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Introduction.

The main purpose of this paper is to determine the fixed point sets
of the involutions of the compact symmetric spaces. We will explain a
few interesting applications to illustrate the significance of the results
and the use of our geometric method.

The symmetric spaces $M$ are defined with the point symmetries $s_{0}$

at the points $0$ in $M$. B. Y. Chen and the author made the local study
of the fixed point sets $F(s_{0}, M)$ , [CN-2]; the local structure of each con-
nected component, $M^{+}$ , of $F(s_{0}, M)$ and its ”orthogonal complement”, $M^{-}$ ,
for the selected space (the adjoint space) in every local isomorphism class
of the compact symmetric spaces. In this paper we will complete the
global study first. We like to point out its theoretical interest. Given
a symmetric space $M$, we have the set, $PM$, of the pairs $(M^{+}, M^{-})$ of
two symmetric subspaces which is well defined with appropriate identifi-
cation. Now two (compact and connected) symmetric spaces $M,$ $N$ are
isomorphic if and only if $PM$ is isomorphic with $PN$ in the obvious sense.
And a homomorphism of $M$ into $N$ gives rise to a homomorphism of $PM$

into $PN$. Here a homomorphism of a symmetric space into another means
a smooth map which commutes with every point symmetry, (1.2). A local
version is found in [CN-2]. Since a homomorphism from a connected space
is exactly a totally geodesic mapping, the fact above gives a necessary
condition for existence of totally geodesic embeddings, for instance.

Our geometric method as opposed to heavier exploitation of root
systems takes the knowledge of $PM$ as the basic information. Indeed
$PM$ is closely related to $M$ itself in terms of geometric structure. For
example, $M$ is orientable if and only if every $M^{+}$ has an even dimension;
furthermore the Euler number $\chi M$ of $M$ is the sum of the Euler numbers
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of all $M^{+}$ and $\{0\}$ if $\chi M$ is not zero; see (2.8) through (2.10). We have
found the method is powerful in solving certain problems.

After describing $PM$ for every individual $M$, we will proceed to
determine all the involutions $t$ of $M$ (See (5.5)) and the fixed point set
$F(t, M)$ . The description of $F(t, M),$ $t=s_{o}$ or not, is the main part of
this paper. Again the obtained information of $F(t, M)$ makes it quite
easy to determine not only the Lefschetz number of $t$ but also the signa-
ture of $M$ thanks to a theorem of Atiyah-Singer (See (2.11) and (10.1)).

Next we turn to the second order structure or the curvature, which
is virtually the root system, $R(M)$ . $R(M)$ completely describes the Jacobi
fields along geodesics. On one hand, its study yields a simple rule to
find the orthogonal spaces $M^{-}$ to $M^{+}$ ; the rule is similar to the main
theorem of [BSi], but the reader might be amused to find the root system
monomorphisms: $D_{n}\rightarrow C_{n}$ and $C_{4}\rightarrow F_{4}$ , discovered by van der Waerden and
denied by Borel-Siebenthal for the Lie algebras, do appear in the cate-
gory of symmetric spaces. Also interesting is the study of the common
features of the spaces which share the same root systems. On the
other hand, through study of Jacobi fields gives information on homotopy
groups via Morse theory (8.1), e.g.); even the well known Bott periodicity
follows from a geometric periodicity (See the diagram in (5.34)).

Problem of understanding the geometric structure of the symmetric
space would be fundamental along with determining the morphisms
between the symmetric spaces. In this connection, we will briefly men-
tion Chow’s work [C] in \S 11. Chow defined the arithmetic distance on
the (compact) classical Kaehlerian symmetric spaces and showed that an
isometry with respect to this distance is necessarily an automorphism of
the symmetric spaces of rank $>1$ . The arithmetic distance can be defined
for more general symmetric spaces and a similar theorem obtains in a
milder form (i.e. under the assumption of differentiability). And we find
it extremely interesting that the partition of the space by the arithmetic
distance from a point $0$ gives a stratification of the space by vector
bundles over the connected components of $F(s_{o}, M)$ , namely $\{0\}$ and all
the $M^{+}’ s$ . Intriguing enough, this stratification is, in a way, dual to
that of using the cut locus found by Sakai [Sa] and Takeuchi [T-2]. A
few more applications will be explained, including what we call the 2-
number $\#_{2}M$, of which a more extensive paper will be written in coopera-
tion with B. Y. Chen.

Partly because of the nature of the results, the proof we will present
will be sketchy at best, but we hope we will have a chance to give more
$\iota lafailad$ nroofs in the near $f$] $lt11ro_{-}$ $W\rho$ a.qsum $\rho$ a $\sigma\cap\cap d$ $k\mathfrak{n}\cap rxr1od\sigma\rho$ of
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Helgason’s book [H] for the convenience’s sake and follow [B] for the
numbering of roots etc. We will use facts from [CN-2].

We thank the Japan Society for the Promotion of Science for their
generous support (1983) and M. Takeuchi, the host professor, during a
period of the study.

\S 1. The category of the compact symmetric spaces.

(1.1) DEFINITIONS. By a space we mean a compact symmetric space
$M$; thus $M$ is a compact manifold such that every point $x$ of $M$ is an
isolated fixed point of an involutive transformation $s_{x}$ of $M$, called the
symmetry at $x$ and that $M$ admits a Riemannian metric $g$ for which all
symmetries are isometric.

(1.2) DEFINITIONS. A smooth map $f:M’\rightarrow M$ is a morphism if $f$ com-
mutes with the symmetries: $f\circ s_{x^{\prime}}=s_{f(x^{\prime})}\circ f$ for every point $x$

’ of $M’$ . In
case $M$ is connected, a smooth map $f$ is a morphism if and only if $f$ is
totally geodesic. $Hom((M’, N^{\prime}),$ $(M, N))$ denotes the set of all the morphisms
$f:M^{\prime}\rightarrow M$ which carry the subspace $N^{\prime}$ into $N$. Similarly for the auto-
morphism group $Aut(M, N)$ . $Inv(M, N)$ denotes the subset of the involu-
tions in $Aut(M, N)$ .

(1.3) DEFINITIONS. If $M$ is a compact Lie group, then G-Aut$(M)$ will
denote the group automorphisms, as opposed to the automorphisms $Aut(M)$ ,
of the space $M$ with $s_{x}(y)=xT^{1}x$ . Similarly for $G- Hom(M’, M)$ and so
forth.

(1.4) DEFINITIONS. $G=G.=G(M)$ denotes the transformation group
generated by the symmetries of $M$. If $M$ is connected, $G$ is a compact,
normal and transitive subgroup of $Aut(M)$ and the isometry group of
$(M, g)$ is an intermediate group between $G$ and $Aut(M)$ . Generally, $M$

will denote a connected space and $K$ the isotropy subgroup $G\cap Aut(M, 0)$

at a point $0;M=G/K$.
(1.5) PROPOSITION. Every morphism $f:M^{\prime}\rightarrow M$ lifts to a group homo-

morphism $G(f):G_{K}^{f}\rightarrow G_{K}$ with respect to which $f$ is equivariant if $M$ is
connected, where $G_{K}^{f}$ is the fibre product $G_{M^{\prime}}\times_{G(f(K^{\prime}))}G_{f(K^{\prime})}$ for the inclusion
$i:f(M^{\prime})\rightarrow M$ and $G_{f(H^{\prime})}^{i}$ is the subgroup of $G$ stabilizing $f(M’)$ . [Note that
$G_{K^{\prime}}^{f}$ is a covering group of $G_{K^{\prime}}$ . The homomorphism: $G_{K^{\prime}}\rightarrow G_{f(K^{\prime})}$ carries
$s_{x^{\prime}}$ into $s_{f(x^{\prime})}.$ ]

(1.6) NOTATION. For a subset $B$ of $Aut(M)$ . the set (a subspace) of
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the points fixed by all the members of $B$ is denoted by $F(B, M)$ . Some
obvious variants of this notation may also be used.

(1.7) DEFINITIONS. For a point $0$ of $M$, the quadratic transformation
(of E. Cartan) is the map $Q=Q_{(r,0)}$ : $M\rightarrow G$ defined by $Q(x)=s_{g}s_{o}$ . The
points $p\neq 0$ in $Q^{-1}(1)$ are called the poles of $0$ in $M$.

(1.8) PROPOSITION. (i) $Q$ is an immersion of manifold; (ii) $Q$ lifts to a
homomorphism $Aut(Q)\in G- Hom(Aut(M), Aut(G))$ defined by $(Aut(Q)(b))(x)=$
$bx\sigma_{o}(b)^{-1}$ for $b\in Aut(M),$ $x\in G$ and $\sigma_{o}:=ad(s.)$ ; (iii) $Q$ is $Aut(Q)$-equivariant;
(iv) $Q$ is a morphism if $G\subset Aut(M);(v)Q:M\rightarrow Q(M)$ is a covering map
if $M$ is connected; and (vi) $Q(M)$ is isomorphic with $G/F(\sigma_{0}, G)$ .

(1.9) PROPOSITION (cf. [CN-3]). The following conditions are equivalent
to each other for two distinct points $0,$ $p$ in a connected space M. (1) $p$

is a pole of $0$ in $M;(2)s_{p}=s_{o};(3)$ There is a double covering morphism
$\pi:M\rightarrow M$’ with $\pi(p)=\pi(0);(4)$ The singleton $\{p\}$ is open in $F(s_{0}, M);(5)p$

lies in the orbit $F(\sigma_{o}, G)(0)$ ; and (6) The isotropy subgroup of $G$ at $p$

coincides with $K$, the one at $0$ .
(1.10) PROPOSITION. If $M$ is a connected space, then (i) the kernel of

$Aut(Q)$ in (1.8) is $C(G, Aut(M))$ , the centralizer of $G$ in $Aut(M)$ ; (ii) the
same kernel is the covering transformation group for the covering
morphism $Q:M\rightarrow Q(M)$ ; and (iii) $Aut(Q)$ induces an isomorphism of
$Aut(M, 0)$ onto G-Aut$(G, K)$ .

\S 2. The morphisms of 0(1).

(2.1) A finite trivial space (\S 12) is a finite set with every $s_{\$}=1$ , the
identity map. Example. The orthogonal group $O(1)\cong Z_{2}$ or any elementary
abelian 2-group, $(Z_{2})^{k}$ .

(2.2) PROPOSITION. Let $M=G/K$ be a connected space or, in (i), $a$

group space. Then (i) $Hom((O(1), 1),$ $(M, 0))$ is a space; i.e. this is K-
equivariantly biiective with $F(s_{o}, M)$ ; and (ii) every morphism: $(0(1), 1)\rightarrow$

$(M, 0)$ extends to a morphism: $(U(1), 1)\rightarrow(M, 0)$ .
We will determine $F(s_{o}, M)$ to complete the local study in [CN-2].

Results, Tables I, II and III in [CN-2] may be summarized as a theorem,
(2.5) below, which will be proven in (6.8).

(2.3) DEFINITION. Each component $\neq\{0\}$ of $F(s_{o}, M)$ is called a polar
of 1 $i\cdot\tau M$ $r\Gamma h_{\Delta}\wedge’*\cdot ih_{\wedge\Pi J1m/}l\star\cap n\alpha\tau\tau h_{\circ YY\circ\Omega\circ}RT\circ+’\nu 1\simeq RT$ is $rq\tau\tau h_{GL\circ\cdot\Delta}hT^{L}=\infty$
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whose tangent space $T_{p}N^{\perp}$ is the orthogonal complement of $T_{p}N$ in $T_{p}M$.
If $N$ is a component $F(t, M)_{(p)}$ through $p$ of $F(t, M),$ $t\in Inv(M)$ , then
$F(ts_{p}, M)_{\langle p)}$ is clearly the orthogonal to $N$ at $p$ .

(2.4) DEFINITION. $M^{*}$ will denote the space such that $M$ is a covering
space of $M^{*}$ and $M^{*}$ is that of none non-trivially, called the bottom (or
adjoint) space.

(2.5) THEOREM. Assume $M$ is irreducible. Then (i) the orthogonal,
$M^{-}$ , to a polar $\neq pole$ in $M$ has the root system $R(M^{-})$ (\S 6) obtained from
$R(M)$ in the follow’ing way (cf. [BSi]). Express the highest root $\tilde{\alpha}$ as a
linear combination $\sum n^{\dot{f}}\alpha_{j}$ of the simple roots of $R(M)$ . The Dynkin
diagram of $R(M^{-})$ is obtained either from the extended Dynkin diagram
of $R(M)$ by deleting a vertex $\alpha_{j}$ with $n^{j}=2$ or from the Dynkin diagram
by deleting $\alpha_{j}$ with $n^{j}=1$ . In the second case $M^{-}$ is locally the product
of the circle $T:=U(1)$ and a space with that root system. (ii) If $M=M^{*}$ ,
any diagram obtained as above corresponds to some $M^{-}$ . And (iii) the
multiplicity of the root is preserved in the process.

(2.6) REMARK. More precisely, the initial tangent to $T$ in the second
case is in the direction of the j-th fundamental weight $\varpi_{j}^{\prime}$ . Hereafter
we will include $T$ in the Dynkin diagram of $M^{-}$ in that case. We add
that the orthogonal $M^{-}$ to a polar $\neq pole$ is a maximal connected subspace
of $M$ except for $M^{-}=G_{p}(2p)$ in the Grassmann manifold $G_{p}(2p+m),$ $m\geqq 1$ ;
see (3.1) for this notation.

(2.7) REMARK. The local structure of a polar is immediately obtained
from that of its orthogonal ([CN-2]). In the Introduction we mentioned
Theorem 5.1 in [CN-2], in which the isometry may be replaced with the
isomorphism unless EI or $EI^{*}$ is involved. Below we give examples to
show some relationship between $M$ and its polars, among which (2.9) is
an easiest application of the Lefschetz fixed point formula of Atiyah-
Singer [AS]. A harder application (2.11) will be proven elsewhere as well
as (2.10).

(2.8) PROPOSITION. A geodesic $\in Hom((R, 0),$ $(M, 0))$ is closed if and
only if it meets a polar of $0$ .

(2.9) PROPOSITION. The Lefschetz number $Lef(t)=\chi F(t, M)$ , the Euler
number, for every $teInv(M)$ .

(2.9A) COROLLARY. $\chi F(s_{0}, M)=2^{r}$ for a group space of rank $\gamma$ .
(2.9B) REMARK. If $M$ is hermitian of semisimple type and $t$ is holo-
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morphic, then every component of $F(t, M)$ has a positive Euler number;
thus (2.9) is particularly powerful in determining the components.

(2.10) PROPOSITION. $M$ is orientable if and only if every polar has
an even dimension.

(2.11) PROPOSITION. If $M$ is oriented and its dimension is a multiple

of 4 and if $t\in Inv(M)$ is homotopic to $1_{H}$ , then the signature $\tau(M)$

$=\tau F(t, M)$ ; where $\tau F(t, M)$ is the sum of the signature of each component

of $F(t, M)$ with appropriate orientation. (Ignore the non-orientable com-
ponents.)

Consider a double covering morphism $\pi:M\rightarrow M’$ . All the polars $\neq$

pole of $0$ project to polars of $0^{\prime}’=\pi(0)$ in $M$“ and poles to those of $0^{\prime}’$ .
The other polars of $0^{\prime}$

’ are contained in the projection of a subspace
$C=C_{(0,p)}$ , which consists of the midpoints of the geodesic segments from
$0$ to a pole $p$ . $C_{(0,p)}$ is a subspace of $M$. Thus $F(s_{0^{\prime\prime}}, M‘‘)$ is the union
$\pi(C)\cup\pi(F(s_{0}, M))$ which is usually a disjoint union with exceptions like
$M=AI(2n)$ .

(2.12) DEFINITION and PROPOSITION. We call the above subspace $C_{(0,p)}$

the centrosome [CN-3] for the pair $(0, p)$ in M. (i) One has $s.s_{o}=s_{o}s$. if
and only if $s_{0}(x)=x$ or $xeC_{(0,p)}$ for some pole $p$ of $0$ ; (ii) $C_{(0,p)}=F(\gamma s_{0}, M)$

where 7 is the covering transformation for the projection $Q:M\rightarrow Q(M)$

(and for the above $\pi$) with $\gamma(0)=p$ and (iii) $\gamma=Q(x)\circ adQ(x)$ for any point
$x$ in $C_{(o,p)}$ . Here and everywhere else $Q(x)$ or any member $c$ of $G$ acts
on $M=G/K$ as an induced left translation carrying a point $bK$ of $M$,
$beG$ , into $cbK$, while $ad(c)$ on $M$ carries $bK$ into $cbc^{-1}K$ in case $c$ nor-
malizes $K$; these two coincide if $c$ lies in $K$.

\S 3. Determination of the polars. The classical case.

In this section amd the next we will determine the polars of every
irreducible $M$ and a few others, thereby determining the space $Hom((O(1)$ ,
1), $(M, 0))$ . We find it convenient to introduce a bunch of symbols first.

(3.1) NOTATIONS. $M^{\sim}$ denotes the universal covering space of $M$.
$I_{p}=I_{p,n-p}$ is the linear involutions of $V=R$“ or $C$“ with a fixed basis $(e_{i})_{1\leq i\leq n}$

defined by $I_{p}(e_{i})=-e_{i}$ for $i\leqq p$ and $=e_{i}$ for $i>p$ . When $n=2n$’ is even,
$J=J_{n^{\prime}}$ is a linear endomorphism of $V$ defined by $J^{2}=-1$ and $J(e_{i})=e_{i+n^{\prime}}$ ,
$i\leqq n^{\prime}$ . $K=K_{n^{\prime}}$ denotes $I_{n^{\prime}}J_{n^{\prime}}$ . $P_{q}$ denotes $I_{q}\oplus I_{q}$ on $C^{n^{\prime}}\oplus C^{n^{\prime}}$ , conjugate
with $I_{2q}$ . Similarly for $P_{J}=J\oplus J$. $G_{p}(V)$ denotes the Grassmann manifold
of the p-dimensional vector subspaces of V. $G_{p}^{0}(R^{n})$ is that of the oriented
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subspaces; $G_{p}^{0}(R^{n})\cong G_{p}(R^{n})^{\sim}$ $G_{p}(H^{n})$ denotes the quaternion Grassmann
manifold. $G_{p}(n)$ denotes $G_{p}(V)$ or $G_{p}(H^{n})$ less specifically. If $n=2n^{\prime}$ is
a multiple of 4, then $\pi_{1}(SO(n)^{*})$ is $\{1, \delta\}\times\{1, \epsilon\}\cong Z_{2}\times Z_{2}$ , where $\{1, \delta\}$ is
the kernel of the epimorphism: $SO(n)^{\sim}\rightarrow SO(n)$ . The other group
$SO(n)^{\sim}/\{1, \epsilon\}$ , the half-spin group, is denoted by $SO(n)^{l}$ . Similarly for
$G_{n^{\prime}}(R^{n})^{t}$ ; see (3.15). $\kappa$ denotes the C-conjugation of $C^{n}$ satisfying $\kappa(e_{i})=e_{i}$ ,
$1\leqq i\leqq n$ , and also the involution induced on $U(n),$ $\kappa(b)=\overline{b}$ for $b$ in $U(n)$ .
Finally, less universal notations. $2\times M$ denotes the disjoint union of $M$

with its copy, leaving ambiguous the action of the symmetries on the
other components; OIII$(n):=0(2n)/U(n)$ is $2\times DIII(n)$ . $M_{(p)}$ denotes the
connected component of $M$ through the point $p$ . Given free actions
of a cyclic group $Z_{\mu}$ on two spaces $M$ and $N$, the dot product $M\cdot N$

denotes the orbit space $(M\times N)/Z_{\mu}$ . Examples. $U(n)=T\cdot SU(n)$ and
$SO(4)=Sp(1)\cdot Sp(1)$ .

We now enumerate our results for the classical spaces; most proofs
are omitted because it takes linear algebra only as illustrated in the proof
of (3.3). Our actual proofs, not to be presented here, combined other
methods such as use of basic facts in [CN-2] and comparison theorems
like (2.9) and (3.16), for quicker results and their cross-checking.

(8.2) The polars of a torus $T^{r}$ are poles.

(3.3) The polars of $U(n)/Z_{\mu},$ $\mu$ positive integer, are $G_{p}(C^{n}),$ $0<p\leqq n$ ,
except that $2\times G_{p}(C^{n})^{*}$ replaces $G_{p}(C^{n})$ in case $2p=n$ and $\mu$ is even.

PROOF. The polars of 1 in a group space are the conjugate classes
of the involutive members. A point $x$ of $U(n)$ projects to an involutive
member, $[x]$ , of $M=U(n)/Z_{\mu}$ if and only if $x^{2}=\phi 1_{n}$ for some $\mu$-th root $\phi$

of 1. This is equivalent to $(\theta_{1}^{-1}x)^{2}=1_{n}$ where $\theta_{1}^{2}=\phi$ . That is, $\theta_{1}^{-1}x$ is $con$.
jugate with some $I_{p}$ ; thus $\theta_{1}^{-1}x\in ad(U(n))(I_{p})\cong G_{p}(C^{n})$ . Another subspace
$\theta_{2}G_{q}(C^{n})$ projects to the same polar in $M$ if and only if $(\theta_{1}^{-1}\phi_{1}\theta_{2})I_{q}$ is
conjugate with $I_{p},$ $\phi_{1}^{\mu}=1$ . A moment of observing the eigenvalues re-
veals $\theta_{1}^{-1}\phi_{1}\theta_{2}=1$ or $-1$ . Accordingly $\theta_{2}^{\mu}=\theta_{1}^{\mu}$ (and $p=q$) or $\theta_{2}^{\mu}=(-\theta_{1})^{\mu}$ (and
$p+q=n)$ . From this we deduce the following, in which $\theta$ is a fixed
primitive $ 2\mu$-th root of 1 and $[N]$ denotes the projection of a subspace
$N$ of $U(n)$ into M. (i) $\theta G_{p}(C^{n})$ and $G_{p}(C^{n})$ project to polars in $M$,
$0<p\leqq n$ and vice versa; (ii) if $\mu$ is odd, then $[\theta G_{n-p}(C^{n})]=[G_{p}(C^{n})]\neq$

$[\theta G_{p}(C^{n})]=[G_{n-p}(C^{n})]$ ; and (iii) if $\mu$ is even, then $[G_{n-p}(C^{n})]=[G_{p}(C^{n})]\neq$

$[\theta G_{n-p}(C^{n})]=[\theta G_{p}(C^{n})]$ . Comparison of the traces shows that $G_{p}(C^{n})$ and
$\theta G_{p}(C^{n})$ project bijectively unless $2p=n$ and $\mu$ is even; in this case the
polars are $G_{p}(C^{n})^{*}$ .
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(3.4) $SU(n)/Z_{\mu},$ $\mu$ a divisor of $n$ , has the polars $G_{q}(C^{n}),$ $0<g=even\leqq n$ ,
if $\mu$ is odd; it has $G_{p}(C^{n})^{*},$ $0<2p\leqq n$ , if $\mu$ is even and $\nu:=n/\mu$ is odd;
and it has $G_{g}(C^{n})^{*},$ $0<g=even\leqq n$ , together with $2\times G_{g}(C^{n})^{*}$ in case $2g=n$

if both $\mu$ and $\nu$ are even.

(3.5) $0(n)$ has the polars $G_{p}(R^{n}),$ $0<p\leqq n$ .
(3.6) $SO(n)$ has the polars $G_{g}(R^{n}),$ $0<g=even\leqq n$ .
(3.7) $SO(n)^{\sim}=Spin(n),$ $n>2$ , has the polars $G_{2g}^{0}(R^{n}),$ $0\leqq g=even\leqq n/2$ ,

with the understanding that this is a singleton for $g=0$ (i.e. $G_{0}^{0}(R^{n})$ less
o) and two points for $g=n/2$ .

(3.8) $SO(2r)^{8},$ $r$ even, has the polars OIII $(r)^{*}$ and $G_{2g}^{0}(R^{2}$
‘

$)$ , $0\leqq g=$

$even\leqq r/2$ , with the same understanding as above for $g=0$ and $G_{2g}^{0}(R^{2r})^{\iota}$

for $g=r/2$ .
(3.9) $SO(2r)^{*}$ has the polars $G_{g}(R^{2r})^{*},$ $0<g=even\leqq r$ , and DIII $(r)$ .

Replace DIII $(r)$ with OIII $(\gamma)^{*}$ if $r$ is even.

(3.10) $Sp(n)$ has the polars $G_{p}(H^{n}),$ $0<p\leqq n$ .
(3.11) $Sp(n)^{*}$ has the polars $G_{p}(H^{n})^{*},$ $0<2p\leqq n$ , and CI $(n)^{*}$ .
For the Grassmann manifolds $G_{p}(n)$ we will give a more general prop-

osition, which follows from the fact that $I_{h}$ fixes a linear subspace
$x\in G_{p}(n)$ if and only if $x=x\cap ker(I_{h}-1)\oplus x\cap ker(-I_{h}-1)$ .

(3.12) PROPOSITION. $F(I_{h}, G_{p}(n))=\perp L_{a+b=p}G_{a}(h)\times G_{b}(n-h)$ . $ G_{a}(h)\times$

$G_{b}(n-h)$ is orthogonal to $G_{a}(n-h+a-b)\times G_{b}(h+b-a)$ . The polars of
$G_{p}(n)$ are $G_{a}(p)\times G_{b}(n-p),$ $a+b=p$ and $0\leqq a<p$ .

(3.13) $G_{r}(2r)^{*}$ has the polars $G_{a}(r)\times G_{b}(r),$ $ a+b=\gamma$ with $0<a<r/2$ ,
and, if $r=2r^{\prime}$ is even, $G_{r^{\prime}}(r)\cdot G_{r^{\prime}}(r)$ . Add the polar $U(r)/Z_{2}$ for $G_{r}(C^{2r})^{*}$ ,
$Sp(r)^{*}$ for $G_{r}(H^{2r})^{*},$ $SO(r)^{*}$ for $G_{r}(R^{2r})^{*}$ with $r$ odd and $0(r)^{*}$ for $G_{r}(R^{2r})^{*}$

with $r$ even, to have all the polars.

(3.14) $G_{p}^{0}(R^{n})$ has the polars $G_{p}^{0}(R^{n-p})$ , a pole, and $G_{a}^{0}(R^{p})\cdot G_{b}^{0}(R^{n-p})$ ,
$b=p-a$ even and $0<a<p$ .

(3.15) $G_{r}(R^{2r})^{l},$ $r$ even, has the polars $G_{g}^{0}(R^{r})\cdot G_{r-\sigma}^{0}(R^{r}),$ $0<g=even$

$<r$ , O(r)*and if $r^{\prime}=r/2$ is even, $G_{r^{\prime}}(R$‘ $)\iota\times G_{r^{\prime}}(R^{r})^{l}$ .
PROOF. Embed $G0(R^{2}$‘ $)$ into the exterior algebra $\wedge^{*}R^{2}$‘. Observe that

the covering transformation for the projection onto $G_{r}(R^{2r})^{\iota}$ is the restric-
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tion of the Hodge $*$-operator.

The next theorem will help reach the results more easily and gain
a deeper insight into the whole situation. Its validity will become
obvious later.

(3.16) THEOREM. Every connected irreducible space $M$ contains a
subspace $M$ with the root system $R(M)\cong R(M)$ of minimal multiplicity
( $=1$ if $R(M)\not\cong BC_{r}$ , and $M’=G_{r}(C^{2r+1})$ if $R(M)\cong BC_{r}$). Also the inclusion
induces $\pi_{1}(M)\cong\pi_{1}(M’)$ .

(3.17) The polars of $AI(n)=F(\kappa s_{1}, SU(n))$ are $G_{g}(R^{n}),$ $0<g=even\leqq n$ .
Those of $UI(n)=F(\kappa s_{1}, U(n))$ are $G_{p}(R^{n}),$ $0<p\leqq n$ .

(3.18) REMARK. Notice $R(AI(n))\cong R(SU(n))$ , the first example of (3.16).

The polars of $AI(n)$ are $F$( $\kappa s_{1}$ , the polars of $SU(n)$ ) $=G_{g}(R^{n})$ by (3.4). The
polars of $AI(n)/Z_{\mu}$ are easily found from (3.4) and quite similar to (3.4).

These and the similar ones in the sequel are omitted. One can counter-
check one’s results by means of the results in \S 5 and others.

(3.19) The polars of $AII(n)=F(\kappa ad(J)s_{1}, SU(2n))_{\langle 1)}$ are $G_{\sigma}(H^{n}),$ $0<g=$

$even\leqq n$ . Those of $UII(n):=F(\kappa ad(J)s_{1}, U(2n))_{(1)}$ are $G_{p}(H^{n}),$ $0<p\leqq n$ .
(3.20) The polars of DIII$(n)=F(ad(J)s_{1}, SO(2n))_{(1)}$ are $G_{g}(C^{n}),$ $0<g=$

$even\leqq n$ , while those of OIII$(n)=F(s_{1}\circ adJ, SO(2n))$ are $G_{p}(C^{n}),$ $0<p\leqq n$ .
(3.21) The polars of CI$(n)$ are $G_{d}(C^{n}),$ $0<d\leqq n$ .

\S 4. Determination of the polars. The exceptional case.

(4.1) NOTATIONS. The standard symbols $E_{6},$ $\cdots,$
$G_{2},$ $EI,$ $\cdots$ , GI will

denote the l-connected spaces. The results are easy from [CN-2], since
$\pi_{1}(M)$ does not cause complexities except for $R(M)\cong E_{7}$ . Given a point
$0$ of $M,$ $M^{+}(p)$ denotes the polar of $0$ through the point $p$ in $M$ (i.e.,
$M^{+}(p)=F(s_{o}, M)_{(p)})$ and $M^{-}(p)$ its orthogonal at $p$ .

(4.2) The polars of $E_{8}$ are EVIII $=F(\sigma^{VIII}s_{1}, E_{8})\cong E_{8}/F(\sigma^{vIII}, E_{8})$ and
EIX $=F(\sigma^{IX}s_{1}, E_{8})$ . (See (5.1) for $\sigma^{VIII}$ and $\sigma^{IX}.$ )

(4.3) The polars of EVIII are $G_{8}(R^{16})^{t}$ and DIII(8)*.

PROOF. $M:=EVIII$ has two polars $M^{+}(p)$ and $M^{+}(q)$ which are locally
isomorphic with $G_{8}(R^{16})$ and DIII(8) respectively ([CN-2]). The Euler
numbers $\chi M^{+}(p)=xG_{8}(R^{16})^{t}$ and $\chi M^{+}(q)=xDIII(8)^{*}$ (hence $M^{+}(q)\cong DIII(8)^{*}$ )
by (2.9). ([T-1] carries a table of the Euler numbers, which is correct
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except $\chi EVI=63$ . They and the Lefschetz numbers will be given in \S 5.)
On the other hand, $M^{-}(p)\cong G_{8}(R^{16})$ by (3.16) since $R(M)\cong E_{8}$ and sc
$M^{-}(p)\subset SO(16)^{\iota}$ . $M^{-}(p)=F(Q(p), M)_{(0)}$ , where $ad(Q(p))$ is conjugate witl]
$\sigma^{vIII}$ (not $\sigma^{IX}$) since $Aut(M^{-}(p))$ is locally SO(16). Therefore $Q(p)$ is con.
jugate with $s_{0}$ and we conclude $M^{+}(p)\cong G_{8}(R^{16})^{8}$ .

(4.4) The polars of EIX are EVI and $S^{2}\cdot EVII$ .
(4.5) The polars of $E_{7}$ are $2\times EVI$ and a pole. Those of $E_{7}^{*}$ are

EVI, $EV^{*}$ and EVII*.

(4.6) The polars of EV are $2\times G_{4}(C^{8})^{*}$ and a pole. Those of EV’
are $G_{4}(C^{8})^{*},$ $AI(8)/Z_{4}$ and AII(4)*.

(4.7) The polars of EVI are $S^{2}\cdot DIII(6)$ and $G_{4}^{0}(R^{12})$ .
(4.8) The polars of EVII are $2\times EIII$ and a pole, and those of EVII”

are EIII and $(T\cdot EIV)/Z_{2}$ .
(4.8A) We explain the space $M^{+}(p):=(T\cdot EIV)/Z_{2}$ above, $M=EVII^{*}$

although there is no ambiguity. The dot product $T\cdot EIV$ is given by the
$Z_{3}$ , see (3.1), which is generated by $(\omega, \omega’)$ where $\omega\in T=U(1)$ is a cubit
root of 1 and $\omega^{\prime}$ generates the covering transformation group for tht
3-fold covering morphism: $EIV\rightarrow EIV^{*}$ . Another explanation. By $ R(EIV)\cong$

$R(SU(3))$ , there is an embedding: $U(3)\rightarrow UII(3)\rightarrow T\cdot EIV$ , (5.21), whic}
induces $\pi_{1}(U(3))\cong\pi_{1}(T\cdot EIV)$ , cf. (3.16). The above embedding inducef
$U(3)/Z_{2}\rightarrow(T\cdot EIV)/Z_{2}$ .

(4.9) $E_{6}$ and $E_{6}^{*}$ have both EII and EIII as polars. Those of EI anc
$EI^{*}$ are both CI $($4 $)^{*}$ and $G_{2}(H^{4})^{*}$ . Those of EII are $G_{2}(C^{6})$ and $S^{2}\cdot G_{8}(C^{6})$

EIII has $G_{2}^{0}(R^{10})$ and DIII(5). EIV and EIV* have FII. $F_{4}$ has FI anc
FII. FI has $S^{2}\cdot CI(3)$ and $G_{1}(H^{\theta})$ . FII has $S^{8}$ . $G_{2}$ has GI, and GI ha:
$S^{2}\cdot S^{2}$ .

\S 5. The involutions of a space.

We will determine $Inv(M, 0)$ , its conjugate classes in $Aut(M)an($
$F(t, M)$ for every $teInv(M, 0)$ . (The result would naturally contain tht
local classification of the affine symmetric spaces. See S. Kaneyuki [K].

(5.1) NOTATIONS. Every $t\in Aut(M, 0)$ gives rise to $\tau=ad(t)\in$

$G- Aut(G, K)$ , and vice versa. Generally we use Roman and corresponding
Greek letters this way. Also $a.:=ad(s.),$ $a^{Ix}:=ad(s^{IX})$ , where $s^{Ix}=s_{o}fol$

$EIX\cong E_{0}/F(\sigma^{IX}. E_{0})$ . etc. $N$“ denotes the snace which admits the (unioue
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double covering space $N$ in (5.22), (5.24), etc.

(5.2) PROPOSITION. Let $t\in Inv(M, 0)$ on a connected M. Then (i) every
component of $F(t, M)$ meets the given component $M^{-t}:=F(ts_{0}, M)_{(0)}$ ; (ii)
every component of the intersection $F(t, M)\cap F(ts_{0}, M)$ is a component of
$F(t, M^{+})$ for some polar $M^{+}$ of $0$ in $M$, and vice versa.

PROOF. (i) Take a shortest geodesic $\gamma$ from an arbitrary point of
$F(t, M)$ to $F(t, M)_{(0)}$ . Let $b\in F(\tau, G)_{(1)}$ carry the endpoint of $\gamma$ into
$0$ . Then $ b\gamma$ is contained in $M^{-t}$ and its initial point lies in the intersec-
tion in question. (ii) follows from $ts_{0}=s_{0}t$ and $F(t, M)\cap F(ts_{0}, M)=$

$F(\{t, s_{o}\}, M)=F(t, F(s_{0}, M))$ , etc.

(5.3) COROLLARY. If $\sigma$ and $\tau\in G- Inv(G)$ belong to a component of
G-Aut$(G)$ , then a commutes with some conjugate of $\tau$ .

(5.4) REMARK. Without the homotopy assumption in (5.3), $\sigma$ commutes
with a conjugate of $\tau$ in $H:=G- Aut(G)$ if and only if $F(ad(a), H)$ meets
the polar $H^{+}(\tau)$ .

(5.5) THEOREM. $Inv(M, 0)$ is bijective with $F(s_{1}, F(ad(\sigma_{o}), G- Aut(G)))=$

$F(ad(\sigma_{0}), G- Inv(G))$ , the conjugacy classes in $Aut(M)$ corresponding to {1}
and the polars in $F(ad(\sigma_{o}), G- Aut(G))$ except for l-connected $M$ with
$R(M)=D_{2m}$ .

PROOF. $Aut(Q)$ restricts to an isomorphism $Aut(M, 0)\cong G- Aut(G, K)$ ,
(1.10). Therefore $Inv(M, 0)$ is bijective with G-Inv$(G, K)$ . We will show
that every $\tau\in F(ad(\sigma_{o}), G- Inv(G))$ stabilizes $K$. Since $\tau$ stabilizes the Lie
algebra $\mathscr{L}(K)$ and hence $F(\sigma_{0}, G)$ and $Q(M)$ in $G,$ $(5.2)$ applies to yield
$\tau(K)=K$. As to the conjugacy of the involutions with respect to $Aut(M)$ ,
one has only to note that $Aut(Q)(t)=ad(t)$ for $t\in Inv(M, 0)$ in view of
Lemma 2.4 in [CN-2] (whether or not $K$ is connected).

(5.5A) REMARK. (5.5) settles the problem of $Inv(M, 0)$ , since G-Aut$(G)$

is known. But the next (5.6) may be more expedient if an involutive
covering transformation is not in $G$ .

(5.6) PROPOSITION. Let $b\in Inv(M)$ . Assume $bo$ is a pole of $0$ . Then
(i) $b$ admits the decomposition $ b=\gamma\delta=\delta\gamma$ where $\gamma$ is a covering morphism
and $\delta$ is induced by $ad(b)$ with $\gamma^{2}=\delta^{2}=1$ ; (ii) $\gamma=cad(c)$ for some $c$ in $G_{(1)}$ ,
(2.12); and (iii) $Gb\cap Inv(M, 0)=F(s_{1}ad(cb), K)cb$ .

(5.7) REMARK. Finding the components of $F(t, M)$ is facilitated by
(5.2) and (5.8) or (5.9) below. Also, by (2.9B) in the hermitian case.
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(5.2) gives more information on the intersections than the first glance
might tell; for instance, 2 dim $F(t, F(s_{o}, M))_{(p)}=\dim M^{+}(p)$ -dim $M+$

dim $F(t, M)_{(p)}+\dim F(ts_{0}, M)_{(p)}$ . Also the components $\neq\{0\}$ of $M^{-t}\cap F(t, M)$

are exactly the polars of $0$ in $M^{-t}$ . All these together allow one to make
induction arguments on dim $M$.

(5.8) PROPOSITION. Let $\sigma$ and $\tau\in G- Inv(G)$ with $\sigma\tau=\tau a,$ $G$ a compact
Lie group. Let $\sigma$ and $\tau$ act (as $s$ and t) on both $M_{\sigma}:=G/G^{\sigma}$ and $M_{f}:=$

$G/G^{\tau},$ $G^{\sigma}:=F(\sigma, G)$ , etc. Then (i) $t$ fixes a point $cG^{\sigma}$ in $M_{\sigma},$ $c\in G$ , if and
only if $s$ fixes the point $c^{-1}G^{f}$ in $M_{\tau}$ ; (ii) this gives a bijection of the set
{ $G^{f}$-orbits contained in $F(t,$ $M_{\sigma})$ } onto $\{G^{\sigma}- orbits\subset F(s, M_{f})\}$ ; (iii) the isotropl
subgroup of $G^{\tau}$ at the point $cG^{\sigma}\in F(t, M_{\sigma})$ is isomorphic with that of $G^{\iota}$

at $c^{-1}G^{\tau}\in F(s, M_{\tau})$ . (Caution: $G^{\sigma}$ and $G$‘ are not necessarily effective on
those orbits.)

(5.9) COROLLARY. If $G^{\sigma}$ and $G^{\tau}$ in (5.8) are connected, then $F(t,$ $M_{\sigma_{J}}^{\backslash }$

and $F(s, M.)$ have an equal number of components.

(5.10) REMARK. The relationship between $M_{\sigma}$ and $M_{f}$ as in (5.8) anc
(11.1), reminiscent of the Radon transform, is called the Radon duality
albeit vague admittedly. This is not trivial even if $\sigma$ is conjugate with
$\tau$ ; a case in point is the classical duality between the points and tht
hypersurfaces in a projective space, which is generalized in (11.1).

Now we enumerate the components of $F(t, M)$ for $t$ chosen from eacl
conjugacy class in $Inv(M, 0)$ and $M$ from each local class of connectee
irreducible spaces $\neq groups$ . If $M$ is a connected simple group space
then $Inv(M, 1)$ is bijective with $\{1, s_{1}\}\times G- Inv(M)$ . We omit $t=1$ and $s$

but include their Lefschetz numbers.

(5.11) Let $M=AI(n)\subset SU(n)$ (See (3.17) for the inclusion. Similarl]
for the sequel). $F(I_{p}, M)=T\cdot(AI(p)\times AI(n-p)),$ $0\leqq 2p<n$ , with $Lef(I_{p})=$

$0=\chi M$ and $Lef(s_{o})=2^{[n/2]}$ . If $n=2n$ ’ is even, add $F(J, M)=2\times SU(n^{\prime})$

$F(s_{o}J, M)=CI(n^{\prime})$ and $F(s_{o}ad(I_{1}), M)=4L_{k=odd}G_{k}(R^{n})$ with $Lef(J)=$

$Lef(s_{o}ad(I_{1}))=0$ and $Lef(s_{o}J)=2^{n^{\prime}}$ .
(5.12) If $M=AII(n)\subset SU(2n)$ , then $F(\kappa, M)=DIII(n),$ $F(J, M)=SU(n)$

$F(P_{p}, M)=T\cdot(AII(p)\times AII(n-p)),$ $0\leqq 2p\leqq n$ , and $F(s_{O}P_{1}, M)=4L_{k=odd}G_{k}(H^{n}$

with $Lef(\kappa)=2^{n-1}=Lef(s_{o})=Lef(s_{O}P_{1})$ and $Lef(J)=0=Lef(P_{p})=\chi M$.
(5.13) Let $M=G_{p}(C^{n})\subset SU(n)$ . $F(\kappa, M)=G_{p}(R^{n})$ and $F(I_{h}, M)$ in (3.12)

Add $F(s^{II}, M)=G_{p^{\prime}}(H^{n^{\prime}})$ if $n=2n$’ and $p=2p$ ’ are even, where $s^{II}=$

$\kappa(.\Gamma_{-\prime}ffl.T_{-\prime}-,)$ . Add $F(\kappa ad(J)_{-}M)=CI(n^{\prime})$ . $F(u_{-}\kappa ad(J). M)=OIII(n)$ $an($
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$F(ad(J), M)=U(n^{\prime})$ if $p=n^{\prime}=n/2$ . $Lef(I_{h})=\chi M=\left(\begin{array}{l}n\\p\end{array}\right),$ $Lef(\kappa)=Lef(s^{II})=$

$(_{[p/2]}^{[n/2]}),$ $Lef(\kappa ad(J))=Lef(s_{0}\kappa ad(J))=2^{n}$ and $Lef(ad(J))=0$ .
(5.14) Let $M=G_{p}(R^{n})$ . See (3.12) for $F(I_{h}, M)$ . Add $F(J_{p^{\prime}}\oplus J_{n^{\prime}-p^{\prime}}, M)=$

$G_{p^{\prime}}(C^{n^{\prime}})$ with Lef $=xM$ if $n=2n$’ and $p=2p$ ’ are even. Add $F(ad(J), M)=$
$UI(p)$ and $F(s_{o}ad(J), M)=O(p)$ if $n=2p$ . $Lef(I_{h})=Lef(I_{1})=2([n[/p2/]2]-1)$ if
$n,$ $n-h$ and $p$ are all odd and $=xM$ otherwise. $\chi M=0$ if $p$ and $n-p$ are
odd and $(_{[p/2]}^{[n/2]})$ otherwise. $Lef(ad(J))=Lef(s_{0}ad(J))=0$ .

(5.15) Let $M=G_{p}(H^{n})$ . $F(J, M)=G_{p}(C^{n})$ and $ F(P_{h}, M)=\perp_{a+b=p}G_{a}(H^{h})\times$

$G_{b}(H^{n-h})$ . Add $F(ad(P_{J}), M)=UII(p)$ and $F(s_{0}ad(J), M)=Sp(p)$ if $2p=n$ .
$Lef(J)=Lef(P_{h}, M)=\chi M=\left(\begin{array}{l}n\\p\end{array}\right)$ . $Lef(ad(J))=Lef(s_{o}ad(J))=0$ .

(5.16) Let $M=CI(n)$ . $F(P_{p}, M)=CI(p)\times CI(n-p)$ , $0<2p\leqq n$ , and
$F(ad(I_{n}), M)=UI(n)$ . Add $F(ad(P_{J}K), M)=Sp(n’)$ if $n=2n$ is even.
$Lef(P_{p})=2^{n}=\chi M$. $Lef(ad(I_{n}))=0=Lef(ad(P_{J}K))$ .

(5.17) Let $M=DIII(n)$ . $F(P_{h}, M)=2\times(DIII(h)\times DIII(n-h)),$ $0\leqq 2h\leqq n$ ,
and $F(ad(I_{n}), M)=SO(n)$ . Add $F(JP_{1}, M)=\perp_{k=odd}G_{k}(C^{n})$ and $F(ad(P_{J}I_{n}), M)=$
$UII(n^{\prime})$ if $n=2n^{\prime}$ is even, $Lef(P_{h})=Lef(s_{0})=\chi M=2^{n-1}=Lef(JP_{1})$ . $Lef(ad(I_{n}))=$
$0=Lef(P_{J}I_{n})$ .

(5.18) Let $M=EI$ . $F(s^{II}, M)=S^{2}\cdot AI(6)\perp AII(3),$ $F(s^{III}, M)=T\cdot G_{3}(R^{10})$

and $F(s^{Iv}, M)=F1$ . $Lef(s_{0})=Lef(s^{Iv})=12$ and $Lef(s^{II})=Lef(s^{III})=\chi M=0$ .
(5.19) Let $M=EII$ . $F(s^{I}, M)=CI(4)^{*}\perp G_{1}(H^{4})$ , $ F(s^{III}, M)=G_{4}^{0}(R^{10})\perp$

DIII(5) and $F(s^{Iv}, M)=FI$ . $Lef(s^{I})=Lef(s^{IV})=12$ and $Lef(s^{II})=Lef(s^{III})=$
$\chi M=36$ .

(5.20) Let $M=EIII$ . $F(s^{I}, M)=G_{2}(H^{4})^{*}$ , $F(s^{II}, M)=S^{2}\times G_{1}(C^{6})\perp G_{2}(C^{6})$

and $F(s^{Iv}, M)=FII$ . $Lef(s^{I})=3=Lef(s^{Iv})$ and $Lef(s^{II})=Lef(s^{III})=\chi M=27$ .
(5.21) Let $M=EIV$ . $F(s^{I}, M)=G_{1}(H^{4}),$ $F(s^{II}, M)=AII(3)$ and $F(s^{III}, M)=$

$T\cdot S^{9}$ . $Lef(s^{I})=4=Lef(s^{Iv})$ and $Lef(s^{II})=Lef(s^{III})=0=xM$.
(5.22) Let $M=EV$ . $F(s^{VI}, M)=S^{2}\cdot G_{6}^{0}(R^{12})\perp DIII(6)$ , the dot product

explained in (5.22A). $F(s^{vII}, M)=2\times EII$ , $F(t^{v}, M)=AI(8)^{\prime\prime}\perp AII(4)$ and
$F(t^{vII}, M)=T\cdot EI$ . $Lef(s^{VI})=Lef(s^{VII})=Lef(s_{o})=\chi M=72$ and $Lef(t^{vII})=$
$Lef(t^{v})=0$ .

(5.22A) REMARK. In $E_{7}$ . the two copies of EVT amnro $+haYYr\iota 1nr\circ$
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(4.5), have common $orthogonals\cong Sp(1)\cdot SO(12)^{\sim}$ , where the dot product

is given by $(-1, \epsilon)$ . The projection: $E_{7}\rightarrow E_{7}^{*}$ restricts to an epimorphism:
$Sp(1)\cdot SO(12)^{\sim}\rightarrow Sp(1)\cdot SO(12)$ , whose kernel is $\{1, (1, \epsilon\delta)\}$ . The correspond-
ing dot products in EV and $EV^{*}$ are thus defined in view of (3.16) and
$G_{6}^{0}(R^{12})\subset SO(12)^{\sim}$ .

(5.23) Let $M=EVI$ . $F(s^{v}, M)=G_{4}(C^{8})^{*}\perp G_{2}(C^{8})$ and $F(s^{vII}, M)=$

$EII4LEIII$ with $Lef(s_{0})=Lef(s^{v})=Lef(s^{vII})=xM=63$ .
(5.24) Let $M=EVII$ . $F(s^{v}, M)=2\times G_{2}(C^{8})$ , $ F(s^{vI}, M)=S^{2}\times G_{2}^{0}(R^{12})\perp$

DIII(6), $F(t^{v}, M)=AII(4)^{\prime}$ and $F(t^{vII}, M)=T\cdot EIV$ . $Lef(s^{v})=Lef(s^{vI})=xM=$

$56=Lef(s_{o}, M)$ . $Lef(t^{v})=0=Lef(t^{vII})$ .
(5.25) Let $M=EVIII$ . $F(s^{IX}, M)=EVI\perp S^{2}\cdot EV$ with $Lef(s^{Ix})=$

$Lef(s^{vIII}, M)=\chi M=135$ .
(5.26) Let $M=EIX$ . $F(s^{vIII}, M)=G_{4}^{0}(R^{16})\perp DIII(8)^{*}$ with $Lef(s^{vIII})=$

$\chi M=120.|$

(5.27) $F$( $s^{II}$ , FI) $=G_{4}^{0}(R^{9})$ with $Lef(s^{II})=Lef(s^{I})=12$ .
(5.28) $F$( $s^{I}$ , FII) $=G_{1}(H^{3})$ with $Lef(s^{I})=x=3$ .
(5.29) GI admits no involution which is not conjugate to 1 or $s_{0}$ .

$Lef(s_{o})=x=3$ .
(5.30) REMARK. The above results yield (3.16) and the next (5.31)

through (5.33).

(5.31) THEOREM. Two involutions $s$ and $t$ of a connected space $M$,
$F(s, M)\neq\emptyset\neq F(t, M)$ , are congruent if and only if a component $0$]

$F(s, M)$ is isomorphic with some one of $F(t, M)$ .
(5.32) If the isotropy subgroup $K$ is almost effective on a polar $M^{\star}$

in $M=G/K$, then the restriction gives a monomorphism: $Inv(M, 0)/\{1, s_{0}\}\rightarrow$

$Inv(M^{+})$ .
(5.33) PROPOSITION. The monomorphisms: $C_{4}\rightarrow F_{4}$ and $D_{n}\rightarrow C_{n}$ of rool

systems are realized by CI $($4$)^{*}\subset EII,$ $G_{4}(C^{8})\subset EVI,$ $DIII(8)^{*}\subset EIX$ and $ bn\sim$

$SO(2n)\subset DIII(2r),$ $G.(R^{2n})cG.(C^{2n})$ and AII(4)“ $\subset EVII$ , and essentially $b\mathfrak{g}$

these only. Also, the multiplicity of the shorter roots in $R(M^{\prime})$ is $hal_{J}$

the one of $R(M)$ in $M^{\prime}\subset M$ with $R(M^{\prime})\cong C_{4}$ and $R(M)\subseteqq F_{4}$ .

(5.34)- REMARK.We––.

point out intriguing $per_{\wedge\perp-\perp-f_{--\vee\wedge}}iodicityinclassical.spac_{1}e\$ $
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tions. We abbreviate, say, $U(n)\rightarrow G_{n}(C^{2n})\rightarrow U(2n)$ to Ue $G_{n}(C^{2n})$ in the
diagram below. This and the counterclockwise outer cycle below
$0\rightarrow G_{n}(R^{2n})\rightarrow\cdots\rightarrow OIII\rightarrow 0$ induce isomorphisms $\rightarrow\pi_{t}(M’)\rightarrow\pi_{\iota+1}(M)\rightarrow$ in
the stable range, yielding the Bott periodicity. (See the book “Topology
of Lie Groups” (in Japanese) by Toda and Mimura or [M].)

$UICI1--G_{n}(R^{2n})G_{n}(C^{2n})|-OIII-0\downarrow$

$Sp\downarrow-G_{n}(H^{2n})-|UII\downarrow$

(5.35) REMARK. The list of $F(t, M)$ contains all the maximal sub-
spaces of $M$ if $M=G_{2}^{0}(R^{n})$ , [CN-1]. The general case, however, appears
formidable to solve, in view of the colossal work of Dynkin [D]. See (7.6).

\S 6. The root system.

(6.1) NOTATION. Given $t\in Inv(M, 0)$ , we write $M^{t}$ for $F(t, M)_{(0)}$ and
$M^{-t}$ for $F(ts_{o}, M)_{(0)}$ . Similarly $G^{t}:=F(\tau, G)_{(1)}$ and $G^{-t}:=F(\tau a_{0}, G)_{(1)}$ . Let
$A=A^{-t}$ be a maximal torus in $M^{-t},$ $0\in A$ , with the usual group structure
which makes $Q:A\rightarrow G$ a group homomorphism. By its action the Lie
algebra $\mathfrak{g}=\mathscr{L}(G)$ is decomposed into the weight spaces: $\mathfrak{g}=\sum_{\rho eP}\mathfrak{g}_{\rho};\mathfrak{g}_{\rho}$ is
thus the kernel of $($ad $H)^{2}+\rho(H)^{2}1$ for every $H\in \mathfrak{a}=\mathscr{L}(A)$ . We use a
finer decomposition $\mathfrak{g}=\mathfrak{g}_{0}+\sum_{\alpha eR(-t)}\mathfrak{g}_{\alpha}+\sum_{\lambda eR(t)}\mathfrak{g}_{\lambda}$ where $\{O\}\perp(R(-t)\cup$

$R(t))=P,$ $\mathfrak{g}_{\alpha}\subset \mathfrak{g}^{-t}=\mathscr{L}(G^{-t})$ and $\mathfrak{g}_{\lambda}\subset \mathfrak{g}^{t}$ . We add $-\alpha$ to $R(-t)$ for every
$\alpha\in R(-t)$ , to make $R(-t)$ a root system, called that of $M^{-t}$ . Thus the
root system $R(M)$ of $M$ is $R(-t)$ for $t=s_{0}$ . $\gamma=\gamma_{H}$ will denote the
geodesic $\in Hom((R, 0),$ $(M, 0))$ with $\gamma^{\prime}(0)=H,$ $H\in \mathfrak{a}$ .

(6.2) PROPOSITION (Variational Completeness). Let $J=J(H, M^{t})$ denote
the vector space of the Jacobi fields $v$ along $\gamma_{H}$ satisfying $v(0)\in T_{o}(M^{t})$

and $v’(0)\in T_{o}(M^{-t})$ . Take a point $\gamma(u),$ $u\neq 0$ , on the geodesic. Then the
subspace $\{v\in J|v(\gamma(u))=0\}$ is identic$al$ with { $ v|\gamma$ or $ tv|\gamma$ ; $v\in \mathfrak{g}$ and
$v(\gamma(u))=0\}$ , where the members of $\mathfrak{g}$ are regarded as vector fields on $M$.

A point $\gamma(u),$ $u\neq 0$ , on the geodesic $\gamma$ is conjugate to $M^{t}$ along $\gamma$ by
definition if $v(\gamma(u))=0$ for some $v\neq 0$ in $J$. The next proposition general-
izes theorems of T. Sakai [Sa] and M. Takeuchi [T-2] in which $M^{t}=\{0\}$ .

(6.3) PROPOSITION. The set of all $t,h\rho,$ $ c\circ niu.aa.f.\rho$. $n/$} $0.nt_{R}nT\prime 1^{\prime}1t\Pi thp$
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geodesics which are perpendieular to $M^{t}$ is the union of the singular
$G^{t}$-orbits in $M$.

(6.4) PROPOSITION. Let $p=\gamma(1)\in M^{-t}$ . Assume $s_{o}(p)=p$ . Then (i)

$\rho(2H)\in\pi Z$ for every $\rho\in P$; and (ii) if $\gamma|[0,1]$ is one of the shortest from
$M^{t}$ to $p$ , then $|x(2H)|=0$ or $\pi$ for $\lambda$ in $R(t)$ and $|\alpha(2H)|=0,$ $\pi$ or $ 2\pi$ for
$\alpha\in R(-t)$ .

PROOF. (i) follows from $\gamma(2)=0$ , and (ii) from absence of conjugate
points on $\gamma|(0,1)$ .

This proposition has applications such as (2.5) and the next, which
we obtain for $t=s_{0}$ since $A$ is then a maximal torus in $M$. In (6.5) we
use the expression $\tilde{\alpha}=\sum n^{j}\alpha_{j}$ of the highest root in terms of the simple

roots $\alpha_{j}$ .
(6.5) PROPOSITION. The shortest geodesics from $0$ to an arbitrary

polar $M^{+}$ are K-congruent with the geodesic $\gamma_{H},$ $\gamma_{H}(1)\in M^{+}$ , such that
either $2H=H^{j}$ for some $n^{j}\leqq 2$ or $2H=H^{i}+H^{k}$ corresponding to $n^{i}=n^{k}=1$ ,

where $H^{\dot{g}}$ is defined by $\alpha_{i}(H^{\dot{f}})=\pi\delta_{i}^{\dot{f}}$ or, equivalently, $H^{j}=(2\pi/\Vert\alpha_{j}\Vert^{2})M_{j}$ .
(6.6) EXAMPLES. The polar $G_{2j}(C^{n})$ in $SU(n)$ is reached by the shortest

$\gamma_{H},$
$2H=H^{\dot{f}}+H^{n-j}$ , and its projection into $SU(n)^{*}$ by $\gamma_{H},$ $H=H^{2j}$ . If

$M=E_{6},2H=H‘+H^{6}$ gives the shortest to the polar EIII, but, in $M^{*}$ ,
$2H=H^{1}$ does to its projection. If $M=SO(2r),$ $2H=H^{r-1}+H^{r}$ gives the
shortest to the polar $G_{2}(R^{2t})$ , but $H^{r}$ does in $M^{*}$ . If $M=E_{7}$ , the shortest
to the polars $\cong EVI$ are given by $2H=H^{1}$ and $H^{6}$ . Since $\Vert H^{6}\Vert^{2}/\Vert H^{1}\Vert^{2}=3/2$ ,
one is closer to $0$ than the other EVI. $H^{1}$ gives the shortest in $M^{*}$ .
(Another proof of (4.5) is given this way.) If $M=M^{*}$ in general, the
second case $2H=H^{i}+H^{k}$ in (6.5) does not occur, (6.8).

(6.7) PROPOSITION. Assume $M=M^{*}$ and $s_{o}(p)=p$ . Choose $A$ , $0$

maximal torus in $M$, satisfying $\{0, p\}cA\subset M^{-}(p)$ . Then $R(M^{-}(p))$ is $tht$

set of the roots $\alpha\in R(M)$ such that the integer $\alpha(2H)/\pi$ is even for everb
$H\in a$ satisfying $\gamma_{H}(1)=p$ .

PROOF. Apply (6.4) for $t=s_{p}$ (hence $M^{-t}=M^{-}(p)$). Observe thal
$ad(e^{H})$ , where $\gamma_{H}(1)=p$ , exchanges $F(ad(s_{p}), \mathfrak{g})$ and $F(ad(s_{o}), \mathfrak{g})=f$ , stabilizing
$F(ad(Q(p)), \mathfrak{g})$ . Now (6.7) follows since $\{H\in \mathfrak{a}|\gamma_{H}(1)=p\}$ spans $\mathfrak{a}$ .

(6.8) PROOF OF (2.5). We may work on $M^{*}$ . We use (6.7), from

r-which $(iii)is_{I}obvious.Thesecondcase2H=H^{i}+H^{k}in(6.4)cannotoccul[]rT47Tk||\backslash ||rTizrk|r_{I^{1}u,,.\iota_{0\backslash r\Delta/:\backslash \rho_{n\tau\backslash rar\alpha ol\backslash r1afP^{-}}}}-,\Delta$



INVOLUTIONS OF SYMMETRIC SPACES 73

be a root $system\subset R(M)$ in (2.5). Then $R^{-}=$ {$\alpha\in R(M)|\alpha(H^{j})/\pi$ is even}
for some $H^{j}$ . $p=\gamma_{H}(1)$ with $H=H^{j}$ belongs to the polar.

\S 7. Curvature and the Helgason sphere.

Let $M$ be a Riemannian manifold in general. The sectional curvature
$SK$, restricted to the 2-planes in the tangent space $T_{o}M$ at a point $0$ , is
critical at $H\wedge X\in G_{2}(T_{O}M)$ if and only if the curvature operator $K(H\wedge X)$

stabilizes the plane, as is easily seen. Back to a compact symmetric
space, the above condition is equivalent to saying that $ad[H, X]$ stabilizes
$H\wedge X$ where $T_{0}M$ is identified with $\mathfrak{m}:=F(-a_{0}, \mathfrak{g})$ ; in other words, $H$ and
$X$ generate $\mathscr{L}(T^{2})$ or $\mathscr{L}(0(3))$ .

(7.1) PROPOSITION. The plane $H\wedge X\in G_{2}(T_{O}M)$ is a critie $al$ point of
the sectional curvature $SK$ restricted to $G_{2}(T_{O}M)$ if and only if $H\wedge Xis$

tangent to a subspace of constant curvature $SK(H\wedge X)$ .
(7.2) PROPOSITION. Let $H\in acm$ and $X=\sum_{\alpha eR(H)}X_{\alpha},$ $X_{\alpha}\in \mathfrak{m}\cap \mathfrak{g}_{\alpha}$ . Then

$H\wedge X\neq 0$ is tangent to a space of constant curvature $>0$ if and only if
[ $X_{\alpha}$, Yp] $=0$ for any distinct roots $\alpha,$ $\beta\in R’:=\{\alpha\in R(M)|X_{\alpha}\neq 0, \alpha>0\}$ and
there is some positive number $c$ such that $\sum_{\beta eR^{\prime}}$ I $X_{\beta}\Vert^{2}\langle\alpha, \beta\rangle=c^{2}$ for every
$\alpha\in R^{\prime}$ , where $[H, X_{\alpha}]=\alpha(H)Y_{\alpha}\in f$ . ($c^{2}=SK(H\wedge X)$ if $H$ and $X$ are ortho-
normal).

(7.3) COROLLARY. If a subset $R^{\prime}\subset R(M)$ is strongly orthogonal, then
$ H=\sum_{\alpha eR^{\prime}}\Vert\alpha\Vert^{-1}\alpha$ and $X=\sum_{\alpha eR^{\prime}}X_{\alpha}$ , where I $X_{\alpha}\Vert=\Vert\alpha\Vert^{-1}$ and $X_{\alpha}\in \mathfrak{m}\cap \mathfrak{g}_{\alpha}$ ,
are tangent to a space of constant curvature $>0$ .

(7.4) COROLLARY. $R\alpha+\mathfrak{m}\cap \mathfrak{g}_{\alpha}$ is the tangent space of a certain sub-
space, $S(\alpha)$ , of constant curvature if $\alpha\in R(M)$ and $2\alpha\not\in R(M)$ . $S(\alpha)$ is
l-connected unless the rank $r(M)=1$ or $R(M)\cong B_{r}$ and $\alpha$ is a shorter root.

(7.5) REMARK AND DEFINITION. If $2\alpha\in R(M)$ and $\alpha\in R(M)$ , then $R\alpha+$

$\mathfrak{m}\cap(\mathfrak{g}_{\alpha}+\mathfrak{g}_{2\alpha})$ is tangent to a subspace of rank 1.
S. Helgason ([H] \S VII-II) studied $S(\tilde{\alpha})$ thoroughly, $\tilde{\alpha}$ being the highest

root. We call it and all the G-congruents $bS(\tilde{\alpha}),$ $b\in G$ , the Helgason
spheres in $M$ if $M$ is irreducible. $S(\tilde{\alpha})$ is a maximal subspace of rank 1
only when $M=AI$ , CI or Sp. And dim $S(\tilde{\alpha})>2$ if and only if the homo-
topy group $\pi_{2}M=0$ . (In general the embedding induces an epimorphism:
$\pi_{2}S(\tilde{\alpha})\rightarrow\pi_{2}(M).)$

(7.6) PROPOSITION. Let $H$ be as in (6.4) (ii) with $t=s_{p}$ for the space
$S^{2}$ [resp. $G_{1}(R^{2})$]. Then $f^{*}\alpha_{j}(2H)\in\{0, \pi, 2\pi\}$ [resp. $\{0,$ $\pi/2,$ $\pi\}$] for every
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embedding $f$ of the space into another space $M$ and the suitable simple
roots $\alpha_{j}$ of $R(M)$ .

PROOF. The proof of Prop. 5 in \S VII-II of [B] or Theorem 8.3 of
[D] is sufficient with a slight modification.

(7.7) REMARK. We do not have the definition of the appropriate sphere
$S(H)\subset M,$ $H$ the initial tangent to a circle, other than a root vector,
but it might be suggested by [W], in which J. A. Wolf determined the
maximal sphere in $G_{n}(2n)$ which contains the shortest circles containing
the origin $0$ and its pole in $G_{n}(2n)$ .

\S 8. Homotopy groups.

In proving the Bott periodicity for $U(n)$ , Milnor ([M] \S 23) shows the
centrosome $C_{(1,-1)}=G_{r}(C^{2}$‘ $)$ in $SU(2r)$ has the homotopy groups $\pi_{i}(G_{r}(C^{2t}))\cong$

$\pi_{i+1}(SU(2r))$ for $i\leqq 2r$ . Translating his arguments into the language of
roots, one gets $\pi_{i}(C_{(o,p)})\cong\pi_{+1}(M)$ for $i\leqq m(r+1)-2$ and every l-connected
space $M$ with $R(M)\cong R(SU(2r))$ and multiplicity $m$ .

One has similar isomorphism with $R(SU(2r))$ replaced by $C_{r}$ in the
range $i\leqq m(r-1)+2(n-1)$ , where $m$ and $n$ are the multiplicities of the
shorter and the longer roots; for instance, $\pi_{i+1}(EVII)\cong\pi_{i}(T\cdot EIV),$ $i\leqq 16$ .
This is a part of J. Burns’ thesis (Notre Dame, 1985). We will state a
variant in case $R(M)\cong F_{4}$ . We use the centrosome $C_{(0,p)}$ in $M^{-}(p)$ , where
$R(M^{-}(p))\cong B_{4}$ .

(8.1) THEOREM. In the above notation for $R(M)\cong F_{4}$ , one has $\pi_{i+1}(M)\cong$

$\pi_{i}(C_{(o,p)}),$ $i\leqq 2m+3n-1$ , where $m,$ $n$ are the multiplicities of the shorter
and the longer roots of $F_{4}$ . That is, (i) $\pi_{i}(EIX)\cong\pi_{i-1}(S^{3}\cdot S^{11}),$ $i\leqq 18$;(ii)
$\pi_{i}(EV1)\cong\pi_{i-1}(S^{3}\cdot S^{7}),$ $i\leqq 10$ ; (iii) $\pi_{t}(EII)\cong\pi_{i-1}(S^{3}\cdot S^{b}),$ $i\leqq 6$ ;(iv) $\pi_{l}(FI)\cong S^{3}\cdot S^{2}$ ,
$i\leqq 4$ ; and (v) $\pi_{i}(F_{4})\cong\pi_{i-1}(G_{2}^{0}(R^{9})),$ $i\leqq 9$ .

\S 9. Graded Lie algebras.

We will explain how $F(t, M),$ $t\in Inv(M, 0)$ is related to a simple
graded Lie algebra $I=\sum_{p=-2}^{2}I^{(p)}$ , dim $I^{(2)}\leqq 1,$ $I^{(1)}\neq 0$ . The classification in
the case $I^{(2)}=\{0\}$ was done in [KN] and [N], correcting E. Cartan’s clas-
sification of the primitive transitive Lie algebras (I, p), $\mathfrak{p};=\sum_{q\geq 0}I^{(q)}$ . It
turns out that (i) $M=L/P$ is a compact space, $\mathscr{L}(L)=I$ and $\mathscr{L}(p)=\mathfrak{p}$ ;
(ii) $M$ is a totally real subspace of a hermitian space $M^{L}$ with appropliate
choice of $L$ and $P$; and (iii) the action of $L_{(1)}$ extends to the holomorphic
transformation group of $M^{L}$ ; here “totallv real” means that T $M$ is
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carried onto its orthogonal complement in $T_{o}M^{L}$ by the complex structure.
The converse is true too.

(9.1) PROPOSITION. Every hermitian space admits involutions $t$ such
that a component of $F(t, M)$ is totally real. Actually $F(t, M)$ is connected.

(9.2) PROPOSITION. A space $M$ is locally isomorphic with a totally

real subspace of a hermitian symmetric space if and only if $R(M)$ is
classical, which means $R(M)$ is the direct sum of root $system\cong R(U(n))$ ,
$B_{r},$ $D_{r},$ $C$ or $BC_{r}$ .

A geometric meaning is hinted by the fact that if a space $M=G/K$

admits a larger Lie transformation group $L\supset G$ , so $M=L/P$, then $\mathscr{L}(L)$

is a graded algebra with $P$ as above (See [N] for a precise statement).

A typical example of $L/P$ with dim $I^{(2)}=1$ is the CR-automorphism
group $L$ acting on an odd-dimensional sphere, [MN]. This case of dim $I^{(2)}=1$

was studied by J. H. Cheng (thesis, Notre Dame, 1983; [Ch]). $L/P$ is a
circle bundle over a hermitian space $M$ which is immersed into an H-
kaehlerian space $M^{L}$ as a “totally complex” subspace and $L/P$ is the fixed
point set of a complex-conjugation $k$ of the pullback (to $M$) of a “canoni-
cal” $S^{2}$-bundle which is a (generalized) complex flag manifold such that
$k$ induces an “H-conjugation” $k$“ on $M^{L}$ and the immelsed $M$ is open in
$F(k‘‘, M^{L})$ . Since the converse is true, the classification of I, dim $I^{(2)}=1$ ,

is reduced to that of $k‘‘\in Inv(M^{L})$ such that a component of $F(k‘‘, M^{L})$

is “totally complex” in $M^{L}$ . The irreducible H-kaehlerian spaces are
$G_{4}^{0}(R^{n}),$ $G_{2}(C^{n}),$ $G_{1}(H^{n})$ , GI and every $M\neq F_{4}$ with $R(M)\cong F_{4}$ . (Mis neces-
sarily l-connected if it is connected.)

(9.3) Every H-kaehlerian space $M^{L}$ admits ”H-conjugation” $ k’\in$

$Inv(M^{L})$ . Exactly one component, $M$, of $F(k’, M^{L})$ is hermitian locally

and the others are H-kaehlerian.

(9.4) The topological space $Aut(M^{L})/Aut(M)$ is characterized by
$\pi_{2}\neq 0$ .

\S 10. Signature.

We will determine the signature $\tau(M)$ as another application. We
use a theorem of Atiyah-Singer [AS] to the effect that the g-signature

of $M$ is the signature of the self-intersection $(F(g, M))^{2}$ of $F(g, M)$ for
every orientation-preserving involution $g$ of $M$. We thank B. Y. Chen
for his cooperation in an early stage.



76 TADASHI NAGANO

(10.1) PROPOSITION. If $\tau(M)\neq 0$ and $M$ is l-connected and irreducible,
then $M$ is one of the following spaces with the indicated signature:

$(1/2)\tau(G_{2p}^{0}(R^{2n}))=\tau(G_{2p}(R^{2n}))=\tau(G_{p}(C^{n}))=\tau(G_{p}(H^{n}))=\chi G_{p}(R^{n})$ ,

$\tau(EII)=4,$ $\tau(EIII)=3,$ $\tau(EVI)=\tau(EVIII)=7,$ $\tau(EIX)=8$ and $\tau(FII)=\tau(GI)=1$ .
PROOF. We explain how to find $\tau(M)$ only for $M=EVI$ , a more

involved case, without using (2.11) but inductively assuming that $\tau(N)$

is known fol evely space $N$ with dim $N<\dim M$. Since $s^{vII}$ is homotopic
with $1_{H}$ and $F(s^{vII}, M)=EII\lrcorner LEII1,$ $(5.23)$ , we will find the self-intersection
in (EII)2 and (EIII)2 in $M$. It is easy to see that the orthogonal EIII’ to
EIII at $0$ is isomorphic with EIII. Hence $F(s^{vII}\circ s_{o}, M)=EIII^{\prime}-\perp EII’$ ,
EII’ $\cong EII$ and $s^{vIII}\circ s_{0}\cong s^{VII}$ . By matching the polars, one sees $EIII\cap$

EIII’ $=\{0\}\perp G_{2}^{0}(R^{10})$ . Thus EII $\cap$ EII’ $=G^{0}(R^{10})$ by (5.19). We may as-
sume $(EIII)^{2}\subset\{0\}\perp G_{4}^{0}(R^{10})$ and $(EII)^{2}\subset G_{4}^{0}(R^{10})$ . On the other hand,
$G_{2}^{0}(R^{10})\perp G_{4}^{0}(R^{10})$ is contained in the polar $G_{4}^{0}(R^{12})$ of $0$ in $M$; see (5.2).
Therefore the contributions of (EII)2 and $(EIII)^{2}\cap G_{2}^{0}(R^{10})$ to $\tau(M)$ are
$\tau(G_{4}^{0}(R^{10}))=4$ and $\tau(G_{2}^{0}(R^{10}))=2$ respectively (with the correct signs). (We
thus evade the question of orientation by applying that theorem of
Atiyah-Singer and the induction assumption repeatedly.) Similarly we
find the contribution fiom (EIII)2 is $1+2=3$ , completing the computation.
The result for this H-kaehlerian manifold naturally agrees with [NT],
because the Betti number $b_{32}(EVI)=7$ .

(10.2) PROPOSITION. If $t$ is a complex conjugation of a hermitian
space $M$, then $\tau(t, M)=\chi F(t, M)$ .

PROOF. Obvious if one notes that the normal bundle to $F(t, M)$ in
$M$ is isomorphic with the tangent bundle.

\S 11. Chow’s theorem and Radon duality.

W. L. Chow [C] defined the ”arithmetic distance” $d$ on every classical
hermitian symmetric space $M$ and proved that the d-preserving transfor-
mations of $M$ are holomorphic (or anti-holomorphic), provided the rank
$>1$ . In case $M=G_{p}(C^{n}),$ $d(x, y)=\dim_{c}x/(x\cap y)$ where the operations in
the right hand side are applied to vector subspaces $x,$ $y$ of $C^{n}$ . Now S.
Peterson generalized this by dropping ”hermitian” (Thesis, Notre Dame,
1985; [P]). In this general case, $d(x, y)\leqq j$ by definition if two points $x$ ,
$y$ in $M$ are ioined with each other by a chain of $j$ Helgason spheres,
(7.5). If $M$ is hermitian and irreducible, the holomorphic tlansformations
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permute the Helgason spheles and hence they preselve the new arithmetic
distance obviously. Also it equals Chow’s $d$ if $M=G_{p}(C^{n})$ . The tools
were the fundamental theorem on projective geometry and another version
of the Radon duality, which we are about to explain. In the setting of
(5.8), consider the collection $O_{\tau}$ of the G-congruents $bG^{f}(0),$ $b\in G$ , of the
orbit $G^{\tau}(0)\subset M_{\sigma}$ through $0$ . The members of $O_{f}$ are objects of our interest.
Let $L_{r}$ denote the group of all the transformations $(=bijections)$ of $M_{\sigma}$

which permute the members of $0_{\tau}$ . Exchanging $\sigma$ and $\tau$ , we have $0_{\sigma}$

and $L_{\sigma}$ . The next proposition (11.1) explains a geometric meaning of $M_{f}$

in relation to $M_{\sigma}$ and is easily seen, since one has $b\in G^{\tau}$ if $bG^{\tau}G^{\sigma}=G^{\tau}G^{\sigma}$ ,
$b\in G$ , by an argument in the proof of (5.5).

(11.1) PROPOSITION. In the above notations, (i) there exists a G-
equivariant bijection $F_{r}:M_{\tau}\rightarrow 0_{\tau}$ such that $x\in F_{\sigma}(y)$ if and only if $F_{f}(x)\ni y$ ,
where $x\in M_{\tau}$ and $y\in M_{\sigma}$ . Hence (ii) $L_{\tau}\cong L_{\sigma}$ .

(11.2) REMARK. In passing we like to point out an intriguing fact.
Let $M=F(t, M^{L})$ be a totally real subspace of an irreducible hermitian
space $M^{L},$ $(9.1)$ . A larger group $L$ is acting on $M=G/K=L/P$ (\S 9). The
P-orbits $M_{j},$ $0\leqq j\leqq r$ , give the partition of $M$ into the subsets of the
points of the alithmetic distance $j=const$ . from $0$ . On the other hand,
the map $s_{1}:G\rightarrow G$ in the Radon duality (5.8) (ii) with $M=M.=M$. extends
to $\alpha:L\rightarrow L$ in a celtain way and the non-open $\alpha(P)$-olbits give a stratifi-
cation of the cut-locus of $0$ (See [T-2]). Finally the next theorem on
geometry may convey some flavor of Peterson’s work as well as the
proofs.

(11.3) THEOREM. Let $M_{\sigma}=FI$ . Let $L$ be the group of smooth trans-
formations of $M_{\sigma}$ which permute the members of $0_{\tau},$ $\tau=\sigma^{II}$ , as defined
above. Then $L=Aut(M_{\sigma})$ .

PROOF. We will show $L\subset Aut(M)$ . The members of $0_{\tau}$ are isomor-
phic with $G_{4}^{0}(R^{9})$ and those of $0_{\sigma}$ with $G_{1}(H^{3})$ . Every member of $0_{\tau}$ is
orthogonal to another at any point $0$ on it. The intersection of these
two spaces is $\{0\}$ plus the common $polar\cong S^{4}$ , which is a subspace of
the $polar\cong S^{8}$ of $0$ in $M_{\tau}=FII$ . It follows that this $S^{8}$ is stabilized by
the isotropy subgroup $P$ of $L$ at $0,$ $L$ acting on FII by (11.1). Hence $L$

is locally compact by the fundamental theorem of projective geometry
(See [S] e.g.), basically. Therefore $L$ is a Lie group by the theorem of
Bochner and Montgomery. But FI does not admit a larger group than
$Aut(M_{\sigma})$ by (9.2); hence $L=Aut(M_{\sigma})$ .
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\S 12. The 2-numbers, $\#_{2}M$.
This, $\#_{2}M$, is the maximal cardinality of a finite trivial space $\Sigma$ ,

(2.1), in the space $M$. If $M$ is a connected group, then the maximal $\Sigma$

is necessarily a maximal elementary abelian 2-group [CN-3]; thus $\#_{2}M$

generalizes the 2-lank [BSe]. $\#_{2}M$ was determined in [CN-3] as another
application of oul method. An obvious, but important fact, is this: if
$M$’ is a subspace of $M$ then $\#_{2}M’\leqq\#_{2}M$. Thus $\#_{2}M$ gives a new obstruc-
tion to embeddings.

(12.1) EXAMPLE. $G_{r}(C^{2r})$ cannot be embedded into $Sp(r),$ $r>1$ , because
$\#_{2}G_{r}(C^{2r})=\left(\begin{array}{l}2r\\r\end{array}\right)>2^{r}=\#_{2}Sp(r)$ . Notice that there is a monomorphism
$R(G_{r}(C^{2r}))cR(Sp(r))$ with multiplicity incleasing.

(12.2) EXAMPLE. $EV^{*}$ cannot be embedded into $E_{7}$ , although EV can.

(12.3) REMARK. The full significance of $\#_{2}M$ is yet to know, but we
do know that $\chi M\leqq\#_{2}M$ and $\chi M\equiv\#_{2}M$ modulo 2. If $M$ is l-connected,
$\#_{2}M\geqq the$ sum of the Betti numbers. The equality can occur for both
inequalities.
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