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§1. Introduction.

Let G be a connected non-compact semisimple Lie group with finite
center and of real rank one. Let G=KAN be an Iwasawa decomposi-
tion of G and M the centralizer of 4 in K. Then K is a maximal
compact subgroup of G and dim A=1; G/K is a non-compact Riemannian
symmetric space of rank one and K/M the Furstenberg boundary. Let
g=f+a+n be the corresponding Iwasawa decomposition of the Lie algebra
g of G. For geG let H(g) denote the unique element in a such that
g € KexpH(g)N and let po(H )=1/2)tr(ad(H)|,) for Hea.

The Poisson kernel associated with G is the function on G/KxK/IM
defined by

P(gK, kM)=exp(—20H(g7'k)) .

Let D be the Laplace-Beltrami operator on G/K (cf. [H1], p. 386). Then
the function on G/K defined by 9K—P*(gK, kM) (kM e K/M and seC) is

an eigenfunction of D with eigenvalue, say, A,. Now we shall consider
the converse.

CONJECTURE. Let F' be a real valued, C* function of G/K satisfying
the following three conditions:

(1) DF=0,
(2) D(FH=xF",
(3) F(eK)=1.

Then there exists an element kM e K/M such that F(gK)=P(gK, kM) for
gK e G/K.

When G=S80,1, n), this conjecture was proved in [CET]. In this paper
we shall give a proof for the case of G=SU(l, n); in order to state our
result more precisely, we shall give the explicit forms of the Poisson
kernel and the Laplace-Beltrami operator associated with G=8U(Q1, n).
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Let C* be an n-dimensional Hermitian linear space over C and the
points of C* are ordered n-tuples {=({, &y « -+, C,), where {,=¢,+i9,€C
for 1<k<n. Let B(C") be the open unit ball in C* and S(C") the unit
sphere in C*. G=SU(l1, n) is the group of linear transformations on C***
of determinant one which preserve the form: —|{|*+|[L[P+---+|C. 1%
Then this group acts transitively on B(C") by the formula:

& ={ 9 +qZ".=1 gp.,C.,)Rgoo + qgnl gochﬂ_l 1=p=n),

where g=(g.;) (0=4, j=n)eG, {=(,) € B(C") and '=({;)=9-C (1=p=n);
this action gives the identification between B(C") (resp. S(C™)) and G/K
(resp. K/M), where K and M are given explicitly in §3.

The Laplace-Beltrami operator D on B(C") is invariant under the
above action of G and given by

D=41- 1P 3 22— 3 U

aCkaCk k,i=1 aCkaCz]

where 8/60, = (1/2)(3/6g, —10/37y), 8/0C,=(1/2)(3/0g,+13/an,) and |C[*=3%-, §;:,
for €= &s-++, &) and =&+, (1=k=n). The Poisson kernel is also
explicitly given by the formula:

__@a-=iEpe : n n
PG w=qope X for (G weBE)xSEe,
where <&, ud>=32_,{i,. Then it satisfies the identity (cf. [R], p. 42):
(1) P(g-¢, w)y=P(, g7 -u)P(g9-0, )

for g€ G and (g, w) € B(C*)xS(C"). Moreover, for each #eC, as a func-
tion of ¢ e B(C™), it satisfies the equation:

D(P*)=4n*pu(pe—1)P* .
Our result can be stated as follows.

THEOREM. Let F be a real valued, C* function on B(C™) satisfying
the following conditions:

(2a) DF=0,
(2b) D(F?)=8n*F"* .
Then there exist a point u € S(C™) and a real constant ¢ such that

F@)=cPl w)  (CeB(C").
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§2. Simplification by rotation.

If F is identically zero, it satisfies Theorem; we can take w e S(C")
arbitrarily and ¢=0. Let us suppose that F=#0, that is, F({)=0 for
some {, in B(C"). Here we recall that the G-action on B(C") is transi-
tive, D is G-invariant and P satisfies (1). Therefore, we can find a g€ G
such that g-{,=0 and replacing F({) with F({,)*F(g~'-), without loss of
generality, we may assume that F(0)=1.

Computing the identity:

oF
ack Z C”ack ]

we see that the hypotheses (2a) and (2b) are equivalent to
(2a) DF=0,

D(F?)=2FDF+8(1—|C 12)[ )

aF ] 2 2
n*F* .
3§k

Since F(0)=1, we have >;_, [(0F/3%,)(0)*=n?, and we put p,,=(1/n)(@F/5Z,)(0),
oy 0=1/n)@F/3C,)(0); let o be a matrix in SUxn) whose first column
is equal to t(pny Osz =, pln)'

We define the rotation of F' by F,({)=F(0-{), where {'=p-{ is the
vector in C* which the matrix p0eSU(n) transforms ¢ into. Since D
commutes with the action of o, the function F, also satisfies the hypotheses
(2a) and (2b). Moreover, according to the choice of p € SU(n), we obtain
that

(2b) a-iep 3 |2

[ 0(F) /o] [OF o] T oF
5C1 A 551(0) 3C1(O)
. =t0 : =074 - =ne, ,
a(F,,) aF
(0) aC (0) Ea
where e, = ’(1 0, -++,0). Therefore, F, satisfies the following condition:
3(Fy) g 0FD 0y . .. = F) g —
o, —=££(0)= a —£(0)= o (0)=0.

In what follows we shall denote F, by F'; then the desired theorem
follows from the next lemma.

LEMMA 1. Let F be a real valued, C* function on B(C"™) which
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satisfies F(0)=1 and the following conditions:

(2a) DF=0,
(2b) D(F*)=8n’F* ,

aF = M a_‘z?_ s e = aF =
(2¢) a—CI—'(O)—n 3 (0) aC,.(O) 0. |

Then F)=P(, e,) for L€ B(C").

In fact, since the Poisson kernel satisfies the functional equation
(1), we see from this lemma that the initial F' (before rotation) has the
form: F({)=P(, 0-e) (L€ B(C")).

§3. Coordinate transformation.

Let K, A and N be the subgroups of G=SU(, n) defined by

K= {ku,,,:[u 0] ; ueUQ),VeUn) and u-det(V)=1} ,

oV
chz shrz
A= a,={shr chr i TER},

I,
and
M1+ay+122/2 —iy—I|2/2 %%,
w22 1—wy—I2|*2 Z,--:Z,| YER,
N=1n(y, z)= 2, 2, ; 2=(Rgy+,2,)€EC™, ).
: : I, |2 |P=20%=z]2: [
\ ! Za Zn |

Then G=KAN (resp. G=KCL(A")K, where CL(A*)={a,t=0}) is an
Iwasawa (resp. a Cartan) decomposition of G and M=Z,(A) is given by

.

For each {=(, &, **-, C,) € B(C™) there exists an element g€ G such
that {=g.-0=n(y, 2)a.-0=Ek, ,a,-0, where gen(y, 2)a.K and k,,a,K. We
put A=e*+(1+2iy+|2[?) and ¢c,=u""v,, for 1=p=<n, where V=(v,;):z4,is: €

€eK; beC and |b|*=1} .
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Un). Then we see that

= e+ (—1+2iy+|z[He” __A—1
Ve +2iy+zDe " A

(3) ¢ = 22,677 _ 22, @e=p=n)
Poe+(1+2iy+|2zPer 4 =T=

and

(4) L,=c,tht  (1=p=n).

Then it follows from (8) and (4) that ¢,tht=(4—2)/4=1—-2/4, and thus,

_ c,tht

= 2<0< .
? 1—¢,tht 2=p=n)

Here we put

5 __ctht )
(8) < l—c,tht

Then (7, ¥, 2) e RXRXxC"* and (& 2) e CXC"* are the horispheric and the

Cartan coordinates of the point {=({, &, *+-, {,) € B(C™) respectively and
the relation between these coordinates is given by the formula:

=%ﬂ—log(1+$+§——lﬂ2)=5;—g+“- ,
6 -
(6) e—F
2

y:

§ 4. Reduction by horispheric coordinate.

In this section we shall rewrite Lemma 1 by using horispheric co-
ordinate and obtain a reduced form (see Lemma 3 below). Under this
coordinate the Poisson kernel is given by

Py, a0, w= | (158 )er+[ 1~ 121 —2iy — |21 - 3 2w, |
2 2 k=2
In particular, for u=e,=%1,0, ---, 0) € C" it is simply expressed by

P(n(y: z)ar * 0’ el) =e"* .

On the other hand the Laplace-Beltrami operator D is given by (cf.
[F1], p. 66 and [F2], p. 59):
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a 2(n—1) 32 a

D= —fn——te 3 ot (|ale+e);

i=1 ox oy*

+262T2 Lok—s— il xz"‘z—_a—z—_) ’
0YOL o 0YO0Ly;,_s

where xzk_s"}"lzmgk 2 =2 (1Sk5n) and lwl2_|zlz Zz(n—-l)
For simplicity we shall introduce the following notations:

A= az +Az=a_2 2(n—1) 82 ,
oy* oYy: i= ax
. [OF o (OF 2 /o F\¢
IVFIP=(EE) +i1v.F =(&)+'8 (&)

and

0%os_s 0%sp—g

LEMMA 2. The hypotheses (2a), (2b) and (2¢) in Lemma 1 are equiv-
alent, under the horispheric coordinate, to the following conditions:

) LE oy g, Py (e "+e4’) E 2 ZfB(aF> 0,
ot’ ot oy

aF 27 2 2,27 47 2,3F .
@) (EE) e IVFI (abes+e(S0) oot B =g,

OF gy=2m; 9F0=9Fp)—...—o_9F —
(7e) E(O)—%, ™ (0) aQI;I(O) (0)=0.

2(n—1)

Proor. By the identity:
D(F*)=2FDF+ 2[(211)2 e ||V F |+ (& e + e“)(i"—lf)z + 2e2’a—F-B(F):| ,
ot oY oy

(2a) and (2b) are equivalent to (7a) and (7b). By (8) the derivatives of
Cartesian coordinate (, &,, + -+, £,) with respect to horispheric coordinate
& Y, @, ***, Ty_y) are given by

.@.C_p = aCP =9 an = an =
o 0)=0,, » 3 (0)=10d,, , 3 (0)=04p » 5 (0)=1d,,

Log—3 Log_o

for 1<p,q9=<n. Then it follows that

oF oF OF o\ _ —
FO=5FO+FO,  LLo=i(F0-F0),
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o V= OO, S O=i(FEo 70
Therefore, (2¢) is equivalent to (7c¢). Q.E.D.
Now we put
G(z, ¥, z)=eF(z, Y, ?) .
Then by Lemma 2 and the formula.s:
%F 2"’[2%(%’—!— gf:l %f 2"'[4n2G+4ng—G+%—z_q:|
OF _yedG  PF_ G OF _ medG
oy o0y oy? oy* 0%, ox,
O*F emazG and OF _ jen *G
axi 0x; 0%;0Y axiay
we can rewrite Lemma 1 as the following
LEMMA 3. Let G(z, ¥, %, ***, Tsa_p) be a real valued, C* function on
R X RXR*™ ™ which satisfies G(0)=1 and the following conditions:
@) ZG+200F s onn, G (lnbe o Tl 2emB(ST) =0,

(8b) ( ) e ||V,G P+ (| e 2f+e4f)(aG) —|—4nGaG +2ne"aGB(G)

8 G ro>—3Gf0>—aGf )=+ =24 _(0)=0.
oT 0%, 0% (n—1)

Then G is tdentically one.

§ 5. Integrals of polynomials.

The next lemma and the following corollaries will play an essential
role in our caleulation. Their proof will be given after the last corollary.

LEMMA 4. The matrixz coefficients ¢, (1<1=n) defined in §3 satisfy
the equations:

(i) ledk=1,
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(i) | Jerde=1,
K n

2 . ..
—_— if 1=]
1
Gy | Jodble,rae=] "+
8 L1 i s,
n(n+1)
6 . ..
=9=k
wmiDmty ¢ I
3 2 12 2 — 2 - . .=
@) Jeletlobdb=i B if ik
1 . e .
wmiDmiy ¢ Ik

Other integrals of polynomials of the variables c,, ¢, (1<i<n) of degree
=<6 are all equal to 0.

COROLLARY 5. When ¢ tends to 0, the coordinates ¢, z, (2<i=<n)
satisfy the equations:

(i) ledk=1,
(ii) S lePdk=L£+0() and S |2, fdle=-"Le+ 0t
K n K n

i) | elepan={ Elerar=—2 100

n(n+1)
and
2 _— 3 2 — 1 4 6
| Slabal={ Elarak=—Lt+0),
@ | Jerar=—2Z2 vr0@), | ekiardb=—L _sror)
x n(n+1) x n(n+1)
and
2 . o . ..
2 2 —mt +O(t) 'bf =2
| Jecrizpae=1 "
n('n+1)t +0(t% if 1#7 .

Other integrals of polynomials of the wvariables &, Z, z, %, (2<i<mn) of
degree =4 are equal to 0 or O(t%).
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COROLLARY 6. When t tends to 0, the coordinates &, z, (2<i<n)
satisfy the equations:

3 a2 — 2 $2 _ 4 44 8
(1) chlfdk D  Baman O
ii c222d ke = 2 2 __ 4 4 8
() chls de n(n—l—l)t 3n(n+1)t 0@,

- 6
ePdlk= L O(t8
SKC €] n(n+1)(n+2)t +O@)
and
=2 2 —_— 2 4 ()
chllzi] dk_n(n+1)(n+2)t + 0% ,
_ o 12 . ]
(iii) SKclslsldk—n(nH)(nJrz)t+O(t)
and
=2 2 — 2 4 8
| cteiz.par T LR
1 22 2 — 6 4 8
(iv) chf |£] dk—n(n+1)(n+2)t +O(t%)
and
252 2 — 2 4 8
ché |2 ['dk n(n—l—l)(n+2)t O .

Other integrals, with respect to the weighted measure éidk, of polynomials
of the variables &, &, z,, Z, (2<1=<n) of degree <4 are equal to 0 or O(t°).

PrOOF. For 1=p=<mn, each ¢, is a matrix coefficient (the p-th row
in the first column) of the natural representation 7T, of K on C™: T, (k)=
k- for ke K and {€C". Then, using the fact that >7_,|¢,[*=1, we can
prove Lemma 4. To prove the corollaries we shall recall that (see § 3):

g=c, tht lﬁ,(cl th t)!
=0
and

Z,=0Cp thtlz.j&(c1 th )’ 2=p=n).

Then, by Lemma 4 we can calculate the integrals of polynomials of the
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variables &, &, z,, Z, (2<1=<m) and obtain the desired expansions when ¢
tends to O. Q.E.D.

§6. K-finite eigenfunctions of the Laplace-Beltrami operator.

Let K denote the set of all equivalence classes of irreducible (finite
dimensional) unitary representations of K. Let (7,V)e K and F be a
function on B(C"). Then we define the projection F, of F' by

Fr(9)=\ T(OFUg)ik,

where X, is the character of 7.
Let AL(G) (le N) be the space of functions F: G/K= B(C")—C which
satisfy the following conditions:

DF=4nl(l—1)F and F,=F;
then it follows (ef. [H2]) that
dim A%(G)=dim V-dim V¥ ,

where V¥ is the space of M-fixed vectors in V. For F'e A,(G) we denote
the restriction of ¥ to A by F“ and put

LWA)={F4. A—C; Fe AL(G)}.
Then we see the following
PROPOSITION 7. Suppose that dim Vi =1, then
(i)  AHA)=CP")7
and for each a,€ A and F € AL(G)

)  Fe)=| s Fka)dk,

where P is the Poisson kernel: P(n(y, z)a.-0, e,)=¢e>* and cy(k)=(T(k)ey, ey),
ey the normalized M-fixed vector in V7.

PrOOF. Let (e, e, -+, e;) be an orthonormal basis of V, where we
take e,=e,; let c,(k)=(T(k)e;, e;) (ke K and 1=<1, j<d) be the matrix
coefficients of T, we see that X, (kk'~")=1 .z iza C:i(k)C,5(k") for k, k' € K.
Then (ii) follows from the facts that F'=F, and the function: k+— F(ka,)
(k€ K) is right M-invariant; in fact

Fla)=Fya)=| 200 Fka)dk
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— SKSMZT(k)F(kma,)dmdk
_ SKUMZT(km‘I)dm:IF(ka,)dk
- SKEM(k)F(ka,)dk (Cu=Cy)

To show (i) we note that the function: k> Pi(ka, e,) (k€ K) is M-
biinvariant, and thus,

(Poka)=\ TR P Wk, 6)dk

= |, (5 eu®)es)P W a, ek

S KS MS M(% ¢k e (k)P (m'k'ma,, e,)dk'dm’dm

=Sx 1.:' SMSMcw'(’m'_lk'm—l)dm'dm:lcij(k)P’(k’a,” e,)dk’

| _cxt®en)Pva,, e)dk

=cu(h)| eulk)P W a, e)dW
=cuk)(P(@) -

In particular, AL(A)={0}, because it contains (P)#4#0. Moreover, we can
choose k; (1=7=<d), where k,=e,, for which the functions g+ (P"),(k.9)
(9€G) form a basis of AL(G). Then we can choose another basis @,

(1=1=d) of AL(G), where @Q,=(P"),, such that SKc,(k)Qi(kat)dk—:—O for
2=1=d. Then (i) follows from (ii). Q.E.D.

COROLLARY 8. Let F be a real valued, C* function on B(C™) which
satisfies F(0)=1 and the equations (2a) and (2b). Then for all le N

(i) S F‘(ka,-O)dlc=S P'(ka,-0, e)dk ,
X K

(ii) S EiF‘(kat-O)dk=7\,,S &P (ka, -0, e)dk ,
K K

where ¢,(k)=uv, if k=% y V=155, € Un) and N\,’s are constants
174 ,
depending on F and 1.

PROOF. For each T e K the function (F", is an eigenfunction of the
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Laplace-Beltrami operator D with eigenvalue 4n2l(l—1). Therefore, (F*),
belongs to AL(G) and (F")% to AL(A).

(i) Let T, be the trivial representation of K on a one-dimensional
vector space V. Obviously, V7,=V has one dimension; the character X,
is identically one on K. Therefore, (F')f, belongs to C(P")?# by Proposi-

tion 7 and (i) follows by comparison with the values at the origin.

(ii) Let T, be the natural representation of K on an m-dimensional
vector space C* (see the proof of Corollary 6). Then the M-fixed vectors
of the representation T=T,XT, of K consist of Ce,Qe, where e, =
%1, 0, ---, 0) e C* and the corresponding matrix coefficient is given by

(T, QT (k)e,Re,, e,Qe,)=(T,(ke,, e,)*=ci .

Therefore, we can obtain the desired result by applying Proposition 7 to
the irreducible component of T,X7T, which contains Ce,Xe,. Q.E.D.

§7. Proof of Lemma 3.

The function F' in Theorem is a solution of the equation (2a), which
is elliptic (ef. [R], p. 52). Therefore, F' is real analytic on B(C"), and
thus, G in Lemma 3 is also analytic on Rx R X R*"™"; there exists a
neighbourhood V of 0 on which G has a Taylor expansion:

G(T, Y, Z)=G0+G1(T, Y, z)+' . +Gp(7:r Y, Z)-I— Tt

where for each p=0, G, is a homogeneous polynomial of 7z, ¥, x, I1=1=
2(n—1)) of degree p. Since G(0)=1 and G satisfies (8c¢), we see that
G,=1 and G,=0.

In the first step of the following arguments we shall prove that
3*G,/0y*=0 and deduce that G,=0. Then, in the second step we shall
show that G,=0 for all p=1. Obviously, this means that G=1 and
completes the proof of Lemma 3.

Step 1. On the neighbourhood V of 0, G has an expansion correspond-
ing to the coordinate (g, 2): G(g, 2)=1+>'5-, H,(& z), where for each p=1,
H, is a homogeneous polynomial of &, &, z, %, (2=i1=n) of degree p.
Applying (8¢) and (6), we see that

G (\ G N — ... _9G \_( -
_6?(0)— oz, 0) az,,(o) 0;

consequently, H,=0.
Here we put
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H(g, 2)=Ag+BIs+CE+3 Dil2.+

then,

%%(0): [ g;s 0)26_(0) ge /O)—I—Re( O*H (0)( (0)) ):]

=2(B—-2 Re A) .

Since 0*G,/oy*=(6*H,/0y*)(0) by (6), to prove that §°G,/o0y*=0 it is enough
to show that B—2Re A=0. We put

X=Pka,-0, e)—1=1+(E+E)—|z)"—1
and
Y=G¥ka,-0)—1=H,+---

Then the equations in Corollary 8 can be rewritter_l as

(9) SK(l—I—X)’(l + Y)dk= SK(1 +X)dk

(10) SK€§(1+X)‘(1+ Y)-’dk=x,SKEE(1+X)‘dk.

When ¢ tends to 0, we see that X=0(t) and Y=0(t*); we can let ¢ go
to 0 after the integral over K, because K is compact; in particular,
collecting the components of order ¢° in the equations for I=1, 2 and 3,
we obtain that

| (r+x7idR=0@)
an 4| ev+axviex v+ voak=00)

| eY+oxv+ox:v+3vnak=01)
and
Xff( Y+XY)dk=(xn— I)SKEfXdk +0(t% ,

12) SKé'i(Z Y+4XY 42X Y+ YOdk=(\— I)SKE 12X+ XBdk+0) ,

SKEf(S Y+9XY+9X*Y+8Y*)dk=(\s— l)Sxé'f(3X+ 3X*+ X%)dk+O(t°) .
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Then it follows from (11) that
(13) SKXszk=O(t°) ,
(14) Sdek=O(t°)

and applying Corollary 5 to these integrals, we see that

SX*de: n 2(A+2B+C+i D,)t*+0(t°)
K n+1 i=2

and
1 2 2 n
S de=—(B+Z D,)t +O) .
K n 1=2
Therefore, we obtain that
(15) B+§D,=A+B+C=o.
Since G is real valued, we have

(16) A=C.

In particular;

am when n=1, B=0 and Re A=0.

On the other hand, it follows from (12) that
(18) SK6§X2 Ydk= Sxaf[m—zxzﬂl)pr (M—M)X2+l8-;_1-xﬂdk+0(t°) ,
S 6%de=§ E2(hg— 1) Xdk+ Ot4) ,
K K

(19) \ SKE?[Z(M— A) X+ — D X7]dE=0(¢) ,

| A=A X+ Ow— D X0k =00 .

Here we note from Corollary 6, (15) and (16) that

=2 2 —_ 1 / 2 2 2 < 4 )
(20) chlx Yah= s (12n 4+ 6n B 2m 3, D,)t +O()
4n

= i Dm o) 2ATAE+0E),
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Ydk=—"——At*+0(t") ,
K n('n 1) #+ 0

|7
1) S s Xdk=p+ 2@V =9+ 1)\ o)
| |

£ 3(n+1)(n+2)

_ 272, A (BN +51—5) e . o
a2 X dk= £ ¢ ,
SXdk= et Nty © T O®)

o 6 5 +1) i yes
(22) SKcIXdk o st O

Therefore, substituting (21) for (19), we can obtain that
24
n(n+1)

23 N _nt+m+1
(28) ? o2n+1

2n+n+ 1)\,
3n+1 )

—_—')\,1-—- ’

’

A=

In particular, we have

2n?
—2 = -1,
Mt M 2n+1)Bn+1) " )
24 A= —n(n+1) —1),
@4) P M= (2n+1)(3n+1)( 1
= n+1 —1).
As 3n+1()\' )

Finally, using the formulas (18), (20)-(24), we can deduce the following
equation:

61 +11n2+10n—8)A=(6n°+11n*+6n+1)A4 ,

which implies that Re A=0 when n=2, and thus, B=0 by (15) and (16).
Therefore, for each n=1 (see (17) for n=1) we conclude that

8d) PGy _9(B_2Re 4)=0 .
R
Now we shall prove that G,=0. Collecting the homogeneous com-

ponents of degrees 1 and 2 in (8b), we obtain that

oG
25 =Z2=0,
(25) o
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0G. 1

26 —2=———||VG,|?;

(26) G ——Lva.)

in particular,

@27 G, and 0G, are not dependent on 7,
T
aG 1 r azG 2 2(n—1) azG 2 2{n—1) azG 2}
28 A 3 = - 2 +2 —-—-—2— ——2— .
(28) ( ot ) 2n L( ayz) Z‘x 0x,0Y ) + mz'=1<axiax,-)

On the other hand, collecting the homogeneous components of degrees
1 and 2 in (8a) and using (8d) and (27), we obtain that

(29) AG,=0,

(30) AG,= —2B( %gz

In particular, we have

(31) A( %‘f_s )=0 :

The equations (27), (28) and (31) imply that all second derivatives of G,
which is a homogeneous polynomial of 7, y, ¢, 1=<1=2(n—1)) of degree
2, are equal to 0. Thus it follows that G,=0 on B(C™).

Step 2. We shall prove that G,=0 for all p=1 by induction. Let
us suppose that G,=G,=---=G,=0 for p=2 (see Step 1); we shall show
that G,.,=0. First, collecting the homogeneous components of degree
m=2 in (8b), we obtain that

e [(F)]+5EE(E) ] e EE (5] ..

E()] g

23 (20 5 aGkH B(Gyq)=0,
g=0 qY k=0 y

where

oG 2] oG, o0G,., , 0G, oG, 0G .., 0G,
oG — + Foeee Tmis TN
[( 0T ) ot ot 0T 0T + 0T 0T

and thus,
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0 _ if m=2p—-1

(i;;:)z it m=2p.

(5) .-

Moreover,

if m=2p-—1
if m=2p and ¢=1

0
0
(aG ) if m=2p and ¢=0,
0

oy

if m=2p—1
if m=2p and q=1

_Jo
< p+1> if m=2p and ¢=0,

Gl

0,
i Gq aGm—(;{+1 — aGm+1 if m é 2p
0T ot

and

a?;lB(Gm_q_k):O if m=<2p, 0=<¢g<m and 0<k=m-—q .

Therefore, (32) implies that

(33) 9Cuis —0 it m=2p—1
ot
and
oG 1[/0G,.,\  *&V(0G 2]

34 221 — p+1 0l .
B9 ot 4n|_( ay>+§‘_1<axi>
In particular, we deduce that
(35) G,i1, Gpysy * ¢, G,, are not dependent on 7,
(36) 9Gu11 is not dependent

5 is not dependent on 7.

Next collecting the homogeneous components of degree (m—2) in the
equation: e *[DG+4n(0G/o7r)]=0, which is nothing but (8a), we obtain
that




S
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m—2 a7/ 72 2
7 ( 21') 0 G,,,_.q aGm_q_1 Za Gm—2
(87) qgll) q! ( ot +2n T )_Hxl oy? _
(27) asz —q aGm—l =
+8,G)+ 3, L Tact i op( Fomr )=0.

Then, taking account of (85) and (36), we see that for m=2p the first
sum in (387) is identically zero; A,(G,) and B(3G,_,/0y) are not dependent
on 7; thus, we obtain that

(38) AGm+2B(ﬁi-:L)=o for m<2p,
oy
(39) FGus 0 for m=<2p.
oy’

In particular, for m=p+1 we have
(40) AG,,,=0.
Applying the differential operator 4*/0y* to (88), we see from (39) that

(41) a( ";g;' for m=2p .

When m=2p+1, the equation (87) means that

*Gyy _ 0
oy®

Now we shall apply the differential operator A-(d/ar) to (42). Then
we obtain from (85) and (41) that

3 ala(2ze) =05

substituting (84) for (43) and noting (40), we finally deduce that

0=a[a( o)
= Laa](2an) "5 ()]
~on® (322’;?‘ )2 E () + E(5ae)]
= L(ZGa) 438 (22 ) 43 5 (2o ¥

(42) A(G2p+1)+23<a(%”>+2r
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+ 2(n—1) ast+1 )2]
%,4,k=1 ax¢axjaxk )

Therefore, G,., is a homogeneous polynomial of ¥, x, 1=1=2(n—1)) (see
(35)) of degree =3, whose third derivatives:

astH a3G’p+1 aaG"p+1 and a:‘)G'p+1
oy* ' oyow, oyowux; 0,0 0%,

for 14, 7, k=2(n—1)

are all identically zero. Obviously, it follows that G,,,=0 on B(C").
This completes the proof of Lemma 3. Q.E.D.
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