. It
follows that V is open and closed in supp#. Now suppose CZV. Then
the disconnection C=(CN V)U(CN(supp % \V)) induces a contradiction.
Hence Cc V, concluding the proof.

Next we consider the converse to Theorem 1. The following lemma
is easy.

LEMMA 2. Let uC, be a weighted composition operator on A. Sup-
pose that for each commected component C of supp u, there exist an open
set VCsuppu and an element m € M3 such that

(2) ccVv, Ply=m .
Then uC, is compact.

ProoOF. Let z,csupp . For the connected component C containing
x,, choose an open set V satisfying (2). Then x,€ V and ||p(x)—p(x,)| =
||lm—m| =0 for every x€ V. Hence @ is a continuous map from supp u
into M with the norm topology. The lemma follows from Lemma 1.

According to this lemma, when each part for A is a one-point part —
for example, when A=C(X)—, the converse to Theorem 1 is true. If
there exists a non-trivial part, does the converse to Theorem 1 hold?

Let P be a non-trivial part. We say that P satisfies the condition
(a) if P has the following property;

() for any m € P, there are some open neighborhood U(m) of
m in P and a homeomorphism p from a polydise D" (a disec if
n=1, n depends on U(m)) onto U(m) such that fop is an analytic
function on D" for all fe A.

This condition was introduced in Ohno and Wada [8]. See [8] for simple
examples.
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THEOREM 2. Suppose that every non-trivial part for A satisfies (a).
Let uC, be a weighted composition operator on. A. Then uC, is compact
if and only if for each connected component C of supp u, there exist an
open set VCsuppu and a part P for A such that

ccv, Pp(V)CP.

PrROOF. Since the “only if” part is obvious (Theorem 1), we prove
the “if” part. To prove that u4C, is compact, it suffices to show that ¢
is a continuous map from supp % into M<$ with the norm topology.

Let x,esuppu. By hypothesis, we can find an open set VCsupp «
such that

2V, p(V)CP,

where P is a part for A. If Pis a one-point part, we have already proved
in Lemma 2 that ¢ is continuous at z, with respect to the norm topology.
So, let us suppose P is non-trivial. By the definition of weighted compo-
sition operators, ¢ is a continuous map from suppu into M$ with the
weak* topology. Hence we only show that the identity map + from P
with the weak* topology onto P with the norm topology is continuous
at o(x,).

Put m,=9(x,). By (a), there are a neighborhood U(m,) and a homeo-
morphism o from D" onto U(m,) such that fop is analytic in D" for all
feA. The Montel theorem says that ¥ ={g:g is analytic in D" and
llgll«=1} is equicontinuous, that is, for any >0, there exists a neighbor-

hood W (cD") of {,=p *(m, such that |g({)—g(,)|<e for all € W and
all ge 2. Hence, for each m=p() € o(W),

llgr(m) —r(mo)|| = ||m —m||
=sup{lm(f)—m«f) : fe 4, [[fll=1}
=sup{|F(0(Q)— Fel) : Fe 4, I f| <1}
=sup{lgQ)—9()|: ge Fl=e.

Since po(W) is a weak*-neighborhood of m,, r is continuous.

§2. Theorems of Kamowitz.

Kamowitz ([6] and [4]) characterized compact weighted endomorphisms
of C(X) and the disc algebra. We shall prove two theorems due to
Kamowitz as corollaries of Theorem 2. One of them is:

COROLLARY 1 (Kamowitz [6]). Let uC, be a weighted endomorphism
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of C(X). Then uC, is compact if and only if for each commected com-
ponent C of supp u, there exists an open set VO C such that @ is constant

on V.

PrROOF. The statement follows immediately from Theorem 2, since
each point of My, =X is a one-point part.

The other theorem deals with compact weighted endomorphisms of
the disc algebra. Recall that the disc algebra A(D) is the algebra of
funections analytic in the open unit disc D and continuous on D. We
know that M, =D, and that D and each boundary point of D are parts
for A(D). Note that D satisfies ().

Let 4C, be a non-zero weighted endomorphism of A(D). As we saw
in the introduction, @ is determined by a certain endomorphism S of A(D).
Since S cannot be a zero operator, S1=1 holds. Therefore @ is a map
from D into M,;5. Thus @ is considered as a continuous function from

D into D such that
S =r(@®Q) teD, feAWD).
By taking f to be the coordinate function, we have @ ¢ A(D).

COROLLARY 2 (Kamowitz [4]). Let uC, be a non-zero weighted endomor-
phism of A(D). Then uC, is compact if and only if one of the following
holds:

(i) @ 1s constant.

(i) |9)|<1, whenever u({)+0.

PrOOF. Since u € A(D) and u#0, the set {{ e D:u({)=0} has no ac-
cumulation points in D. It follows that suppu=D\{{eD: u()=0} is
(arcwise) connected. Thus Theorem 2 implies that #C, is compact if and
only if there exists a part P for A(D) such that

(3) d(supp u)CP.

If Pin (8) is trivial, that is, a boundary point of D, the fact that supp u=D
and the continuity of @ show (i). On the other hand, in the case of P=D,

(8) is equivalent to (ii).

§3. Weighted composition operators on H*(D).

Compact composition operators on Hardy class H*(D) were discussed
in Swanton [9]. We here consider compact weighted composition operators

on H>(D) as an application of §1.
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Let D be the open unit disc in the complex plane C and H®(D) be
the algebra of bounded analytic functions on D with the supremum norm.
For any u € H*(D) and any analytic function ¢ from D into D, the weighted
composition operator uC, on H=(D) is defined by

uCof (O =ul@)f(@®) LeD, feH=D).

A weighted composition operator on H>=(D) is a bounded linear operator
on H~(D).

THEOREM 3. Let uC, be a weighted composition operator on H>(D).
Then uC, is compact if and only if (E)CD whenever ECD satisfies

(4) inf{lu(®)|: L e E}>0.

Before proving the theorem, we make a few remarks on H*(D). Let
M be the maximal ideal space of H*(D), and set H>={f: fe H*(D)}, where
f is the Gel’fand transform of f. Then H= is a function algebra on the
maximal ideal space M of H=.

For each { e D, denote by £ the evaluation functional at  defined by
E)=F) for all fe H*(D). Put ©2={{:{eD}). For each {edD, the
boundary of D, let M.={m e M: m(z)=_} be the fiber over {. Here z is
the coordinate function. Then we have that

M==2U UM,.

{edD

Each fiber M, ({eoD) is a peak set for H=. In other Woriis, there exists
some fe€ H*(D) such that f is equal to 1 on M; while |f(m) <1 for all
me M\ M,. This shows that & is a part for H*. On the other hand,

the corona theorem [1, p. 34] tells us that & =M, where —** denotes
the weak*-closure in M.

Now we determine a weighted endomorphism of A= corresponding to
a weighted composition operator uC, on H*(D). Define a continuous map
@ from M into M by

o(m)(f)=m(fop) [feH(D), meM
(note that foep e H*(D)). Then we have
~ N
o) =p(8) CeD,
~ PN
fe@=fop  feHD).

Hence we want to determine a weighted endomorphism #C, of B> as
follows;



126 HIROYUKI TAKAGI
A@Cof M)=A(m)F(@(m)) meM, FfeH~.

Of course, @#C, is compact if and only if «C, is compact.
We return to the proof of Theorem 3.

PrOOF. We may assume that w#0, otherwise there is nothing to
prove. We first observe that supp #={m € M: #(m)+#0} is connected. If
not, supp # has a disconnection supp #=W,U W,. Since "' =M, this
yields another disconnection;

ez:ad)=0=(2nWy)u(@nWw,),

which implies that {{ e D: u({)#0} is not connected. But { e D: u({)=0}
is connected because {{ € D: u({)=0} is discrete in D. This contradiction
shows that supp % is connected.

Suppose that uC, is compact. Since #C, is also compact, we can apply
Theorem 1 to #C,. Thus we find a part P for A such that @&(supp #)C P
(note that supp @ is connected). For any £ e 2 Nsupp @, we have @)=
go/(E)e@. So P must be &. Hence &(supp #)Cc =Z.

Next assume that EcCD satisfies (4). Since £={{:{ e E)} satisfies
d=inf{|f(m)|: m € £}>0, min{|@(m)|: m € £**}=6>0 holds. It implies that
@ —supp 4. Thus we obtain that

D(L) (L") CP(supp &) C = .

Since ®(**) is compact, #(F)"* =, that is, p(E)cD.

Conversely assume that @(E)cD for any EcD satisfying (4). We
must show that uC,, and therefore #C, is compact. By Lemma 1, it
suffices to show that @ is a continuous map from supp # into M with
the norm topology.

Suppose m, € supp #4. Since &' =M, there is a net {{,} in D such
that £, converges to m, with respect to the weak* topology. Further-
more we can assume that inf,|u({,)|>0, because #(m,)#0. Then by the
assumption on @, we have {p({,)}cD. Hence

O(mo)(2)=my(zo @) =my(@)=lim L(p) =lim pC) € D .

Put {,=®(m,)(z), that is, {,=®(m,. By Montel’s theorem, we find a
neighborhood W of {, in D such that |f({)— f()|<e for all e W and
fe€ H*(D) satisfying ||f||<1. Set U={mesuppi:P®(m)z)e W}. U is a
weak*-neighborhood of m, in supp %, and for each m e U, we have
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| @(m) — D (m,)||
=sup{|@(m)(f) —@(m,)(f)|: f € H*(D), || fl|=1}
=sup{|Z(f)—&()I: f e H=(D), || fl|=1}
=sup{|f(O)—fl: fe H*(D), ||fll=1}=e,

where {=0(m)(z) e W, i.e., C=0(m). Hence @ is continuous at m, as a
map from supp # into M with the norm topology. The theorem is proved.

Theorem 3 remains, with the same proof, true for H*(D) on a domain
D such that

(i) for each boundary point £ of D, the fiber over { is a peak set
for H>; .

(ii) <= is dense in the maximal ideal space of H>(D).

§4. A counter-example.

In this section we give a counter-example to the question: does the
converse to Theorem 1 hold?

If every part for A satisfies («), Theorem 2 answered “yes”. But,
for the general case, the answer is “no”. Indeed, there exist a funetion
algebra A and a weighted composition operator uC, on A such that

(i) for each connected component C of suppu, there are an open
set VCsupp# and a part P for A such that

CcVv, p(V)CP;

(ii) uC, is not compact.

First we construet a function algebra A, according to Garnett [2].

Fix a positive irrational number «, and let A, be the function algebra
on the torus 72 generated by the functions {2722: n, m integers, n+ma=0}.
Here z7zp is defined by 2722, &,)=C¥¢™ for all (£, {)e T? It is known
that MAJ_:{(CD §.)eC: ]C1L§1; &l =18,]%}

Next recall that A(D) denotes the disc algebra on the closed unit dise
D. 1In addition, let I=[1/2, 1] (closed interval), and set

A,={heCIxD):h, -)e A(D) for each telI,
h|ixiy is constant} .

If we denote by Ix D/~ the quotient space of Ix D identifying the points
in Ix{0}, A, is a function algebra on IxD/~, and M,,=IxD/~.

Let A,®A, be the function algebra on M, x M,, generated by the
functions of the form; .
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g®h’(C1, Czy t; C)=g(C1y Cz)h(ty C) (Cv Czr t’ C) € MA1XMA2 ’

where ge A, and he A,. It is easily seen that M g, =M, X M,,.
Set J={(,, &,) € T*: Re{,=<0} and

X={{Cy Lo t, D) e Mug4,: (&, &) eJ or t=E}.

X is a compact subset of M, g, Define A by the uniform closure on X
of {flx:feA,®A,}. Clearly A is a function algebra on X. Furthermore
we can show that M, =X and that

Q={(0,0,¢t, t)eM,:1/2=5t<1}

is a part for A. For the details, see [2].
We are now in a position to define a weighted composition operator
uC, on A satisfying (i) and (ii). Set

u(Cu Cz, t’ C)::C ’ q’(Cn Czr t’ C)=(O’ 0’ §i3l’ %’1'.'>

€y Csnt, OeX.

Clearly, uc€ A, and @ is a continuous map from X into X=M,. Then u
and @ determine a weighted composition operator uC, as follows;

(5) ucsof(cu Cz; t; C)=u(C1, Cz» t’ C)f(q)(Clr CZ) t; C))
_ t+1 t+1
=cf(0, 0, 18, 1)

C,Cyt, 0eX, feA.
Note that

P(X)={(0,0,¢t,t) e X=M,:1/2<t<2/3}CQ .
If we take V=supp« and P=Q, it follows that
ccVv, p(V)CP,

for each connected component C of supp #. This implies (i).

Finally we shall show (ii). By the Ascoli-Arzeld theorem, it suffices
to show that uC,A4, is not equicontinuous at some point of X, where A,
is the unit ball of A. Fix (%, %, 8, 8,) € X. For any sel (s#*s,), we can
construct F, € C([1/2, 2]) such that

IFl=%. F@=0, F@=1,

and set
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_LF,3t—1)
Fil Gt O=S0EI @Gt DX

Then we have f,e€ A and ||f,]|Z1, i.e., f,€A,. Moreover, by (5),

SO

wCof (Cor Co t, c>=£ﬁ%ﬁ Gt OeX,

uC¢f.(771, 725 Sos 8)=F,(s,)=0,
%C,af,(Y]l, M2 8y s)=F,(s) =% .

By taking (%, 7, s, ) near to (7, 9., S, S,), we see that uC,A, is not
equicontinuous at (9, 7,, 8, 8)-
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