Токуо Ј. Матн. Vol. 11, No. 1, 1988

Compact Weighted Composition Operators on Function Algebras

Hiroyuki TAKAGI

Waseda University

Dedicated to Professor Junzo Wada on his 60th birthday

Abstract. A weighted endomorphism of an algebra is an endomorphism followed by a multiplier. In [6] and [4], H. Kamowitz characterized compact weighted endomorphisms of C(X) and the disc algebra. In this note we define a weighted composition operator on a function algebra as a generalization of a weighted endomorphism, and characterize compact weighted composition operators on a function algebra satisfying a certain condition [Theorem 2]. This theorem not only includes Kamowitz's results as corollaries, but also has an application to compact weighted composition operators on the Hardy class $H^{\infty}(D)$.

Introduction.

Let A be a function algebra on a compact Hausdorff space X, that is, a uniformly closed subalgebra of C(X) which contains the constants and separates the points of X. By M_A we denote the maximal ideal space of A and by M_A^{∞} the union of M_A and the zero functional θ on A. Then M_A^{∞} is considered as a subset of the dual space of A, so M_A^{∞} is equipped with the relative topologies induced by the weak^{*} topology and norm topology respectively. We shall understand M_A^{∞} is given the weak^{*} topology unless otherwise qualified. For each $f \in A$, we put $\hat{f}(m) = m(f)$ for any $m \in M_A^{\infty}$, and $\operatorname{supp} f = \{x \in X: f(x) \neq 0\}$. Note that $\operatorname{supp} f$ is open.

A weighted endomorphism of an algebra is defined to be a linear operator which is an endomorphism followed by a multiplier. Thus, if B is an algebra, then T is a weighted endomorphism of B if there are an element u in B and an endomorphism S of B such that

$$Tf = u \cdot Sf \qquad f \in B$$
.

Recently, weighted endomorphisms for various algebras were studied by Kamowitz ([4] and [6]) and Kitover ([7]).

Received June 1, 1987 Revised September 1, 1987

If S is an endomorphism of a function algebra A, then S has the representation;

$$Sf(x) = \widehat{f}(\Phi(x))$$
 $x \in X$, $f \in A$,

for some continuous map Φ from X into M_A^{∞} . In fact, Φ is given by

$$\Phi(x) = S^*(\hat{x}) \qquad x \in X$$
,

where S^* is the adjoint of S and \hat{x} is the evaluation functional at x, i.e., $\hat{x}(f) = f(x)$ for each $f \in A$. (We note that when S1=1, Φ maps X into M_A .) Consequently, a weighted endomorphism T of A has the form;

$$Tf(x) = u(x)\widehat{f}(\Phi(x))$$
 $x \in X$, $f \in A$,

for some $u \in A$ and some continuous map Φ from X into M_A^{∞} . The map T will be denoted by uC_{Φ} .

Now we define weighted composition operators, which involve weighted endomorphisms.

DEFINITION. Let T be a bounded linear operator from A to A. We call T a weighted composition operator on A if there are an element u in A and a continuous map φ from supp u into M_A^{∞} such that

$$Tf(x) = \begin{cases} u(x)\hat{f}(\varphi(x)) & x \in \text{supp } u \\ 0 & x \in X \setminus \text{supp } u \end{cases}$$

for each $f \in A$. We write uC_{φ} for T.

In this paper we discuss compact weighted composition operators on a function algebra. A linear operator T on a Banach space B is called compact if, for the unit ball B_0 of B, TB_0 is relatively compact in B.

We begin with the following lemma.

LEMMA 1. Let uC_{φ} be a weighted composition operator on A. uC_{φ} is compact if and only if φ is a continuous map from supp u into M_A^{∞} with respect to the norm topology.

PROOF. Put $A_0 = \{f \in A : ||f|| \leq 1\}$. The compactness of uC_{φ} implies that $uC_{\varphi}A_0$ is relatively compact in A, and so is in C(X). By the Ascoli-Arzelà theorem, it is equivalent to the fact that $uC_{\varphi}A_0$ is equicontinuous, that is,

$$(1) \qquad \qquad \sup_{f \in A_0} |uC_{\varphi}f(x_{\alpha}) - uC_{\varphi}f(x)| \to 0$$

as $x_{\alpha} \rightarrow x$ in X.

WEIGHTED COMPOSITION OPERATORS

Let uC_{φ} be a compact operator. For any $x, x_{\alpha} \in \text{supp } u$, we have

$$\begin{split} |\varphi(x_{\alpha}) - \varphi(x)|| &= \frac{1}{|u(x)|} ||u(x)\varphi(x_{\alpha}) - u(x)\varphi(x)|| \\ &\leq \frac{1}{|u(x)|} (|u(x) - u(x_{\alpha})| ||\varphi(x_{\alpha})|| + ||u(x_{\alpha})\varphi(x_{\alpha}) - u(x)\varphi(x)||) \\ &\leq \frac{1}{|u(x)|} (|u(x) - u(x_{\alpha})| + \sup_{f \in A_0} |uC_{\varphi}f(x_{\alpha}) - uC_{\varphi}f(x)|) . \end{split}$$

By the continuity of u and (1), $\|\varphi(x_{\alpha}) - \varphi(x)\| \to 0$ as $x_{\alpha} \to x$. This proves the "only if" part of the lemma.

Conversely, assume that φ is a continuous map from $\sup u$ into M_A^{∞} with the norm topology. We shall show (1). Suppose $x \in X$ and $\{x_{\alpha}\}$ is a net with $x_{\alpha} \rightarrow x$. If $x \in \sup u$, we can assume that $\{x_{\alpha}\} \subset \sup u$, because $\sup u$ is open. Then we have

$$\sup_{f \in \mathcal{A}_0} |uC_{\varphi}f(x_{\alpha}) - uC_{\varphi}f(x)| = ||u(x_{\alpha})\varphi(x_{\alpha}) - u(x)\varphi(x)||$$

$$\leq |u(x_{\alpha})| ||\varphi(x_{\alpha}) - \varphi(x)|| + |u(x_{\alpha}) - u(x)| ||\varphi(x)||$$

$$\leq ||u|| ||\varphi(x_{\alpha}) - \varphi(x)|| + |u(x_{\alpha}) - u(x)| \to 0$$

as $x_{\alpha} \rightarrow x$. On the other hand, if $x \notin \text{supp } u$,

$$\sup_{f \in A_0} |uC_{\varphi}f(x_{\alpha}) - uC_{\varphi}f(x)| = \sup_{f \in A_0} |uC_{\varphi}f(x_{\alpha})|$$
$$= \begin{cases} |u(x_{\alpha})| \ ||\varphi(x_{\alpha})|| \leq |u(x_{\alpha})| & \text{when } x_{\alpha} \in \text{supp } u \\ 0 & \text{when } x_{\alpha} \notin \text{supp } u \end{cases}.$$

Hence $\sup_{f \in A_0} |uC_{\varphi}f(x_{\alpha}) - uC_{\varphi}f(x)| \to 0$ as $x_{\alpha} \to x$. Thus the lemma is proved.

§1. Relations to Gleason parts.

In this section we investigate relations between compact weighted composition operators and Gleason parts.

It is known that M_A is divided into (Gleason) parts $\{P_{\alpha}\}$ for A, as follows;

$$M_{\scriptscriptstyle A} \!= \cup P_{lpha}$$
 , $P_{lpha} \cap P_{eta} \!= \! arnothing$ $(lpha \!
eq \! eta)$.

The part P containing $m_0 \in M_A$ is defined by

$$P = \{m \in M_A: ||m - m_0|| < 2\}$$
.

Clearly, each part is open in M_A with the norm topology, and is therefore open in M_A^{∞} with the norm topology. Since $\{\theta\}$ is so, we consider $\{\theta\}$ as

a part for A. Thus we divide M^{∞}_{A} into parts, and each part is open and closed in M^{∞}_{A} with the norm topology.

THEOREM 1. Let uC_{φ} be a weighted composition operator on A. If uC_{φ} is compact, then for each connected component C of supp u, there exist an open set $V \subseteq \text{supp } u$ and a part P for A such that

 $C \subset V$, $\varphi(V) \subset P$.

PPOOF. Let C be a connected component of $\operatorname{supp} u$, and fix $x_0 \in C$. Then $\varphi(x_0)$ belongs to some part P for A. Put $V = \{x \in \operatorname{supp} u : \varphi(x) \in P\}$. By Lemma 1, φ is a continuous map from $\operatorname{supp} u$ into M_A^{∞} with the norm topology, and P is open and closed in M_A^{∞} with the norm topology. It follows that V is open and closed in $\sup u$. Now suppose $C \not\subset V$. Then the disconnection $C = (C \cap V) \cup (C \cap (\operatorname{supp} u \setminus V))$ induces a contradiction. Hence $C \subset V$, concluding the proof.

Next we consider the converse to Theorem 1. The following lemma is easy.

LEMMA 2. Let uC_{φ} be a weighted composition operator on A. Suppose that for each connected component C of supp u, there exist an open set $V \subset \text{supp } u$ and an element $m \in M_A^{\infty}$ such that

 $(2) C \subset V, \varphi|_{v} = m.$

Then uC_{φ} is compact.

PROOF. Let $x_0 \in \text{supp } u$. For the connected component C containing x_0 , choose an open set V satisfying (2). Then $x_0 \in V$ and $\|\varphi(x) - \varphi(x_0)\| = \|m - m\| = 0$ for every $x \in V$. Hence φ is a continuous map from supp u into M_A^{∞} with the norm topology. The lemma follows from Lemma 1.

According to this lemma, when each part for A is a one-point part — for example, when A = C(X) —, the converse to Theorem 1 is true. If there exists a non-trivial part, does the converse to Theorem 1 hold?

Let P be a non-trivial part. We say that P satisfies the condition (α) if P has the following property;

(α) for any $m \in P$, there are some open neighborhood U(m) of m in P and a homeomorphism ρ from a polydisc D^n (a disc if n=1, n depends on U(m)) onto U(m) such that $\hat{f} \circ \rho$ is an analytic function on D^n for all $f \in A$.

This condition was introduced in Ohno and Wada [8]. See [8] for simple examples.

THEOREM 2. Suppose that every non-trivial part for A satisfies (α). Let uC_{φ} be a weighted composition operator on A. Then uC_{φ} is compact if and only if for each connected component C of supp u, there exist an open set $V \subset$ supp u and a part P for A such that

$$C \subset V$$
, $\varphi(V) \subset P$.

PROOF. Since the "only if" part is obvious (Theorem 1), we prove the "if" part. To prove that uC_{φ} is compact, it suffices to show that φ is a continuous map from supp u into M_A^{∞} with the norm topology.

Let $x_0 \in \text{supp } u$. By hypothesis, we can find an open set $V \subset \text{supp } u$ such that

$$x_{\scriptscriptstyle 0} \in V$$
 , $arphi(V) \subset P$,

where P is a part for A. If P is a one-point part, we have already proved in Lemma 2 that φ is continuous at x_0 with respect to the norm topology. So, let us suppose P is non-trivial. By the definition of weighted composition operators, φ is a continuous map from $\sup u$ into M_A^{∞} with the weak* topology. Hence we only show that the identity map ψ from P with the weak* topology onto P with the norm topology is continuous at $\varphi(x_0)$.

Put $m_0 = \varphi(x_0)$. By (α) , there are a neighborhood $U(m_0)$ and a homeomorphism ρ from D^n onto $U(m_0)$ such that $\hat{f} \circ \rho$ is analytic in D^n for all $f \in A$. The Montel theorem says that $\mathcal{G} = \{g : g \text{ is analytic in } D^n \text{ and } \|g\|_{\infty} \leq 1\}$ is equicontinuous, that is, for any $\varepsilon > 0$, there exists a neighborhood $W(\subset D^n)$ of $\zeta_0 = \rho^{-1}(m_0)$ such that $|g(\zeta) - g(\zeta_0)| < \varepsilon$ for all $\zeta \in W$ and all $g \in \mathcal{G}$. Hence, for each $m = \rho(\zeta) \in \rho(W)$,

$$\begin{split} \|\psi(m) - \psi(m_0)\| &= \|m - m_0\| \\ &= \sup\{|m(f) - m_0(f)| : f \in A, \ \|f\| \le 1\} \\ &= \sup\{|\widehat{f}(\rho(\zeta)) - \widehat{f}(\rho(\zeta_0))| : f \in A, \ \|f\| \le 1\} \\ &\le \sup\{|g(\zeta) - g(\zeta_0)| : g \in \mathscr{G}\} \le \varepsilon \ . \end{split}$$

Since $\rho(W)$ is a weak*-neighborhood of m_0 , ψ is continuous.

§2. Theorems of Kamowitz.

Kamowitz ([6] and [4]) characterized compact weighted endomorphisms of C(X) and the disc algebra. We shall prove two theorems due to Kamowitz as corollaries of Theorem 2. One of them is:

COROLLARY 1 (Kamowitz [6]). Let uC_{o} be a weighted endomorphism

of C(X). Then uC_{ϕ} is compact if and only if for each connected component C of supp u, there exists an open set $V \supset C$ such that Φ is constant on V.

PROOF. The statement follows immediately from Theorem 2, since each point of $M_{\sigma(x)} = X$ is a one-point part.

The other theorem deals with compact weighted endomorphisms of the disc algebra. Recall that the disc algebra $A(\bar{D})$ is the algebra of functions analytic in the open unit disc D and continuous on \bar{D} . We know that $M_{A(\bar{D})} = \bar{D}$, and that D and each boundary point of D are parts for $A(\bar{D})$. Note that D satisfies (α).

Let uC_{ϕ} be a non-zero weighted endomorphism of $A(\bar{D})$. As we saw in the introduction, Φ is determined by a certain endomorphism S of $A(\bar{D})$. Since S cannot be a zero operator, S1=1 holds. Therefore Φ is a map from \bar{D} into $M_{A(\bar{D})}$. Thus Φ is considered as a continuous function from \bar{D} into \bar{D} such that

 $Sf(\zeta) = f(\varPhi(\zeta))$ $\zeta \in \overline{D}$, $f \in A(\overline{D})$.

By taking f to be the coordinate function, we have $\Phi \in A(\overline{D})$.

COROLLARY 2 (Kamowitz [4]). Let uC_{ϕ} be a non-zero weighted endomorphism of $A(\overline{D})$. Then uC_{ϕ} is compact if and only if one of the following holds:

(i) Φ is constant.

(ii) $|\Phi(\zeta)| < 1$, whenever $u(\zeta) \neq 0$.

PROOF. Since $u \in A(\overline{D})$ and $u \not\equiv 0$, the set $\{\zeta \in \overline{D} : u(\zeta) = 0\}$ has no accumulation points in D. It follows that $\operatorname{supp} u = \overline{D} \setminus \{\zeta \in \overline{D} : u(\zeta) = 0\}$ is (arcwise) connected. Thus Theorem 2 implies that uC_{σ} is compact if and only if there exists a part P for $A(\overline{D})$ such that

$$(3) \qquad \qquad \Phi(\operatorname{supp} u) \subset P.$$

If P in (3) is trivial, that is, a boundary point of D, the fact that $\overline{\operatorname{supp} u} = \overline{D}$ and the continuity of Φ show (i). On the other hand, in the case of P=D, (3) is equivalent to (ii).

§ 3. Weighted composition operators on $H^{\infty}(D)$.

Compact composition operators on Hardy class $H^{\infty}(D)$ were discussed in Swanton [9]. We here consider compact weighted composition operators on $H^{\infty}(D)$ as an application of § 1.

Let D be the open unit disc in the complex plane C and $H^{\infty}(D)$ be the algebra of bounded analytic functions on D with the supremum norm. For any $u \in H^{\infty}(D)$ and any analytic function φ from D into D, the weighted composition operator uC_{φ} on $H^{\infty}(D)$ is defined by

$$uC_{\varphi}f(\zeta) = u(\zeta)f(\varphi(\zeta)) \qquad \zeta \in D , \quad f \in H^{\infty}(D) .$$

A weighted composition operator on $H^{\infty}(D)$ is a bounded linear operator on $H^{\infty}(D)$.

THEOREM 3. Let uC_{φ} be a weighted composition operator on $H^{\infty}(D)$. Then uC_{φ} is compact if and only if $\overline{\varphi(E)} \subset D$ whenever $E \subset D$ satisfies

$$(4) \qquad \inf\{|u(\zeta)|: \zeta \in E\} > 0.$$

Before proving the theorem, we make a few remarks on $H^{\infty}(D)$. Let M be the maximal ideal space of $H^{\infty}(D)$, and set $\hat{H}^{\infty} = \{\hat{f}: f \in H^{\infty}(D)\}$, where \hat{f} is the Gel'fand transform of f. Then \hat{H}^{∞} is a function algebra on the maximal ideal space M of \hat{H}^{∞} .

For each $\zeta \in D$, denote by $\hat{\zeta}$ the evaluation functional at ζ defined by $\hat{\zeta}(f) = f(\zeta)$ for all $f \in H^{\infty}(D)$. Put $\mathscr{D} = \{\hat{\zeta}: \zeta \in D\}$. For each $\zeta \in \partial D$, the boundary of D, let $M_{\zeta} = \{m \in M: m(z) = \zeta\}$ be the fiber over ζ . Here z is the coordinate function. Then we have that

$$M=\mathscr{D}\cup \underset{\zeta\,\in\,\partial D}{\cup}M_{\zeta}$$
 .

Each fiber M_{ζ} ($\zeta \in \partial D$) is a peak set for \hat{H}^{∞} . In other words, there exists some $f \in H^{\infty}(D)$ such that \hat{f} is equal to 1 on M_{ζ} while $|\hat{f}(m)| < 1$ for all $m \in M \setminus M_{\zeta}$. This shows that \mathscr{D} is a part for \hat{H}^{∞} . On the other hand, the corona theorem [1, p. 34] tells us that $\overline{\mathscr{D}}^{w^*} = M$, where $\overline{w^*}$ denotes the weak*-closure in M.

Now we determine a weighted endomorphism of \hat{H}^{∞} corresponding to a weighted composition operator uC_{φ} on $H^{\infty}(D)$. Define a continuous map Φ from M into M by

$$\Phi(m)(f) = m(f \circ \varphi) \qquad f \in H^{\infty}(D) , \quad m \in M$$

(note that $f \circ \varphi \in H^{\infty}(D)$). Then we have

$$\begin{split} \varPhi(\widehat{\zeta}) = \widehat{\varphi(\zeta)} & \zeta \in D , \\ \widehat{f} \circ \varPhi = \widehat{f \circ \varphi} & f \in H^{\infty}(D) . \end{split}$$

Hence we want to determine a weighted endomorphism $\hat{u}C_{\sigma}$ of \hat{H}^{∞} as follows;

$$\widehat{u}C_{\mathbf{0}}\widehat{f}(m) = \widehat{u}(m)\widehat{f}(\mathbf{\Phi}(m)) \qquad m \in M , \quad \widehat{f} \in \widehat{H}^{\infty} .$$

Of course, $\hat{u}C_{\sigma}$ is compact if and only if uC_{φ} is compact.

We return to the proof of Theorem 3.

PROOF. We may assume that $u \not\equiv 0$, otherwise there is nothing to prove. We first observe that $\sup \hat{u} = \{m \in M : \hat{u}(m) \neq 0\}$ is connected. If not, $\sup \hat{u}$ has a disconnection $\sup \hat{u} = W_1 \cup W_2$. Since $\overline{\mathscr{D}}^{w^*} = M$, this yields another disconnection;

$$\{\hat{\zeta}\in\mathscr{D}:\hat{u}(\hat{\zeta})\neq 0\}=(\mathscr{D}\cap W_1)\cup(\mathscr{D}\cap W_2)$$
,

which implies that $\{\zeta \in D: u(\zeta) \neq 0\}$ is not connected. But $\{\zeta \in D: u(\zeta) \neq 0\}$ is connected because $\{\zeta \in D: u(\zeta) = 0\}$ is discrete in *D*. This contradiction shows that supp \hat{u} is connected.

Suppose that uC_{φ} is compact. Since $\hat{u}C_{\varphi}$ is also compact, we can apply Theorem 1 to $\hat{u}C_{\varphi}$. Thus we find a part P for \hat{H}^{∞} such that $\Phi(\operatorname{supp} \hat{u}) \subset P$ (note that $\operatorname{supp} \hat{u}$ is connected). For any $\hat{\zeta} \in \mathscr{D} \cap \operatorname{supp} \hat{u}$, we have $\Phi(\hat{\zeta}) = \widehat{\varphi(\zeta)} \in \mathscr{D}$. So P must be \mathscr{D} . Hence $\Phi(\operatorname{supp} \hat{u}) \subset \mathscr{D}$.

Next assume that $E \subset D$ satisfies (4). Since $\mathscr{E} = \{\widehat{\zeta} : \zeta \in E\}$ satisfies $\delta = \inf\{|\widehat{u}(m)|: m \in \mathscr{E}\} > 0$, $\min\{|\widehat{u}(m)|: m \in \overline{\mathscr{E}}^{w^*}\} = \delta > 0$ holds. It implies that $\overline{\mathscr{E}}^{w^*} \subset \operatorname{supp} \widehat{u}$. Thus we obtain that

$$\Phi(\mathscr{C}) \subset \Phi(\overline{\mathscr{C}}^{w^*}) \subset \Phi(\operatorname{supp} \hat{u}) \subset \mathscr{D}$$
.

Since $\Phi(\overline{\mathscr{E}}^{w^*})$ is compact, $\overline{\Phi(\mathscr{E})}^{w^*} \subset \mathscr{D}$, that is, $\overline{\varphi(\overline{E})} \subset D$.

Conversely assume that $\overline{\varphi(E)} \subset D$ for any $E \subset D$ satisfying (4). We must show that uC_{φ} , and therefore $\hat{u}C_{\varphi}$ is compact. By Lemma 1, it suffices to show that Φ is a continuous map from supp \hat{u} into M with the norm topology.

Suppose $m_0 \in \text{supp } \hat{u}$. Since $\overline{\mathscr{D}}^{w^*} = M$, there is a net $\{\zeta_{\alpha}\}$ in D such that $\hat{\zeta}_{\alpha}$ converges to m_0 with respect to the weak* topology. Furthermore we can assume that $\inf_{\alpha} |u(\zeta_{\alpha})| > 0$, because $\hat{u}(m_0) \neq 0$. Then by the assumption on φ , we have $\{\overline{\varphi}(\zeta_{\alpha})\} \subset D$. Hence

$$\Phi(m_0)(z) = m_0(z \circ \varphi) = m_0(\varphi) = \lim_{\alpha} \hat{\zeta}_{\alpha}(\varphi) = \lim_{\alpha} \varphi(\zeta_{\alpha}) \in D.$$

Put $\zeta_0 = \Phi(m_0)(z)$, that is, $\hat{\zeta}_0 = \Phi(m_0)$. By Montel's theorem, we find a neighborhood W of ζ_0 in D such that $|f(\zeta) - f(\zeta_0)| < \varepsilon$ for all $\zeta \in W$ and $f \in H^{\infty}(D)$ satisfying $||f|| \leq 1$. Set $U = \{m \in \text{supp } \hat{u} : \Phi(m)(z) \in W\}$. U is a weak*-neighborhood of m_0 in supp \hat{u} , and for each $m \in U$, we have

WEIGHTED COMPOSITION OPERATORS

$$\begin{split} \|\varPhi(m) - \varPhi(m_0)\| \\ &= \sup\{|\varPhi(m)(f) - \varPhi(m_0)(f)| : f \in H^{\infty}(D), \ \|f\| \leq 1\} \\ &= \sup\{|\widehat{\zeta}(f) - \widehat{\zeta}_0(f)| : f \in H^{\infty}(D), \ \|f\| \leq 1\} \\ &= \sup\{|f(\zeta) - f(\zeta_0)| : f \in H^{\infty}(D), \ \|f\| \leq 1\} \leq \varepsilon \ , \end{split}$$

where $\zeta = \Phi(m)(z) \in W$, i.e., $\hat{\zeta} = \Phi(m)$. Hence Φ is continuous at m_0 as a map from supp \hat{u} into M with the norm topology. The theorem is proved.

Theorem 3 remains, with the same proof, true for $H^{\infty}(D)$ on a domain D such that

(i) for each boundary point ζ of *D*, the fiber over ζ is a peak set for \hat{H}^{∞} ;

(ii) \mathscr{D} is dense in the maximal ideal space of $H^{\infty}(D)$.

§4. A counter-example.

In this section we give a counter-example to the question: does the converse to Theorem 1 hold?

If every part for A satisfies (α) , Theorem 2 answered "yes". But, for the general case, the answer is "no". Indeed, there exist a function algebra A and a weighted composition operator uC_{φ} on A such that

(i) for each connected component C of $\operatorname{supp} u$, there are an open set $V \subset \operatorname{supp} u$ and a part P for A such that

 $C \subset V$, $\varphi(V) \subset P$;

(ii) uC_{φ} is not compact.

First we construct a function algebra A, according to Garnett [2].

Fix a positive irrational number α , and let A_1 be the function algebra on the torus T^2 generated by the functions $\{z_1^n z_2^m : n, m \text{ integers}, n+m\alpha \ge 0\}$. Here $z_1^n z_2^m$ is defined by $z_1^n z_2^m (\zeta_1, \zeta_2) = \zeta_1^n \zeta_2^m$ for all $(\zeta_1, \zeta_2) \in T^2$. It is known that $M_{A_1} = \{(\zeta_1, \zeta_2) \in C^2 : |\zeta_1| \le 1, |\zeta_2| = |\zeta_1|^{\alpha}\}$.

Next recall that $A(\overline{D})$ denotes the disc algebra on the closed unit disc \overline{D} . In addition, let I=[1/2, 1] (closed interval), and set

$$A_2 = \{h \in C(I \times \overline{D}) : h(t, \cdot) \in A(\overline{D}) \text{ for each } t \in I, \\ h|_{I \times \{0\}} \text{ is constant} \}$$

If we denote by $I \times \overline{D} / \sim$ the quotient space of $I \times \overline{D}$ identifying the points in $I \times \{0\}$, A_2 is a function algebra on $I \times \overline{D} / \sim$, and $M_{A_2} = I \times \overline{D} / \sim$.

Let $A_1 \otimes A_2$ be the function algebra on $M_{A_1} \times M_{A_2}$ generated by the functions of the form;

$$g \bigotimes h(\zeta_1, \zeta_2, t, \zeta) = g(\zeta_1, \zeta_2)h(t, \zeta) \qquad (\zeta_1, \zeta_2, t, \zeta) \in M_{A_1} \times M_{A_2}$$
 ,

where $g \in A_1$ and $h \in A_2$. It is easily seen that $M_{A_1 \otimes A_2} = M_{A_1} \times M_{A_2}$. Set $J = \{(\zeta_1, \zeta_2) \in T^2 : \text{Re } \zeta_1 \leq 0\}$ and

$$X = \{ (\zeta_1, \zeta_2, t, \zeta) \in M_{A_1 \otimes A_2} : (\zeta_1, \zeta_2) \in J \text{ or } t = \zeta \} .$$

X is a compact subset of $M_{A_1\otimes A_2}$. Define A by the uniform closure on X of $\{f|_x: f \in A_1 \otimes A_2\}$. Clearly A is a function algebra on X. Furthermore we can show that $M_A = X$ and that

$$Q = \{(0, 0, t, t) \in M_A : 1/2 \leq t < 1\}$$

is a part for A. For the details, see [2].

We are now in a position to define a weighted composition operator uC_{φ} on A satisfying (i) and (ii). Set

$$u(\zeta_{1}, \zeta_{2}, t, \zeta) = \zeta , \qquad \varphi(\zeta_{1}, \zeta_{2}, t, \zeta) = \left(0, 0, \frac{t+1}{3}, \frac{t+1}{3}\right)$$
$$(\zeta_{1}, \zeta_{2}, t, \zeta) \in X.$$

Clearly, $u \in A$, and φ is a continuous map from X into $X = M_A$. Then u and φ determine a weighted composition operator uC_{φ} as follows;

(5)
$$uC_{\varphi}f(\zeta_{1}, \zeta_{2}, t, \zeta) = u(\zeta_{1}, \zeta_{2}, t, \zeta)f(\varphi(\zeta_{1}, \zeta_{2}, t, \zeta))$$
$$= \zeta f\left(0, 0, \frac{t+1}{3}, \frac{t+1}{3}\right)$$
$$(\zeta_{1}, \zeta_{2}, t, \zeta) \in X, \quad f \in A.$$

Note that

$$\varphi(X) = \{(0, 0, t, t) \in X = M_A : 1/2 \leq t \leq 2/3\} \subset Q.$$

If we take $V= \operatorname{supp} u$ and P=Q, it follows that

$$C \subset V$$
, $\varphi(V) \subset P$,

for each connected component C of supp u. This implies (i).

Finally we shall show (ii). By the Ascoli-Arzelà theorem, it suffices to show that $uC_{\varphi}A_0$ is not equicontinuous at some point of X, where A_0 is the unit ball of A. Fix $(\eta_1, \eta_2, s_0, s_0) \in X$. For any $s \in I$ $(s \neq s_0)$, we can construct $F_s \in C([1/2, 2])$ such that

$$||F_{s}|| = \frac{1}{4}$$
, $F_{s}(s_{0}) = 0$, $F_{s}(s) = \frac{1}{4}$,

and set

WEIGHTED COMPOSITION OPERATORS

$$f_{s}(\zeta_{1}, \zeta_{2}, t, \zeta) = \frac{\zeta F_{s}(3t-1)}{t(3t-1)} \qquad (\zeta_{1}, \zeta_{2}, t, \zeta) \in X.$$

Then we have $f_s \in A$ and $||f_s|| \leq 1$, i.e., $f_s \in A_0$. Moreover, by (5),

$$uC_{\varphi}f_{s}(\zeta_{1}, \zeta_{2}, t, \zeta) = \frac{\zeta F_{s}(t)}{t}$$
 $(\zeta_{1}, \zeta_{2}, t, \zeta) \in X$,

 \mathbf{SO}

$$uC_{\varphi}f_{s}(\eta_{1}, \eta_{2}, s_{0}, s_{0}) = F_{s}(s_{0}) = 0$$
,
 $uC_{\varphi}f_{s}(\eta_{1}, \eta_{2}, s, s) = F_{s}(s) = \frac{1}{4}$.

By taking (η_1, η_2, s, s) near to $(\eta_1, \eta_2, s_0, s_0)$, we see that $uC_{\varphi}A_0$ is not equicontinuous at $(\eta_1, \eta_2, s_0, s_0)$.

ACKNOWLEDGEMENT. I would like to express my gratitude to Professor Junzo Wada for his advices and encouragement.

References

- [1] A. BROWDER, Introduction to Function Algebras, Benjamin, 1969.
- [2] J.B. GARNETT, A topological characterization of Gleason parts, Pacific J. Math., 20 (1967), 59-63.
- [3] H. KAMOWITZ, The spectra of a class of operators on the disc algebra, Indiana Univ. Math. J., 27 (1978), 581-610.
- [4] H. KAMOWITZ, Compact operators of the form uC_{φ} , Pacific J. Math., 80 (1979), 205-211.
- [5] H. KAMOWITZ, Compact endomorphisms of Banach algebras, Pacific J. Math., 89 (1980), 313-325.
- [6] H. KAMOWITZ, Compact weighted endomorphisms of C(X), Proc. Amer. Math. Soc., 83 (1981), 517-521.
- [7] A.K. KITOVER, Spectrum of automorphisms with weight and the Kamowitz-Scheinberg theorem, Funct. Anal. Appl., 13 (1979), 70-71.
- [8] S. OHNO and J. WADA, Compact homomorphisms on function algebras, Tokyo J. Math., 4 (1981), 105-112.
- [9] D. W. SWANTON, Compact composition operators on B(D), Proc. Amer. Math. Soc., 59 (1976), 152-156.
- [10] H. UHLIG, The eigenfunctions of compact weighted endomorphisms of C(X), Proc. Amer. Math. Soc., **98** (1986), 89-93.

Present Address:

DEPARTMENT OF MATHEMATICS, SCHOOL OF EDUCATION, WASEDA UNIVERSITY NISHIWASEDA, SHINJUKU-KU, TOKYO 160, JAPAN