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\S 1. Introduction.

The important problems in the theory of factors of type $II_{1}$ are how
to construct factors of type $II_{1}$ and classify them. As methods of their
constructions, we know the operations of taking crossed product and tensor
product. As a method of their rough classification, we know the method
by using centralizing sequences. When we classify them by using cen-
tralizing sequences, first of all, we have two classes: one is factors with
property $\Gamma$ and the other is full factors. The class with property $\Gamma$

contains an important subclass of factors, which are said to be strongly
stable. For instance, the hyperfinite factor of type $II_{\iota}$ is strongly stable.
On the other hand, the group von Neumann algebra associated with the
free group on 2 generators is full.

In general, it is a basic problem whether a structure property of a
von Neumann algebra is compatible with the operations of taking crossed
product and tensor product or not. For instance, it is known [11] and
is an important result that the crossed product of the hyperfinite factor
of type $II_{1}$ by a free action of an amenable group is also hyperfinite. In
the first part of the present paper (\S 3), we treat the class of strongly
stable factors from the above point of view. We shall show (Theorem
3.1 and Corollary 3.2) that the crossed product of a strongly stable factor
by a free action of an amenable group is again strongly stable. We shall
then consider, as a converse of this result, the problem under what con-
ditions the assumption the crossed product $ M\times G\alpha$ of an action $\alpha$ of a
group $G$ being strongly stable implies that the original algebra $M$ is
strongly stable. The property of $G$ for the case is non inner amenable
(Proposition 3.3). Moreover we shall refer to the operations of tensor
product and show that if a tensor product $M\otimes R$ between factors of type
$II_{1}$ is strongly stable and $R$ has Connes and Jones’ property $T$, then $M$
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is strongly stable (Corollary 3.7).

In the second part of this paper (\S 4 and \S 5), we treat the class of
factors with property $\Gamma$ which is larger than that of strongly stable
factors. In [11], A. Connes has shown that for a factor $R$ of type $II_{1}$

on the standard Hilbert space $\mathfrak{H},$ $R$ has property $\Gamma$ if and only if the
$C^{*}$-algebra $C^{*}(R, R^{\prime})$ generated by $R$ and its commutant $R^{\prime}$ does not contain
compact operators except zero operator. For a subgroup $G$ of automor-
phism group $Aut(R)$ on $R$ , we write the $C^{*}$-algebra generated by $R$ and
the unitaries induced by $G$ as $C^{*}(R, G)$ . We denote by Int$(R)$ the group
of all inner automorphisms on $R$ . Since we notice that the $C^{*}$-algebra
$C^{*}(R, Int(R))$ coincides with the $C^{*}$-algebra $C^{*}(R, R^{\prime})$ , it is natural to
introduce the following problem:

PROBLEM. How large is a subgroup $G$ of $Aut(R)$ satisfying

$(*)$ $C^{*}(R, G)\cap C(\mathfrak{H})=\{0\}$

for a factor $R$ of type $II_{1}$ with property $\Gamma$ ? Here $C(\mathfrak{H})$ means the algebra
of all compact operators on $\mathfrak{H}$

In [17], as a solution of this problem, the author has shown the next
relation:

(1) $C^{*}(R, Cnt(R))\cap C(\mathfrak{H})=\{0\}$

where $Cnt(R)$ denotes the group of all centrally trivial automorphisms
on $R$ . In \S 4, by mainly using Connes’ result [11, Theorem 2.1] and the
above relation (1), we shall obtain many characterizations of property $\Gamma$ .
In \S 5, we shall seek better solutions about the previous problem than
the condition (1) and show (Theorem 5.2), for an automorphism $\theta$ on a
factor $R$ with property $\Gamma$ such that for any nonzero $n,$ $\theta$

“ is not centrally
trivial,

(2) $C^{*}(R, Cnt(R)\theta)\cap C(\mathfrak{H})=\{0\}$

where $Cnt(R)\vee\theta$ means the subgroup of $Aut(R)$ generated by $Cnt(R)$

and $\theta$ . Finally, we shall connect the arguments in \S 3 about actions on
strongly stable factors with the previous problem. So far as strongly
stable factors concerned, we shall obtain several better solutions than the
condition (2) (Theorem 5.4, Corollary 5.5 and Corollary 5.6). In particular,
we shall prove that if an amenable group $G$ acts on a strongly stable
factor $M$, then we have

$C^{*}(M, G)\cap C(\mathfrak{H})=\{0\}$ .
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\S 2. Preliminaries.

Throughout this paper, we assume that a factor of type $II_{1}$ has the
separable predual.

Let $M$ be a factor of type $II_{1}$ with the faithful normal normalized
trace $\tau$ . We write the $L^{2}$-norm by $\tau$ as $\Vert x\Vert_{2}=\tau(x^{*}x)^{1/2},$ $x\in M$. We denote
by $R_{0}$ the hyperfinite factor of type $II_{1}$ .

DEFINITION 2.1. We call $M$ a factor with property $\Gamma$ if there exists
a sequence $\{u_{n}\}$ consisting of unitaries in $M$ satisfying

$\lim_{n\rightarrow\infty}\Vert u_{n}x-xu_{n}\Vert_{2}=0,$
$x\in M$ and $\tau(u_{n})=0,$ $n\in N$ .

DEFINITION 2.2. A factor $M$ is said to be strongly stable if it is
isomorphic to its tensor product with $R_{0}$ , that is to say,

$M\cong M\otimes R_{0}$ .
Let $l^{\infty}(M)$ be the $C^{*}$-algebra consisting of the set of all bounded

sequences in $M$.
DEFINITION 2.3. A bounded sequence $\{x_{n}\}$ in $M$ is said to be cen-

tralizing if

$(*)$ $\lim_{n\rightarrow\infty}\Vert x_{n}a-ax_{n}\Vert_{2}=0$ , $a\in M$ .
Two such sequences $\{x_{n}\}$ and $\{y_{n}\}$ are said to be equivalent if the

sequence $\{x_{n}-y_{n}\}$ converges to zero in $\Vert\cdot\Vert_{2}$-norm. For a fixed free ultra-
filter $\omega$ on the set of all natural numbers $N,$ $\{x_{n}\}$ is said to be $\omega$-centralizing
if the above limit $(*)$ converges along the filter $\omega$ . We define natural
equivalence for $\omega$-centralizing sequences similarly as in the case of cen-
tralizing sequences.

We denote by $C(M)$ (respectively $C_{\omega}(M)$ ) the set of all centralizing
(respectively $\omega$-centralizing) sequences of $M$. It is easily seen that $C(M)$

and $C.(M)$ are $C^{*}$-algebras under natural operations and $l^{\infty}$-norm. In the
algebra $C_{\omega}(M)$ , we consider the set $I_{\omega}(M)$ of all bounded sequences $con$.
verging to zero along the filter $\omega$ in $\Vert\cdot\Vert_{2}$-norm. It follows that $I.(M)$ is
a norm closed ideal of $C_{\omega}(M)$ and $l^{\infty}(M)$ . Put the quotient $C^{*}$-algebras

$M_{\omega}=C_{\omega}(M)/I_{\omega}(M)$ and $M^{\omega}=l^{\infty}(M)/I_{\omega}(M)$ .
The following theorems are known and basic in our discussions (cf.

[9], [10] and [11]).
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THEOREM 2. $A$ (A. Connes and D. McDuff). In the above eonstruction,
the algebra $M_{\omega}$ is a finite von Neumann algebra with the trace $\tau_{\omega}$ defined by

$\tau_{\omega}(X)=\lim_{n\rightarrow\omega}\tau(x_{n})$

for $X=\pi_{\omega}(\{x\})$ where $\pi_{\omega}$ is the quotient map of $C_{\omega}(M)$ to $M_{w}$ .
THEOREM 2. $B$ (A. Connes and D. McDuff). For a factor $M$ of type

$II_{1}$ , we have
(1) $M$ has property $\Gamma$ if and only if $M_{\omega}$ is not trivial.
(2) $M$ is strongly stable if and only if $M_{\omega}$ is not abelian. In this

case, $M_{\omega}$ is necessarily of type $II_{1}$ .
For an automorphism $\theta eAut(M)$ of $M$, the map

$l^{\infty}(M)\ni\{x\}\rightarrow\{\theta(x)\}el^{\infty}(M)$

leaves $C_{\omega}(M)$ and $I_{\omega}(M)$ invariant. Hence, this map induces an automor-
phism on $M_{\omega}$ and $M^{\omega}$ . Such an automorphism on $M_{\omega}$ is said to be liftable
and written as $\theta_{\omega}$ .

DEFINITION 2.4. An automorphism $\theta$ on $M$ is said to be centrally
trivial if $0.=id$ on $M_{w}$ . We denote by $Cnt(M)$ the set of all centrally
trivial automorphisms on $M$.

A homomorphism $\alpha$ of a discrete group $G$ into the automorphism
group $Aut(M)$ on $M$ is called an action of $G$ on $M$. An action $\alpha$ is said
to be free if for every $geG,$ $g\neq e,$ $a$, is an outer automorphism. We
call an automorphism $\beta\in Aut(M)$ strongly outer if the restriction of $\beta$ to
the relative commutant of any countable $\beta$-invariant subset of $M$ is
properly outer. A discrete group action $\alpha$ of $G$ on $M$ is said to be strongly
free if for any $geG,$ $g\neq e,$ $a$, is strongly outer. For a strongly stable
factor $M$ and a free ultrafilter $\omega$ , an action $\beta$ of a discrete group $G$ to
$M_{\omega}$ is said to be liftable if for each $g\in G,$ $\beta_{g}$ is liftable as an automor-
phism on $M$.

Let $N$ be a von Neumann algebra and $M$ be a von Neumann sub-
algebra of $N$. We denote by $\mathfrak{n}(N)$ the set of all unitaries of $N$. We set
$\mathfrak{R}(M)=\{u\in \mathfrak{n}(N)|uMu^{*}=M\}$ and call it normalizer of $M$ in $N$.

\S 3. Crossed products and strongly stable factors.

We shall prove the following:

THEOREM 3.1. Let $N$ be a factor of type $II_{1}$ and $M$ be a subfactor
of N. Let $G$ be a countable subgroup of the normalizer $\mathfrak{R}(M)$ . Suppose
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the factor $N$ is generated by the subfactor $M$ and the subgroup G. If
$M$ is strongly stable and $G$ is amenable as a $disc\gamma ete$ group, then $N$ is
strongly stable.

PROOF. We write an element $g\in G$ as a unitary operator $u(g)$ in $N$.
By the definition of the normalizer $\mathfrak{R}(M)$ , a unitary $u(g)$ in $G$ induces an
automorphism Ad $u(g)$ on $M$, which is denoted by $\alpha_{g}$ . Thus we obtain an
action $a$ of the amenable group $G$ on $M$.

Let $\omega$ be a fixed free ultrafilter on $N$. Put

$K=\{geGa, eCnt(M)\}$ .
Then $K$ is a normal subgroup of $G$ , and as $G$ is amenable, the quotient
group $H=G/K$ is also amenable. Since all elements in $K$ induce the trivial
automorphism on $M_{\omega}$ , we may consider the induced action $(\alpha)_{\omega}$ of $H$ on
$M_{\omega}$ . Take $s\in H,$ $s\neq e$ , and put $s=[g]$ for some $g\in G\backslash K$. Since $\alpha_{g}$ is not
centrally trivial, by [20, Lemma 5.7], $(a_{g})_{\omega}$ is strongly outer. Thus the
action $(\alpha)_{\omega}$ of $H$ on $M_{\omega}$ is strongly free.

Now assume that $M$ is strongly stable. Since the action $(\alpha)_{\omega}$ is liftable
and strongly free, by [20, Lemma 8.3], the fixed point algebra $(M_{\omega})^{(\alpha)}\omega$

of $M_{\omega}$ under the action $(\alpha)_{\omega}$ of $H$ is of type $II_{1}$ . Hence we may take a
$2\times 2$ matrix units $\{F_{ij}\},$ $i,$ $j=1,2$ , in $M_{\omega}$ satisfying

$(\alpha.)_{\omega}(F_{lj})=F_{tj}$ , $i,$ $j=1,2$ , $seH$ .
Namely we have

(1) $(a_{g})_{\omega}(F_{tj})=F_{ij}$ , $i,$ $j=1,2$ , $geG$ .
Now by [10, Proposition 1.1.3], there exist w-centralizing sequences con-
sisting of $2\times 2$ matrix units $\{f_{tj}(n)\}$ for every $n\in N$, such that $F_{ij}=$

$\pi_{\omega}(\{f_{ij}(n)\}),$ $i,$ $j=1,2$ . Then the above relation (1) means
$\pi_{\omega}(\{a_{g}(f_{tj}(n))\})=\pi_{\omega}(\{f_{ij}(n)\})$ , $i,$ $j=1,2$ , $g\in G$ ,

which implies

(2) $\lim_{\rightarrow\omega}\Vert\alpha_{g}(f_{\ell j}(n))-f_{tj}(n)\Vert_{2}=0$ , $i,$ $j=1,2$ , $g\in G$ .
As $a_{g}=Adu(g),$ $g\in G$ , the equation (2) shows

(3) $\lim_{n\rightarrow\omega}\Vert u(g)f_{ij}(n)-f_{c;}(n)u(g)\Vert_{2}=0$ , $i,$ $j=1,2$ , $g\in G$ .
On the other hand, since the sequences $\{f_{\iota j}(n)\}$ are $\omega$-centralizing in $M$,
we have
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(4) $\lim_{n\rightarrow\omega}\Vert xf_{\iota i}(n)-f_{cj}(n)x\Vert_{2}=0$ , $i,$ $j=1,2$ , $xeM$ .
With (3) and (4), and since the set $\{f_{j}(n)|i, j=1,2, neN\}$ is bounded,
one can verify that $\{f_{cj}(n)\},$ $i,$ $j=1,2$ , are $\omega$-centralizing sequences in the
factor $N$. As a consequence, we obtain a $2\times 2$ matrix units $\pi_{\omega}(\{f_{j}(n)\})$ ,
$i,$ $j=1,2$ , in $N_{\omega}$ . Therefore the von Neumann algebra $N_{\omega}$ is not abelian,
whence by Theorem 2. $B$ , we complete the proof.

COROLLARY 3.2. Let $M$ be a $ facto\gamma$ of type $II_{1}$ and $a$ be a free action
of $a$ eountable discrete amenable group $G$ on M. If $M$ is strongly stable,
then the crossed product $MX_{a}G$ is again strongly stable.

REMARK. In [21, Proposition 1.11], M. Pimsner and S. Popa showed
that for a pair of factors of type $II_{1}N\subset M$, if the Jones’ index $[M:N]$

is finite, then $M$ is strongly stable if and only if $N$ is strongly stable.
As a special case of their result, we see that for a factor $M$ of type $II_{1}$

and a free action $\alpha$ of a finite group $G$ on $M$, the following three con-
ditions are equivalent: (a) $M$ is strongly stable, (b) the crossed product
$MX_{\alpha}G$ is strongly stable, and (c) the fixed point algebra $M^{\alpha}$ under $\alpha$ is
strongly stable.

Next, we investigate the conditions under which if the crossed product
$ M\times G\alpha$ by a discrete group action $a$ is strongly stable, then $M$ is strongly
stable.

PROPOSITION 3.3. Let $N$ be a factor of type $II_{1}$ and $a$ be an act,ion

of a countable discrete non inner amenable group $G$ on $N$ (see [13]). If
the crossed $p\gamma oductNX_{\alpha}G$ is strongly stable, then $N$ is strongly stable.

PROOF. Let $\{u(g)|g\in G\}$ be the unitaries in $N\times\alpha G$ implementing the
automorphisms $\{\alpha_{g}|g\in G\}$ . From the assumption, there exist centralizing
sequences consisting of $2\times 2$ matrix units $\{f_{ti}(n)\},$ $i,$ $j=1,2$ , in $N\times\alpha G$ .
Then we have

$(*)$ $\lim_{n\rightarrow\infty}\Vert u(g)f_{tj}(n)-f_{tj}(n)u(g)\Vert_{2}=0$ , $i,$ $j=1,2$ , $g\in G$ .
By [6], the above relation $(*)$ implies

$\lim_{n\rightarrow\infty}\Vert f_{tj}(n)-E(f_{ij}(n))||_{2}=0$ , $\prime i,$ $j=1,2$ ,

where the map $E$ is the canonical conditional expectation from $N\times\alpha G$

onto $N$ satisfying $E(u(g))=0,$ $g\in G,$ $g\neq e$ . This means that the sequence
$\{E(f_{ij}(n))\}$ is a centralizing sequence in $N$. Since the sequence $\{f_{\ell j}(n)\}$

is equivalent to $\{E(f_{tj}(n))\},$ $\{E(f_{ti}(n))\},$ $i,$ $j=1,2$ , induce a $2\times 2$ matrix
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units in $N_{\omega}$ for a free ultrafilter $\omega$ on $N$. Hence the factor $N$ is strongly
stable.

Since, by [1], an ICC group having Kazhdan’s property $T$ (see [16]) is
non inner amenable, the following corollary is a special case of Proposi-
tion 3.3.

COROLLARY 3.4. Let $N$ be a $ facto\gamma$ of type $II_{1}$ and $a$ be an action
of an $ICC$ group $G$ on N. If the crossed product $NX_{\alpha}G$ is strongly stable
and the $g\gamma oupG$ has Kazhdan’s property $T$, then $N$ is $st\gamma ongly$ stable.

REMARK. As $N$ is a finite factor and $G$ is an ICC group, for any
action $\alpha$ of $G$ on $N$ the crossed product $N\chi_{\alpha}G$ is a factor of type $II_{1}$ .
In fact, since $G$ is ICC, we have, as in [4, Lemma 1], that

$u(G)^{\prime}\cap(Nx_{\alpha}G)=N^{\alpha}$

where $\{u(g)|g\in G\}$ are the unitaries in $ N\times G\alpha$ implementing the automor-
phisms $\{a_{g}|g\in G\}$ . Hence we have

$(N\times\alpha G)^{\prime}\cap(N\chi_{\alpha}G)=N^{\prime}\cap u(G)^{\prime}\cap(N\chi_{\alpha}G)$

$=N^{\prime}\cap N^{\alpha}$

$\subset N^{\prime}\cap N=C$ .
As an immediate consequence of the above corollary, we see, in case

of trivial action of $G$ on $N$, that if the tensor product $N\otimes R(G)$ is strongly
stable with the group $G$ having property $T$, then the factor $N$ becomes
strongly stable, where $R(G)$ denotes the left group von Neumann algebra
of the group $G$ .

We shall however prove the following more general results. The
following theorem was suggested by Prof. Y. Katayama to the author
when the author reported the proof of Corollary 3.7 at the 21th Junior-
Symposium at Izumisano in Japan.

THEOREM 3.5. Let $N$ be a factor of type $II_{1}$ and $R$ be a subfactor of
N. If $R$ has $p\gamma ope\gamma iyT$ in the sense of Connes and Jones [12], then
any centralizing sequence in $N$ is equivalent to a $cent\gamma alizing$ sequence
in the $\gamma elative$ commutant $R^{\prime}\cap N$.

PROOF. Assume $R$ has property $T$. By [12], there exist $y_{1},$ $\cdots,$ $y_{n}\in R$ ,
$\epsilon>0$ and $K>0$ such that, for any $\delta<\epsilon$ , correspondence $H$ from $R$ to $R$

and vector $\zeta\in H$, I $\zeta\Vert_{2}=1$ with 1 $y_{i}\zeta-\zeta y_{i}||_{2}<\delta,$ $i=1,2,$ $\cdots,$ $n$ , there exists
a vector $\xi\in H$ satisfying $x\xi=\xi x$ for all $x\in R$ and $\Vert\zeta-\xi\Vert<K\delta$ .
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We denote by $L^{2}(N)$ the standard Hilbert space of $N$ constructed by
the faithful normal normalized trace on $N$. As a correspondence from
$R$ to $R$ , we take the Hilbert space $L^{2}(N)$ and denote it by $H$.

Let $E$ be the conditional expectation from $N$ to $R^{\prime}\cap N$ with respect
to the canonical trace $\tau$ on $N$. We shall show that for any centralizing
sequence $\{x_{n}\}$ in $N$,

$\varliminf_{n}\Vert x-E(x_{n})\Vert_{2}=0$ .
Suppose there exists a centralizing sequence $\{x_{n}\}$ in $N$ such that

$\lim_{n\rightarrow\infty}||x-E(x)||_{2}\neq 0$ .
Then we may take a positive number $r$ and a subsequence $\{x_{ntk)}\}$ of $\{x_{n}\}$

such that

$\Vert x_{\hslash(k)}-E(x\{k))||_{\iota}>r$ , for all $k\in N$ .
Put $\delta=\min\{\epsilon, 1/2K\}$ . Since $\{x_{ntk)}\}$ is a centralizing sequence in $N$, there
exists a positive integer $m$ such that

$\Vert yx-x_{n(n)}y_{i}\Vert_{2}<r\delta$ , for $i=1,2_{1}\cdots,$ $n$ .
Put

$x=\frac{x_{(*)}-E(x_{n(n)})}{||x_{n\{n)}-E(x_{n(*)})\Vert_{2}}$ .

Denote by $\eta$ the canonical embedding of $N$ into $H$. Put $\zeta=\eta(x)$ .
Then we have $\zeta eH,$ $\Vert\zeta\Vert_{2}=1$ and 1 $y_{i}\zeta-\zeta y||_{2}<\delta,$ $i=1,2,$ $\cdots,$ $n$ . SInce $R$

has property $T$, there exists a vector $\xi\in H$ such that $x\xi=\xi x$ for all $xeR$
and I $\zeta-\xi||_{2}<K\delta$ . Since $\delta$ is less than 1/2$K$, this implies

$||\zeta-\xi\Vert_{2}<\frac{1}{2}$ .
Since we see that $\xi$ is contained in $R^{\prime}\cap L^{2}(N)$ , as in [24], $\xi$ may be

regarded as a closed operator affiliated with $(R^{\prime}\cup N^{\prime})^{\prime}=R^{\prime}\cap N$. Hence $\xi$

belongs to the subspace $L^{2}(R^{\prime}\cap N)$ of $L^{2}(N)$ spanned by $R^{\prime}\cap N$. It is
clear that $\zeta$ is orthogonal to $R^{\prime}\cap N$ and hence $L^{2}(R^{\prime}\cap N)$ . This means
that $\zeta$ is orthogonal to $\xi$ . It follows that

$||\zeta-\xi||_{2}=(||\zeta||_{2}^{2}+||\xi\Vert_{2}^{2})^{1/2}$

$=(1+||\xi||_{2}^{2})^{1/2}$

$>1$ .
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This contradicts that $\Vert\zeta-\xi\Vert_{2}<1/2$ . Hence we showed that any centralizing
sequence $\{x_{n}\}$ in $N$ is equivalent to $\{E(x.)\}$ .

COROLLARY 3.6. Let $M$ and $R$ be factors of type $II_{1}$ . If $R$ has
property $T$ in the sense of Connes and Jones, then, for any free ultra-
filter $\omega$ on $N$, we have

$(M\otimes R)_{\omega}=M_{\omega}$ .
REMARK. The above equality $(M\otimes R)_{\omega}=M_{\omega}$ means that the natural

embedding of $M$ in $M\otimes R$ induces an isomorphism of $M_{\omega}$ onto $(M\otimes R).$ .
PROOF. Put $N=M\otimes R$ . Since $R$ has property $T$, by Theorem 3.5, any

centralizing sequence in $N$ is equivalent to a centralizing sequence in $M$.
Similarly as this argument, we can prove that any $\omega$-centralizing sequence
in $N$ is equivalent to an $\omega$-centralizing sequence in $M$. This means

$(M\otimes R)_{\omega}\subset M_{w}$ .
On the other hand, it is easy to see that $M_{\omega}$ is contained in $(M\otimes R)_{\omega}$ .
Therefore we have $(M\otimes R)_{\omega}=M_{\omega}$ .

COROLLARY 3.7. Let $M$ and $R$ be factors of type $II_{1}$ . If the tensor
product von Neumann algebra $M\otimes R$ is strongly stable and $R$ has property
$T$, then $M$ is strongly stable.

The author is indebted to Professor M. Choda for the formulation of
Corollary 3.7.

REMARK. We showed, in Corollary 3.6, for factors $M$ and $R$ of type
$II_{1}$ , if $R$ has property $T$, then $(M\otimes R)_{\omega}=M_{\omega}$ for a free ultrafilter $\omega$ on
$N$. Since $R$ has property $T,$ $R$ is full. Hence $R_{u}=C$. This implies

$(M\otimes R)_{\omega}\cong M_{\omega}\otimes R_{\omega}$ .
In general, it is an open problem whether for any factors $M$ and $N$ of
type $II_{1},$ $(M\otimes N)_{\omega}$ is isomorphic to $M_{\omega}\otimes N_{\omega}$ or not. This problem was
given in [18].

Next, we discuss the cases that von Neumann algebras are not
necessarily factors.

PROPOSITION 3.8. Let $A$ be a finite von Neumann algebra with a
faithful normal normalized trace $\tau$ . Let $a$ be a $\tau$-preserving action of
an $ICC$ group $G$ on A. If the crossed product A $X_{a}G$ is a strongly stable
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factor of type $II_{1}$ , then the group $G$ does not have property $T$ or the fixed
point algebra $A^{\alpha}$ under $a$ is not commutat’ive.

PROOF. Let $\{u(g)|geG\}$ be the unitaries in $A$ $X_{a}G$ implementing
the automorphisms $\{a_{g}|g\in G\}$ . Write $\beta_{g}=Adu(g),$ $geG$ . Let $\epsilon$ be the
$\tau- pre$serving conditional expectation of $A\times_{\alpha}G$ onto the fixed point algebra
$(A\times_{a}G)^{\rho}$ of $A$ $X_{a}G$ under $\beta$ . Suppose $A$ $\chi_{a}G$ is strongly stable. We as-
sume that $G$ has property $T$ and $A^{\alpha}$ is commutative. Fix a free ultrafilter
$\omega$ on $N$. Let $\{x_{n}\}$ be an $\omega$-centralizing sequence in $A\times_{a}G$ . Taking a
suitable subsequence of $\{x_{n}\}$ , th$e$ sequence $\{x_{n}\}$ is regarded as a centralizing
sequence of A $X_{\alpha}G$ . Then we have

$\lim_{\rightarrow\infty}\Vert\beta_{g}(x_{n})-x_{n}\Vert_{2}=\lim_{n\rightarrow\infty}\Vert u(g)x_{n}-xu(g)\Vert_{2}=0$ , $geG$ .
Since $G$ has property $T$, by [3, Theorem 1], we have

$(*)$ $\lim_{n\rightarrow\infty}\Vert x_{n}-\epsilon(x)\Vert_{2}=0$ .
By the following equation

$(A\times_{\alpha}G)^{\beta}=u(G)^{\prime}\cap(A\times_{\alpha}G)=A^{\alpha}$ ,

$\epsilon(x_{n})$ are in $A^{a}$ . Since $\{x_{n}\}$ is an $\omega$-centralizing sequence in $A\times_{a}G$ , the
relation $(*)$ implies $\epsilon(x_{n})$ is an $\omega$-centralizing sequence in $A^{a}$ and it is
equivalent to $\{x_{n}\}$ . Hence for two $\omega$-centralizing sequences $\{x_{n}\}$ and $\{y_{n}\}$

in A $X_{\alpha}G$ , we have

$\pi_{\omega}(\{x_{n}\})\pi_{\omega}(\{y_{n}\})=\pi_{\omega}(\{\epsilon(x_{n})\})\pi_{\omega}(\{\epsilon(y_{n})\})$

$=\pi_{\omega}(\{\epsilon(x_{n})\epsilon(y_{n})\})$

$=\pi_{\omega}(\{\epsilon(y_{n})\epsilon(x_{n})\})$

$=\pi_{\omega}(\{y_{n}\})\pi_{\omega}(\{x_{n}\})$ .
It follows that the algebra $(A X_{\alpha}G)_{\omega}$ is commutative. Therefore the crossed
product $A\times_{a}G$ is not strongly stable. This is a contradiction.

Let {X, $\mu$} be a non atomic probability measure space. Let $\alpha$ be an
action on the abelian von Neumann algebra $L^{\infty}(X)$ induced by a measure
preserving free ergodic action on $X$ of a countable discrete group $G$ . Then
the crossed product $L^{\infty}(X)X_{\alpha}G$ is usually called the group measure space
construction algebra.

PROPOSITION 3.9. Keep the above notations. If the algebra $L^{\infty}(X)X_{a}G$
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is strongly stable, then the group $G$ is $ inne\gamma$ amenable.

PROOF. Suppose the group $G$ is not inner amenable. Then, similarly
as the proof of Proposition 3.3, an $\omega$-centralizing sequence in the crossed
product $L^{\infty}(X)\chi_{\alpha}G$ is equivalent to an $\omega$-centralizing sequence in the
algebra $L^{\infty}(X)$ . Since $L^{\infty}(X)$ is commutative, all $\omega$-centralizing sequences
in it induce mutually commuting elements in $(L^{\infty}(X)\times_{\alpha}G)_{\omega}$ . Hence the
algebra $(L^{\infty}(X)\chi_{a}G)_{\omega}$ is commutative. It follows that $L^{\infty}(X)X_{\alpha}G$ is not
strongly stable, a contradiction.

\S 4. Characterizations of property $\Gamma$ .
In this section, we shall give many characterizations of property $\Gamma$

in factors of type $II_{1}$ . First of all, we must prepare for some notations.
Let $R$ be a factor of type $II_{1}$ with the canonical trace $\tau$ . Let $R$

act standardly on the Hilbert space $\mathfrak{H}=L^{2}(R, \tau)$ . For an automorphism
$O\in Aut(R)$ , we define the unitary operator $u(O)$ on $\mathfrak{H}$ by $u(O)\eta(x)=\eta(0(x))$ ,
$x\in R$ , where $\eta$ is the canonical embedding of $R$ into $\mathfrak{H}$ . Following [5],
for a subset $G\subset Aut(R)$ , we write the $C^{*}$-algebra generated by the uni-
taries $u(\theta),$ $O\in G$ and $R$ as $C^{*}(R, G)$ . We denote by $C^{*}(R, R^{\prime})$ the $C^{*}-$

algebra generated by $R$ and its commutant $R^{\prime}$ on $\mathfrak{H}$ and by $C(\mathfrak{H})$ the
algebra of all compact operators on $\mathfrak{H}$ We notice $C^{*}(R, R^{\prime})=C^{*}(R, Int(R))$

for any factor $R$ of type $II_{1}$ .
In [11], A. Connes has characterized a factor of type $II_{1}$ with property

$\Gamma$ as a factor satisfying the following condition:
$(*)$ $C^{*}(R, R^{\prime})\cap C(\mathfrak{H})=\{0\}$ .
As corresponding to this result, in [17], the author has shown that the
above condition $(*)$ can be replaced by the next one:

$C^{*}(R,$ $c_{nt(R))\cap C(\mathfrak{H})=\{0\}}$ .
Moreover, A. Connes has shown another three conditions as characteriza-
tions of property $\Gamma$ in factors of type $II_{1}$ , by using inner automorphisms
[11, Theorem 2.1]. The first four conditions of the following theorem
analogize with those of Connes’ result [11, Theorem 2.1].

THEOREM 4.1. Let $R$ be a factor of type $II_{1}$ acting on the standard
Hilbert space $\mathfrak{H}$ and $J$ be the canonical involution on $\mathfrak{H}$ . Let $p$ be the
rank one proiection onto $C\cdot\eta(1)$ . Then the following six assertions are
equivalent:

(1) $R$ has $ p\gamma ope\gamma ty\Gamma$ .
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(2) For any finitely generated subgroup $G$ of $Cnt(R)$ , there exists
a G-invariant singular state on $R$ .

(3) For $\theta_{11}\cdots,$ $\theta eCnt(R)$ , there exists a sequence $\{\xi_{k}\}$ of unit vectors
of $\mathfrak{H}$ satisfying

$\lim_{k\rightarrow\infty}||\theta_{j}(\xi_{k})-\xi_{k}||_{2}=0$ , $j=1,2,$ $\cdots,$ $n$ ,

$\lim_{r\infty^{8}}up|(\eta(1)|\xi_{l})|\neq 1$ .
(4) $C^{*}(R. Cnt(R))\cap C(\mathfrak{H})=\{0\}$ .
(5) There exists a state $\varphi$ on $\mathscr{L}(\mathfrak{H})$ satisfying

$\varphi(p)=0$ and $\varphi(uJuJ)=1,$ $u\in \mathfrak{n}(R)$ .
(6) For any finitely generated subgroup $G$ of $Cnt(R)$ , there exists

a state $\psi$ on $\mathscr{L}(\mathfrak{H})\epsilon ati\epsilon fying$

$\psi(p)=0$ and $\psi(u(g))=1,$ $g\in G$ ,

where $\mathscr{L}(\mathfrak{H})$ means the algebra of all bounded linear operators on $\mathfrak{H}$ .
PROOF. By [11, Theorem 2.1], the fact Int$(R)\subset Cnt(R)$ and [17], we

have only to show the following implications (1) $\rightarrow(3),$ (1) $\rightarrow(2),$ (1) $\rightarrow(5)$ ,
(5) $\rightarrow(1),$ (1) $\rightarrow(6)$ and (6) $\rightarrow(1)$ .

Proof of (1) $\rightarrow(3)$ : We shall show the implication by the similar way

as the proof in [11, Theorem 2.1]. By [17], we have known that the

condition (1) is equivalent to (4), so we prove that if (3) does not hold,

then $C^{*}(R, Cnt(R))\cap C(\mathfrak{H})\neq\{0\}$ . Since (3) does not hold, we can take
$\theta_{1},$ $\cdots,$

$\theta_{n}eCnt(R)$ such that for a sequence $\{\xi_{k}\}$ of $\mathfrak{H}$ ,

$\lim_{k\rightarrow\infty}||\theta_{j}(\xi_{k})-\xi_{k}||_{2}=0$
, $j=1,2_{1}\cdots,$ $n$ , $||\xi_{k}\Vert_{2}=1$

implies
$\lim_{k\rightarrow}\sup_{\infty}|(\eta(1)|\xi_{k})|=1$ .

We define an operator $T\in C^{*}(R. Cnt(R))$ by $T=\sum_{j=}^{n}1u(\theta_{j})$ , that is to say

$T\xi=\sum_{j=1}^{n}\theta_{j}(\xi)$ , $\epsilon\in \mathfrak{H}$ .
Adding $\{\theta_{1}^{-1}, \cdots, \theta_{n}^{-1}\}$ to $\{\theta_{1}, \cdots, \theta_{n}\}$ , we can assume $T$ is a self-adioint
operator on $\mathfrak{H}$ . Sinoe we easily see $T\eta(1)=n\eta(1)$ , we have $||T||=n$ . We
shall show the eigenvalue $n$ of $T$ is simple. If $n$ is an element of the
spectrum on the orthogonal complement $\{C\cdot\eta(1)\}^{\perp}$ of $C\cdot\eta(1)$ , then there
exists a sequence $\{\xi_{k}\}\in \mathfrak{H}$ such that
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$\lim_{k\rightarrow\infty}\Vert(T-n)\xi_{k}||_{2}=0$ , $||\xi_{k}||_{2}=1$ , $(\xi_{k}|\eta(1))=0$ , $k\in N$ .

It follows that

$\lim_{k\rightarrow\infty}\Vert\sum_{j=1}^{n}\theta(\xi_{k})-n\xi_{k}\Vert_{2}=0$ .
Hence we have

$\lim_{k\rightarrow\infty}\Vert\sum_{j=1}\theta(\xi_{k})\Vert_{2}=n$ ,

and

$0=\lim_{k\rightarrow\infty}(n^{2}-\Vert\sum_{j=1}^{n}\theta(\xi_{k})\Vert_{2}^{2})$

$=\lim_{k\rightarrow\infty}\sum_{j=1}^{n}\{1-(0_{i}(\xi_{k})|\theta_{j}(\xi_{k}))\}$

$=\lim_{k\rightarrow\infty}\sum_{i>j}\{2-(0_{i}(\xi_{k})|\theta_{j}(\xi_{k}))-(\theta_{j}(\xi_{k})|\theta(\xi_{k}))\}$

$=\lim_{k\rightarrow\infty}\sum_{i>j}^{n}\{2-2{\rm Re}(\theta_{i}(\xi_{k})|0_{j}(\xi_{k}))\}$

$=\lim_{k\rightarrow\infty}\sum_{i>j}^{n}||0(\xi_{k})-\theta_{j}(\xi_{k})||_{2}^{2}$ .
Thus we have

$\lim_{k\rightarrow\infty}||\theta_{i}(\xi_{k})-\theta_{j}(\xi_{k})||_{2}=0$ , $i,$ $j=1,2,$ $\cdots,$ $n$ .
Since we have

$n||\theta_{i}(\xi_{k})-\xi_{k}\Vert_{2}\leqq\Vert\sum_{j=1}^{n}0_{j}(\xi_{k})-n\xi_{k}\Vert_{2}+\sum_{j=1}^{n}\Vert\theta_{j}(\xi_{k})-0_{i}(\xi_{k})\Vert_{2}$ ,

it follows that

$\lim_{k\rightarrow\infty}||\theta_{i}(\xi_{k})-\xi_{k}||_{2}=0$ , $i=1,2,$ $\cdots,$ $n$ .
But, this means, by the propertie8 of $\{\theta_{1}, \cdots, \theta_{n}\}$ ,

$\lim_{k\rightarrow\infty}|(\eta(1)|\xi_{k})|=1$ .
This is a contradiction because $\{\xi_{k}\}$ are orthogonal to $\eta(1)$ . Therefore $n$

ls an isolated point in the spectrum of $T$. Hence the one dimensional
proJectIon $p$ onto $C\cdot\eta(1)$ belongs to the $C^{*}$-algebra generated by $T$ so that
$p$ ls contained in $C^{*}(R, Cnt(R))$ . Consequently, we have
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$C^{*}(R, Cnt(R))\cap C(\mathfrak{H})\neq\{0\}$ .
Proof of (1) $\rightarrow(2)$ : We assume that $R$ has property $\Gamma$ . Let $G$ be a

finitely generated subgroup of $Cnt(R)$ with generators $\theta_{1},$ $\cdots,$ $0_{n}$ . First

of all, we shall prove that for a free ultrafilter $\omega$ on $N$, the fixed point

algebra $(R^{\omega})^{\theta_{1},\ldots,\theta}$ ’ of $R^{\omega}$ under $\theta_{1},$ $\cdots,$
$0_{n}$ is infinite dimensional.

Since $R$ has property $\Gamma$ , by [18, Corollary of Theorem 5], the center
of the von Neumann algebra $R_{\omega}$ is non atomic. Hence $R_{\omega}$ is infinite
dimensional. The fixed point algebra $(R^{\omega})^{\theta_{1’\prime}\theta_{n}}$ is given by the following

subset of $R^{\omega}$

$\{\pi^{\omega}(\{x_{n}\})eR^{\omega}|\lim_{n\rightarrow\omega}\Vert\theta_{j}(x_{n})-x_{n}\Vert_{2}=0, j=1,2, \cdots, n\}$
,

where $\pi^{\omega}$ means the quotient map from $l^{\infty}(R)$ onto $R^{\omega}$ . Now $\theta_{1},$ $\cdots,$
$\theta_{n}$

are centrally trivial so that the automorphisms induced by them on $R_{\omega}$

are identity. Hence $R_{\omega}$ is contained in the algebra $(R^{\omega})^{\theta_{1},\ldots,\theta_{n}}$ . Therefore
$(R^{\omega})^{\theta_{1},\ldots,\theta_{*}}$’ is infinite dimensional.

Next, we shall construct a $\theta_{1},$ $\cdots,$
$\theta_{n}$-invariant singular state on $R$ .

Put $M=(R^{\omega})^{\theta_{1}\ldots.,\theta_{l}}’$ . Since the dimension of $M$ is infinite, there exists an
infinite dimensional abelian von Neumann subalgebra of $M$. Hence there

exists an infinite sequence of mutually commuting projections in it so
that we can take, for each $keN$, a projection $e_{k}$ in $M$ such that
$0<\tau^{\omega}(e_{k})<1/k$ , where $\tau^{\omega}$ is the trace on $R^{\omega}$ induced by $\tau$ on $R$ . As each
projection in $M$ is represented by a sequence consisting of projections of
$R$ , we can find a sequence $\{f_{i}\}_{ieN}$ of projections in $R$ such that

$||0_{j}(f_{i})-f_{i}\Vert_{1}\leqq\frac{\Vert f_{i}\Vert_{1}}{i}$ , $0<\tau(f_{i})\leqq\frac{1}{i}$ ,

$j=1,2,$ $\cdots,$ $n$ , $i\in N$

where $L^{1}- norm||\cdot|_{1}$ is defined by $||x||_{1}=\tau(|x|),$ $x\in R$ . For a $k\in N$, we de-

fine a normal state $\varphi_{k}$ on $R$ by $\varphi_{k}(x)=\tau(f_{k}x)/\tau(f_{k}),$ $x\in R$ . Since we see
$\varphi_{k}(f_{k})=1$ and $\tau(f_{k})<1/k$ , the set $\{\varphi_{k}\}_{keN}$ is not $\sigma(R^{*}, R)$-relative compact

in $R^{*}$ (cf. [25, Theorem 5.4]). Hence we can find a non normal state $\varphi$

in $\sigma(R^{*}, R)$-limit points of $\{\varphi_{k}\}_{keN}$ . The state $\varphi$ is $0_{1},$ $\cdots,$ $O_{n}- invariant$ , so
that, by taking its singular part, we get a G-invariant singular state.

Proof of (1) $\rightarrow(5)$ : We assume $R$ has property $\Gamma$ . By definition, we
can take a centralizing sequence $\{v_{n}\}$ of unitaries in $R$ satisfying $\tau(v_{n})=0$ ,

$n\in N$. Put $\varphi_{n}(x)=(x\eta(v_{n})|\eta(v_{n})),$ $ x\in$ Y(SC). Since the state space on
$\mathscr{L}(\mathfrak{H})$ is $\sigma(\mathscr{L}(\mathfrak{H})^{*}, \mathscr{L}(\mathfrak{H}))$-compact, there exists a $\sigma(\mathscr{L}(\mathfrak{H})^{*}, \mathscr{L}(\mathfrak{H}))$-limit

point $\varphi$ of $\{\varphi_{n}\}_{neN}$ . The state is the desired one. In fact, we have
$\varphi_{n}(p)=|\tau(v_{n})|^{2}=0$ and for a unitary $u$ in $R$ ,
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$|\varphi_{n}(uJuJ)-1|=|(uJuJ\eta(v_{n})|\eta(v_{n}))-(\eta(v_{n})|\eta(v_{n}))|$

$\leqq\Vert uJuJ\eta(v_{n})-\eta(v_{n})\Vert_{2}\Vert\eta(v_{n})\Vert_{2}$

$=\Vert uv_{n}u^{*}-v_{n}\Vert_{2}$ .
Therefore we see that $\varphi$ satisfies the condition (5).

Proof of (5) $\rightarrow(1)$ : We assume the condition (5). For unitaries
$u_{1},$ $\cdots,$ $u_{n}$ in $R$ , put $u_{0}=1$ and $T=\sum_{j=0}^{n}u_{j}Ju_{j}J$. Let se be the orthogonal
complement of the subspace $C\cdot\eta(1)$ in $\mathfrak{H}$ , that is to say

$R=(1-p)\mathfrak{H}=C\cdot\eta(1)$ .
Since we see $T^{*}\eta(1)=(n+1)\eta(1)$ , we may regard $T$ as a bounded linear
operator on Si. Let $\varphi$ be a state satisfying the condition (5). By the
condition $\varphi(p)=0,$ $\varphi$ may be regarded as a state on the $C^{*}$-algebra $\mathscr{L}(\theta)$ .
Then we have

$\varphi(T)=\sum_{j=0}^{n}\varphi(u_{j}Ju_{j}J)=n+1$ .
Hence the operator norm of $T$ on St is equal to $n+1$ . Therefore for each
$k\in N$ we can take a unit vector $\xi_{k}$ in St such that

$\Vert T\xi_{k}\Vert_{2}^{2}\geqq(n+1)^{2}-\frac{1}{k^{2}}$ .
It follows that

$\frac{1}{k^{2}}\geqq(n+1)^{2}-\Vert\sum_{j=0}^{n}u_{j}Ju_{j}J\xi_{k}\Vert_{2}^{2}$

$=\sum_{i,j=0}^{\grave{n}}\{1-(u_{i}\xi_{k}u_{i}^{*}|u_{j}\xi_{k}u_{j}^{*})\}$

$=2\sum_{i>j}\{1-{\rm Re}(u_{i}\xi_{k}u_{l}^{*}|c\iota\xi v^{\star}.,\}$

$\geqq 2\{1-{\rm Re}(u_{i}\xi_{k}u_{i}^{*}|\xi_{k})\}$

$=\Vert\xi_{k}-u_{i}\xi_{k}u_{i}^{*}||_{2}^{2}$ .
Consequently, we have

$\lim_{k\rightarrow\infty}\Vert u_{i}\xi_{k}-\xi_{k}u_{i}\Vert_{2}=0$ , $i=1,2,$ $\cdots,$ $n$ , and

$(\xi_{k}|\eta(1))=0$ , $k\in N$ .
Thus, by [11, Theorem 2.1], $R$ has property $\Gamma$ .

Proof of (1) $\rightarrow(6)$ : We assume $R$ has property $\Gamma$ . Let $G$ be a finitely
generated subgroup of $Cnt(R)$ with generators $0_{1},$

$\cdots,$
$\theta_{n}$ . Since we have

shown the implication (1) $\rightarrow(3)$ , we may take a sequence $\{\xi_{k}\}$ of unit vectors
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in $\mathfrak{H}$ satisfying the condition (3). For each $\xi_{k}$ , by decomposing it along
the direct summand $\mathfrak{H}=C\cdot\eta(1)\oplus\{C\cdot\eta(1)\}^{\perp}$ , picking up the vector belonging
to the subspace $\{C\cdot\eta(1)\}^{\perp}$ and normalizing it, we may assume $\xi_{k}$ is orthogonal
to $C\cdot\eta(1)$ . The rest of the proof may be done by the similar way as in
the proof of the implication (1) $\rightarrow(5)$ . In fact, we may find a state $\psi$

which is a $\sigma(R^{*}, R)$-limit point of vector states $\{(\cdot\xi_{k}|\xi_{k})\}_{keN}$ and satisfies

$\psi(u(\theta_{j}))=1$ , $j=1,2,$ $\cdots,$ $n$ and $\psi(p)=0$ .
By the above condition $\psi(u(\theta_{j}))=1$ and Schwarz’s inequality, it follows
that

$(*)$ $\psi(u(\theta_{j})x)=\psi(x)=\psi(xu(0_{j}))$ , $xe\mathscr{L}(\mathfrak{H})$ , $j=1,2,$ $\cdots,$ $n$ .
Hence, we have inductively $\psi(u(g))=1$ for all $geG$ .

Proof of (6) $\rightarrow(1)$ : We shall show the condition (3) under the condition
(6). For centrally trivial automorphisms $\theta_{1},$

$\cdots,$
$\theta_{n}$ on $R$ , put $T=\sum_{j=0}^{n}u(\theta_{j})$

where $\theta_{0}$ is the identity automorphism. Similarly as in the proof of the
implication (5) $\rightarrow(1)$ , we see that the operator norm of $T$ on the subspace
$(1-p)\mathfrak{H}$ of SC is equal to $n+1$ . Continuing the same argument as the
proof of (5) $\rightarrow(1)$ , we complete the proof.

REMARK. It is easy to see that a state $\psi$ on $\mathscr{L}(\mathfrak{H})$ satisfying the
condition (6) of Theorem 4.1 is G-invariant, by using the identity $(*)$ in
the proof of the implication (1) $\rightarrow(6)$ .

COROLLARY 4.2. Let $R$ be a factor of type $II_{1}$ with property $\Gamma$ and
$\varphi$ be a state on $\mathscr{L}(\mathfrak{H})$ satisfying the condition (5) of Theorem 4.1. Then
$\varphi$ is an extension of the canonical trace $\tau$ on R. Namely, we have
$\varphi(x)=\tau(x),$ $x\in R$ .

PROOF. Since, for a unitary $u$ in $R$ , we have $\varphi(uJuJ)=1$ , as describ-
ing in the proof of the implication (1) $\rightarrow(6)$ of Theorem 4.1, we obtain

$\varphi(uJuJx)=\varphi(x)=\varphi(xuJuJ)$ , $xe\mathscr{L}(\mathfrak{H})$ , $ue\mathfrak{n}(R)$ .
For any $a$ in $R$ , by $su_{r}bstitutingJu^{*}Ja$ for $x$ in the above identity, we
have $\varphi(ua)=\varphi(au)$ . By the uniqueness of th$e$ trace on $R$ , we see the
restriction of $\varphi$ to $R$ coincides with $\tau$ .

REMARK. In [7] and [8], M. Choda has given a characterization of
approximately inner automorphisms on a factor of type $II_{1}$ by describing
a similar statement to the conditions (5) and (6) of Theorem 4.1. So we
may consider the conditions (5) and (6) and Corollary 4.2 as property $\Gamma$
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versions of her results. However our proof of the implication (5) $\rightarrow(1)$ is
not similar to that of her theorem [8, Theorem 2]. By suitably modifying
the proof of (5) $\rightarrow(1)$ , we can prove her theorem more easily.

\S S. $C^{*}\cdot algebras$ associated with factors having property $\Gamma$ and
compact operators.

We recall the problem mentioned in \S 1. Namely, “How large is a
subgroup $G$ of $Aut(R)$ satisfying

$(*)$ $C^{*}(R, G)\cap C(\mathfrak{H})=\{0\}$

for a factor $R$ of type $II_{1}$ with property $\Gamma$ ?
As we stated in \S 1, we already have known

(1) $C^{*}(R, Cnt(R))\cap C(\mathfrak{H})=\{0\}$ .
This section is devoted to seeking better solutions about the problem than
the above condition (1). The following lemma plays important roles in
order to find larger groups satisfying the condition $(*)$ than $Cnt(R)$ .

LEMMA 5.1. Let $R$ be a factor of type $II_{1}$ having property $\Gamma$ with
the canonical trace $\tau$ and $G$ be a subgroup of $Aut(R)$ . If there exists a
centralizing sequence $\{u_{n}\}$ in $R$ consisting of $unitar\prime ies$ satisfying

$\lim_{n\rightarrow\infty}\Vert g(u_{n})-u_{n}||_{2}=0$ , $g\in G$ and $\lim_{n\rightarrow}\sup_{\infty}|\tau(u_{n})|\neq 1$ ,

then we have
$C^{*}(R, G)\cap C(\mathfrak{H})=\{0\}$ .

This lemma is proved by esIentially using M. Choda’s result [5].

PROOF. Suppose that there exists a centralizing sequence $\{u_{n}\}$ in $R$

consisting of unitaries satisfying

$(*)$
$\lim_{n\rightarrow\infty}\Vert g(u_{n})-u_{n}\Vert_{2}=0$ , $g\in G$ ,

$\lim_{n\rightarrow}\sup_{\infty}|\tau(u_{n})|\neq 1$ .
Let $\overline{G}$ be the subgroup of $Aut(R)$ generated by $G$ and Int$(R)$ . Since

$\{u_{n}\}$ is a centralizing sequence, all $g$ in Int$(R)$ satisfy the condition $(*)$ .
Hence the condition $(*)$ is fulfilled for all automorphisms in $\overline{G}$ . On the
other hand, since we have 1 $u_{n}-\tau(u_{n})\Vert_{2}^{2}=2(1-|\tau(u_{n})|^{2})$ , it follows that

$\lim_{n\rightarrow}\sup_{\infty}$ I $u_{n}-\tau(u_{n})\Vert_{2}\neq 0$ .
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This means that $\overline{G}$ does not act strongly ergodically on $R$ (cf. [5]).
Therefore, by [5, Theorem 4], we see that $C^{*}(R,\overline{G})$ does not contain
$C(\mathfrak{H})$ . Now $\overline{G}$ contains Int$(R)$ so that $C^{*}(R,\overline{G})$ contains $C^{*}(R, R^{\prime})$ . Thus
$C^{*}(R,\overline{G})$ is irreducible and hence we have

$C^{*}(R,\overline{G})\cap C(\mathfrak{H})=\{0\}$ .
This implies $C^{*}(R, G)\cap C(\mathfrak{H})=\{0\}$ .

By using Lemma 5.1, we may find a better solution than before as
follows.

THEOREM 5.2. Let $0$ be an automorphism on a factor $R$ of type $IIi$

with property $\Gamma$ such that for any nonzero integer $n,$ $\theta$
“ is not centrally

trivial. Then we have

$C^{*}(R, Cnt(R)\vee\theta)\cap C(\mathfrak{H})=\{0\}$

where $Cnt(R)\vee\theta$ is the subgroup of $Aut(R)$ generated by $Cnt(R)$ and $\theta$ .
PROOF. Let $\theta$ be an automorphism such that for any nonzero integer

$n,$ $\theta^{n}$ is not centrally trivial. Then, by using [10, Proposition 2.1.2], we
have for a free ultrafilter $\omega$ on $N$, the automorphism $\theta_{\omega}$ is aperiodic on
$R_{\omega}$ , namely, for any nonzero integer $n,$ $(\theta_{\omega})^{n}$ is properly outer on $R_{\omega}$ . As
in the proof of [22, Proposition 1.4], by applying Connes’ non commutative
Rohklin’s theorem [10, Theorem 1.2.5] to the automorphism $\theta_{\omega}$ on $R_{\omega}$ , we
may find a unitary $V$ in $R_{\omega}$ such that

$0_{\omega}(V)=V$ and $\tau_{\omega}(V)=0$ .
By [10, Proposition 1.1.5], we may take an $\omega$-centralizing sequence $\{v_{n}\}$

consisting of unitaries in $R$ such that

$\lim_{n\rightarrow\omega}\Vert\theta(v_{n})-v_{n}\Vert_{2}=0$ and $\lim_{n\rightarrow\omega}\tau(v_{n})=0$ .
By choosing a suitable subsequence of $\{v_{n}\}$ , we get a centralizing sequence
$\{u_{n}\}$ of unitaries in $R$ satisfying

$\lim_{n\rightarrow\infty}\Vert\theta(u_{n})-u_{n}||_{2}=0$ and $\lim_{n\rightarrow\infty}\tau(u_{n})=0$ .
Hence it follows that

$\lim_{n\rightarrow\infty}\Vert g(u_{n})-u_{n}||_{2}=0$ , for all $ g\in Cnt(R)\vee\theta$ .
This implies, by Lemma 5.1,
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$C^{*}(R, Cnt(R)\vee O)\cap C(\mathfrak{H})=\{0\}$ .
Consequently we have shown that for a factor $R$ with property $\Gamma$ and

a suitable automorphism $0$ on $R$ , three $C^{*}$-algebras $C^{*}(R, R^{\prime}),$ $C^{*}(R, Cnt(R))$

and $C^{*}(R, Cnt(R)\vee\theta)$ do not intersect with $C(\mathfrak{H})$ except zero operator as
yet. The relation between these $C^{*}$-algebras is of course

$C^{*}(R, R^{\prime})\subset C^{*}(R, Cnt(R))\subset C^{*}(R, Cnt(R)\vee\theta)$ .
If the above relations of inclusion are not proper, it is not significant
much to consider $C^{*}$-algebras $C^{*}(R, G)$ for larger groups than Int$(R)$ . In
order to make clear the differences between them, we provide the following
proposition. It means that the relations of inclusion of the groups

Int$(R)\subset Cnt(R)\subset Cnt(R)\vee\theta$

are exactly compatible with those of the $C^{*}$-algebras

$C^{*}(R, R^{\prime})\subset C^{*}(R, Cnt(R))\subset C^{*}(R, Cnt(R)\vee O)$ .
PROPOSITION 5.3. Let $\theta$ be an automorphism on a factor $R$ of type

$II_{1}$ .
(1) $\theta\in Int(R)$ if and only if $u(O)\in C^{*}(R, R^{\prime})$ .
(2) $O\in Cnt(R)$ if and only if $u(\theta)\in C^{*}(R, Cnt(R))$ .
PROOF. The assertion (1) has proved in [17] by the author. So, we

have only to show the if part of the assertion (2). Thus we assume
$u(\theta)\in C^{*}(R, Cnt(R))$ . Let $\eta$ be the natural embedding of $R$ into $\mathfrak{H}=L^{2}(R, \tau)$ .
Put $\tau\sim(a)=(a\eta(1)|\eta(1)),$ $a\in C^{*}(R, Cnt(R))$ . Then $\tau\sim$ is a state on $C^{*}(R, Cnt(R))$

which is an extension of the canonical trace $\tau$ on $R$ . We define the
seminorm $\Vert\cdot\Vert_{\tau}\sim$ on $C^{*}(R, Cnt(R))$ by $\Vert a\Vert_{\tau}^{\sim}\sim=\tau(a^{*}a)^{1/2},$ $a\in C^{*}(R, Cnt(R))$ . It
is easy to see that I $xu(g)\Vert_{\tau}\sim=\Vert x\Vert_{z},$ $x\in R,$ $g\in Cnt(R)$ . Let $\{x_{n}\}$ be a cen-
tralizing sequence in $R$ . Then we have

$\Vert u(g)x_{n}-x_{n}u(g)\Vert_{\tau}\sim=\Vert g(x_{n})-x_{n}\Vert_{2}$ , $g\in Cnt(R)$ .
This implies

$\lim_{n\rightarrow\infty}\Vert u(g)x_{n}-x_{n}u(g)\Vert_{\tau}\sim=0$ , $g\in Cnt(R)$ .
On the other hand, as $\{x_{n}\}$ is centralizing in $R$ , we have

$\lim_{n\rightarrow\infty}||yx_{n}-x_{n}y\Vert_{\tau}\sim=0$ , $y\in R$ .
Therefore, for an element $b$ in the dense $*$-subalgebra of $C^{*}(R, Cnt(R))$

algebraically generated by $R$ and $u(g),$ $g\in Cnt(R)$ , it follows that
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$\lim_{n\rightarrow\infty}$ Il $bx_{n}-x_{n}b||_{\tau}\sim=0$ .
By noticing the following inequality

$\Vert xy||_{\tau}\sim\leqq||x\Vert||y||$ , $x,$ $y\in C^{*}(R, Cnt(R))$

and the boundedness of $\{x_{n}\}$ , we may see
$\lim_{*\rightarrow\infty}||ax_{n}-x_{n}a||\sim=0\tau$ , $a\in C^{*}(R, Cnt(R))$ .

Now, we assume that $u(\theta)$ belongs to $C^{*}(R_{1}Cnt(R))$ . Thus we have

$\lim_{nr}||\theta(x_{n})-x_{n}\Vert_{2}=\lim_{n\rightarrow\infty}||u(\theta)x_{n}-x_{n}u(\theta)||_{\tau}\sim=0$ .
This means that $\theta$ is centrally trivial.

By Proposition 5.3, we may know many factors of type $II_{1}$ with prop-
erty $\Gamma$ and automorphismI on them satisfying the following relations

$C^{*}(R. R^{\prime})\subsetneqq C^{*}(R, Cnt(R))\subsetneqq C^{*}(R, Cnt(R)\theta)$ and
$C^{*}(R, Cnt(R)\vee\theta)\cap C(\mathfrak{H})=\{0\}$ .

For instance, let $R(F_{2})$ be the left group von Neumann algebra construct-
ed by the free group $F_{2}$ on 2 generators. We consider the tensor product
von Neumann algebra $R(F_{2})\otimes R_{0}$ between $R(F_{2})$ and the hyperfinite factor
$R_{0}$ of type $II_{1}$ and denote it by $M$. As we have seen in [17], the centrally
trivial automorphism group on $M$ is exactly larger than inner automor-
phism group on it. Since there exists an automorphism $\theta_{0}$ on $R_{0}$ such
that for any nonzero $n,$ $(\theta_{0})$

“ is not centrally trivial, each nonzero power
of the automorphism $\theta=id\otimes\theta_{0}$ on $R(F_{2})\otimes R_{0}=M$ is not centrally trivial.
Therefore, by Theorem 5.2 and Proposition 5.3, we have

$C^{*}(M, M^{\prime})\subsetneqq C^{*}(M, Cnt(M))\subsetneqq C^{*}(M, Cnt(M)\vee\theta)$ and
$C^{*}(M, Cnt(M)\vee\theta)\cap C(\mathfrak{H})=\{0\}$ .

Finally we shall discuss in restricting factors with property $\Gamma$ to strongly
stable ones. Then we shall connect the arguments of \S 1 with the previous
problem. We have the following theorem.

THEOREM 5.4. Let $M$ be a strongly stable factor of type $II_{1}$ and $G$

be a subgroup of $Aut(M)$ . If the homomorphic image of $G$ into the
quotient group $Aut(M)/Cnt(M)$ is countable and amenable as a discrete
group, then we have

$C^{*}(M, Cnt(M)\vee G)\cap C(\mathfrak{H})=\{0\}$ .
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PROOF. We fix a free ultrafilter $\omega$ on $N$. We denote by $G_{\omega}$ the
homomorphic image of $G$ into $Aut(M)/Cnt(M)$ . By assumption, $G_{\omega}$ is a
countable amenable group of which action on $M_{\omega}$ is liftable and strongly
free. Hence, by [20, Lemma 8.3], the fixed point algebra $(M_{\omega})^{\theta_{\omega}}$ of $M_{\omega}$

under $G_{\omega}$ is of type $II_{1}$ . Thus there exists a $2\times 2$ matrix unit $\{F_{ij}\}_{t,i=\iota,2}$

in $(M_{\omega})^{O_{\omega}}$ . Put $U=F_{1I}-F_{22}$ . Then $U$ is a unitary in $M_{\omega}$ such that

$g.(U)=U$ , $geG$ and $\tau_{\omega}(U)=0$ .
Similarly as in the proof of Theorem 5.2, we may find a centralizing
sequence $\{u_{n}\}$ of unitaries in $M$ such that

$\lim_{\rightarrow\infty}\Vert g(u_{n})-u_{n}\Vert_{z}=0$ , $geG$ and $\lim_{n\rightarrow\infty}\tau_{\omega}(u_{n})=0$ .
Hence we see for any element $g$ in the group $Cnt(M)\vee G$ generated by
$Cnt(M)$ and $G$ ,

$\lim_{\rightarrow\infty}\Vert g(u_{n})-u_{n}\Vert_{2}=0$ .
By Lemma 5.1, we have

$C^{*}(M, Cnt(M)\vee G)\cap C(\mathfrak{H})=\{0\}$ .
COROLLARY 5.5. If $M$ is a strongly stable factor of type $II_{1}$ , then

for any automorphism $\theta$ on $M$, we have

$C^{*}(M. Cnt(M)\vee O)\cap C(\mathfrak{H})=\{0\}$ .
COROLLARY 5.6. Let $M$ is a factor of type $II_{1}$ and $a$ be an action

of a countable discrete amenable group $G$ on M. If $M\dot{j}S$ strongly stable,
then we have

$C^{*}(M, G)\cap C(\mathfrak{H})=\{0\}$ .
Here $G$ is identified with its homomorphic image by the aetion $a$ into
$Aut(M)$ , namely, $C^{*}(M, G)$ means $C^{*}(M, \alpha_{a})$ exactly.
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