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Abstract. In this paper we introduce a new partial order $\leqq$ on the set of all classical
knots. We show for example that every nontrivial knot $\geqq$ the trefoil knot.

\S 1. Introduction.

Throughout this paper we work in the piecewise linear category.
A link is the image of an embedding of a disjoint union of unordered
and unoriented circles into $S^{3}$ . A knot is a link with one component.

DEFINITION $0$ . We say that links $L_{1}$ and $L_{2}$ are equivalent, denoted
by $L_{1}=L_{2}$ , if there exists a homeomorphism of $S^{3}$ onto itself which maps
$L_{1}$ onto $L_{2}$ , where the homeomorphism is not required to be orientation
preserving. Each equivalence class of links is called a link type. A
link projection is the image of a map of a finite disjoint union of circles
into $S^{2}$ whose multiple points are transverse double points only. A link
diagram is a link projection together with an $over/under$ information at
each double point. See Fig. 1-1.
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FIGURE 1-1

Regarding $S^{2}$ as the canonical subspace of $S^{3}$ , we can suppose that
a link diagram represents a link type. From a link proiection $\hat{L}$ which
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has $n$ double points, $2^{n}$ link diagrams arise. Hence at most $2^{n-1}$ link
types arise from $\hat{L}$ . We denote the set of all link types $which\wedge$ arise
from $\hat{L}$ by LINK $(\hat{L})$ . If a link type $L_{0}$ is an element of LINK $(L)$ , then
we say that $\hat{L}$ is a projection of $L_{0}$ . We denote the set of all projections
of a link type $L_{0}$ by PROJ $(L_{0})$ .

DEFINITION 1. For link types $L_{1}$ and $L_{2}$ , we say that $L_{1}$ is a minor
of $L_{2}$ , denoted by $L_{1}\leqq L_{2}$ or $L_{2}\geqq L_{1}$ , if PROJ $(L_{1})\supset PROJ(L_{2})$ . If $L_{1}$ is a
minor of $L_{2}$ , then we say that $L_{2}$ majorizes $L_{1}$ .

For the definitions of the other standard terms in knot theory, we
refer to [3] and [1]. We denote the set of all $\mu$-component link types
by $\mathfrak{L}^{\mu}$ , and the set of all $\mu$-component prime alternating link types by
$\mathfrak{P}\mathfrak{U}\mathfrak{L}^{\mu}$ . From now on, we do not distinguish a link from its link type,
and a diagram from the link type represented by it so long as no con-
fusion arises.

In this paper we show the following results.

PROPOSITION 1. For each natural number $\mu$ , the pair $(\mathfrak{P}\mathfrak{U}\mathfrak{L}^{\mu}, \leqq)$ is
a partially ordered set. That is, for $L_{1},$ $L_{2},$ $L_{s}e\mathfrak{P}\mathfrak{U}\mathfrak{L}^{\mu}$ , the following
hold:

(1) $L_{1}\leqq L_{1}$ (the reflexive law),
(2) if $L_{1}\leqq L_{2}$ and $L_{2}\leqq L_{3}$ , then $L_{1}\leqq L_{\epsilon}$ (the transitive law),
(3) if $L_{1}\leqq L_{2}$ and $L_{2}\leqq L_{1}$ , then $L_{1}=L_{2}$ (the antisymmetric law).

THEOREM $0$ . For each natural number $\mu$ , every $\mu$-component link
majorizes the $\mu$-component trivial link.

THEOREM 1. Every nontrivial knot majorizes the trefoil knot.

THEOREM 2. For a knot $K$, the fouowing (1) and (2) are equivalent:
(1) The knot $K$ majorizes the figure eight knot.
(2) The knot $K$ has a prime factor which is not equivalent to any

of the (2, p)-torus knots with $p\geqq 3$ .
THEOREM 3. For a knot $K$, the following (1) and (2) are equivalent:
(1) The knot $K$ majorizes the three-twist knot ( $=5_{2}$ in the knot

table in [3]).
(2) The knot $K$ has a prime factor which is not equivalent to any

of the (2, p)-torus knots with $p\geqq 3$ , and the figure eight knot.

THEOREM 4. For a knot $K$, the following (1) and (2) are equivalent:
(1) The knot $K$ majorizes the $(2, 5)$-torus kno$t(=5_{1}$ in the knoi

table in [3]).



PARTIAL ORDER OF KNOTS 207

(2) The knot $K$ has a prime factor which is not equivalent to any
of the pretzel knots $L(p_{1}, p_{2}, p_{3})$ with $p_{1},$ $p_{2}$ and $p_{3}$ odd integers.

The Hasse diagram is a well-known method to illustrate a partially
ordered set. Summarizing all the results stated above, we have a part
of the Hasse diagram of $(\mathfrak{B}\mathfrak{U}\mathfrak{L}^{1}, \leqq)$ in Fig. 1-2, where a line segment
means that the knot at the upper end is a successor of the knot at the
lower end.

$O_{0_{1}}$

FIGURE 1-2

We will discuss on the two-component links $(\mathfrak{L}^{2}, \leqq)$ in the forthcoming
paper [5].

\S 2. Basic properties.

PROOF OF THEOREM $0$ . We show that every link projection is a
projection of the trivial link. We give an order to the immersed circles
arbitrarily, choose an arbitrary base point that is not a crossing point
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for each immersed circle, and give an orientation also arbitrarily for
each immersed circle. We trace the immersed circles in their given order
and from their base points in the direction specified by their orientation.
We add an $over/under$ information for each crossing point of the pro-
jection so that every crossing point may be first traced as an over-
crossing. Let us call this process of adding $over/under$ informations
descending. This process produces the trivial link diagram. See Fig.

2-1. $\square $

PROPOSITION $0$ . Let $L_{1}$ and $L_{2}$ be links. If $L_{1}\leqq L_{2}$ then it holds
that $c(L_{1})\leqq c(L_{2}),$ $bridge(L_{1})\leqq bridge(L_{2})$ and braid$(L_{1})\leqq braid(L_{2})$ , where
$c(L),$ $bridge(L)$ and braid $(L)$ denote the minimum number of crossings,

the bridge index and the braid index of $L$ , respectively.

We note that we can define these numerical invariants of a link
from the set of projections of the link, hence the proof of Proposition $0$

is clear.

For each natural number $\mu$ , the pair $(\mathfrak{L}^{\mu}, \leqq)$ is a preordered set,
i.e., the reflexive law and the transitive law hold. Now we prove the
antisymmetric law for the prime alternating links.

PROOF OF PROPOSITION 1. Let $\tilde{L}_{1}$ be a diagram of $L_{1}$ which has the
minimum number of crossings of $L_{1}$ . Then the result in Murasugi [2]

and Thistlethwaite [6] tells us that. $\tilde{L}_{1}$ is alternating. By Proposition $0$ ,
$c(L_{1})=c(L_{2})$ . Therefore by changing appropriate crossings of $\tilde{L}_{1},$ $L_{1}$ turns
into a diagram $\tilde{L}_{2}$ of $L_{2}$ which has the minimum number of crossings of
$L_{2}$ . Again, the result in [2] and [6] tells us that $\tilde{L}_{2}$ is also

$alternating\ovalbox{\tt\small REJECT}$

This shows $L_{1}=L_{2}$ .

\S 3. Proof of Theorem 1.

We say that a double point $P$ of a link projection $\wedge\hat{L}$ is nugatory $if\wedge$

$\hat{L}-P$ is disconnected. We say that a link projection $L$ is reduced if $L$

has no nugatory double points.
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LEMMA 1. For any link projection $\hat{L}$ , there is a reduced link pro-
jection $\hat{L}^{\prime}$ such that LINK $(\hat{L})=LINK(\hat{L}^{\prime})$ .

PROOF. Let $\hat{L}_{1}$ and $\hat{L}_{2}$ be link projections related as illustrated in
Fig. 3-1, where $\hat{T}_{1}$ and $T_{2}$ are parts of the link projection, then it is
clear that LINK $(\hat{L}_{1})=LINK(\hat{L}_{2})$ . Therefore we can eliminate nugatory
double points and obtain the desired link projection. $\square $

FIGURE 8-1

LEMMA 2. Let $\hat{A}$ be the image of a map of a closed interval into
$S^{2}=\partial B^{3}$ whose multiple points are only transverse double points different
from the end points. Then there is a properly embedded arc $A$ in $B^{3}$

which satisfies the following conditions:
(1) The pair $(B^{3}, A)$ is homeomorphic to the standard ball pair

$(B^{3}, B^{1})$ .
(2) The arc $A$ is disjoint from the center $\{0\}$ of $B^{3}$ such that the

restriction of the natural projection $B^{3}-\{0\}\rightarrow\partial B^{3}=S^{2}$ to $A$ is a map
with its multiple points transverse double points only whose image is
equal to $\hat{A}$ .

This result follows by the descending process. See Fig. 3-2.

$\hat{A}$
$\subset$

$S^{\alpha}=\partial B^{s}$ A $c$
$B^{a}$

FIGURE 3-2

PROOF OF THIOREM 1. By Lemma 1, it is sufficient to show that
every reduced projection $\hat{K}$ of a nontrivial knot $K$ is a projection of the
trefoil knot. We start from an arbitrary point $P$ of $\hat{K}$ that is not a
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crossing point, and traoe $\hat{K}$ in an arbitrarily chosen direction. The
traced line crosses itself in time. Let $P_{0}$ be the first such point. We
have traced out a simple closed curve which starts and ends at $P_{0}$ . This
simple closed curve bounds two disks on $S^{2}$ . The disk which does not
contain the point $P$ looks like a tear drop. We denote this disk by $\delta$ .
We denote the other disk, which looks like a heart, by $\epsilon$ . See Fig.
3.3 (a). We go on the tracing. As $\hat{K}$ is reduced, we must return into
the disk $\delta$ . We denote the point at which we first return into $\delta$ by $P_{1}$ .
See Fig. 3-3 (b). We are ready to add $over/under$ informations to $\hat{K}$.
First we add $over/under$ informations by the descending process which
starts from $P$ in the previously chosen direction, and then we change
$over/under$ at $P_{1}$ . Applying twice Lemma 2 and its proof to the upper
and the lower three-balls bounded by $S^{2}$ in $S^{s}$ , we can deform the knot
obtained above to the knot in Fig. 3-3 (c), which is a trefoil knot as
desired. $\square $

$e$

$\langle b$) (c)

FIGURE 3-3

\S 4. Proof of Theorem 2.

We prepare some notions which are similar to the notions defined in
\S 1. A tangle is the image of an embedding of a finite disjoint union
of closed intervals into the three-ball $D^{2}\times[0,1]$ which maps the boundary
into $\partial D^{2}\times\{0\}$ and the interior into the interior of $D^{2}\times[0,1]$ . Two tangles
$T_{1}$ and $T_{2}$ are said to be equivalent, denoted by $T_{1}=T_{2}$ , if there exists
an isotopic deformation of $D^{2}\times[0,1]$ fixed on $\partial(D^{2}\times[0,1])$ which deformf
$T_{1}$ to $T_{2}$ . A tangle projection is the image of a proper map of a finite
disjoint union of closed intervals into the disk $D^{2}$ , whose multiple $point\not\in$

are only transverse double points in the interior. A tangle diagram $i\not\in$

a tangle projection together with an $over/under$ information at eacl]

double point. Regarding $D^{2}$ as $D^{2}\times\{0\}$ , we can suppose that a tangle
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diagram represents an equivalence class of tangles. We do not dis-
tinguish a tangle from its equivalence class, and a tangle diagram from
the equivalence class represented by the diagram so long as no confusion
arises. For a tangle projection $\hat{T}$ , we denote the set of all tangles which
arise from $\hat{T}$ by TANG $(\hat{T})$ . If a tangle $T_{0}$ is an element of TANG $(\hat{T})$ ,
then we say that $\hat{T}$ is a projection of $T_{0}$ . A sub-arc of a circle (resp.
a closed interval) is a subspace of the circle (resp. the closed interval)
which is homeomorphic to the closed interval.

LEMMA 3. If $\hat{J}_{1}$ and $\hat{J}_{2}$ are link projections (resp. tangle projections)
$ related\wedge$ as in Fig. 4-1, $i.e.,\hat{J}_{2}$ is obtained from $\hat{J}_{1}$ by eliminating a part
of $J_{1}$ that is the image of a sub-arc of a circle (resp. a closed interval)
wh,bch is itself a simple closed curve, then LINK $(\hat{J}_{1})\supset LINK(\hat{J}_{2})$ (resp.
TANG $(\hat{J_{1}})\supset TANG(\hat{J}_{2}))$ .

$\backslash $.
$\sim$......

$\backslash .\sim\sim.\sim$

$- 1$

$\hat{J}_{\theta}$

FIGURE 4-1

The proof is clear.

A self-crossing point is a double point of a link projection (resp. a
tangle projection) whose preimage is contained in a circle (resp. a closed
interval). A mutual crossing point is a double point of a link projection
(resp. a tangle projection) which is not a self-crossing point. A component
of a link projection (resp. a tangle projection) is the image of a circle
(resp. a closed interval).

LEMMA 4. Let $T$ be the tangle represented by a tangle diagram $\tilde{T}$

which has the following two properties:
(1) $\tilde{T}$ has no self-crossing points,
(2) there is an ordering of the components of $\tilde{T}$ such that at each

mutual crossing point of $\tilde{T}$, the former component is over the latter
component.

Let $\hat{T}$ be a tangle projection which has the pairwise same end points
as $\tilde{T}$, where “pairwise same” means that the two end points of a com-
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ponent of $\hat{T}$ are the end points of a component of $\tilde{T}$, and vice versa.
Then $\hat{T}$ is a projection of $T$.

This result follows by the descending process specified by the order
in $\tilde{T}$. See Fig. 4-2.

FIGURE 4-2

For points $P_{1}$ and $P_{2}$ on a component $C$ of a tangle projection thal
are not self-crossing points, we denote by $\overline{P_{1}P_{2}}/C$ the image of the sub $\cdot$

arc of the closed interval with end points $P_{1}$ and $P_{2}$ which is containec
in $C$. In the case that the component $C$ is evidently known, we denote
this by $\overline{P_{1}P_{2}}$ . For $\overline{P_{1}P_{2}}$, we denote $by\rightarrow^{P_{1}P_{2}}$ the $over/under$ informationg

of the crossing points of $\overline{P_{1}P_{2}}$ specified by the descending process whicf
starts from $P_{1}$ and ends at $P_{2}$ . For two parts $\overline{P_{1}P_{2}}$ and $\overline{P_{3}P_{4}}$ of a tanglc
projection with $\overline{P_{1}P_{2}}\cap\overline{P_{3}P_{4}}$ composed of finite points, we denote $b$]

$\overline{P_{1}P_{2}}<\overline{P_{3}P_{4}}$ the $over/under$ informations of the crossing points $\overline{(P_{1}P}_{2}\cap\overline{P_{3}P_{4}}$) $-$

$\{P_{1}, P_{2}, P_{3}, P_{4}\}$ specified by the rule that $\overline{P_{3}P}_{4}$ is over $\overline{P_{1}P}_{2}$ . We $abbreviat\langle$

$\rightarrow P_{1}P_{2},$ $\rightarrow^{P_{3}P_{4}}$ and $\overline{P_{1}P_{2}}<\overline{P_{3}P_{4}}to\rightarrow\rightarrow P_{1}P_{2}<P_{3}P_{4}$ .
LEMMA 5. Let $T$ be the tangle in Fig. 4-3. Let $\hat{T}$ be a tangl $($

projection which has the pairwise same end points as T. If there exi$s$

mutual crossing points of $\hat{T}$ , then $\hat{T}$ is a projection of $T$.

$T$

FIGURE 4-3

PROOF. Let us denote the end points of $\hat{T}$ by $P_{1},$ $P_{2},$ $P_{3}$ and $P_{4}$ a



PARTIAL ORDER OF KNOTS 213

in Fig. 4-4. We trace the component $\overline{P_{1}P_{2}}$ of $\hat{T}$ from $P_{1}$ and denote the
first mutual crossing point which we come across by $P_{0}$ . By Lemma 3,
it is sufficient to check the case that $\overline{P_{1}P_{0}}$ is simple. See Fig. 4-4.

$\hat{T}$

FIGURE 4-4

We consider the following two cases according to the sign of $P_{0}$ as
in Fig. 4-5.

We add the following $over/under$ informations to $\hat{T}$ :
Case 1. $\overline{P_{1}P_{2}}$ . $\rightarrow\rightarrow P_{0}P_{2}<P_{3}P_{4}$. $\overline{P_{1}P_{2}}$ is over at $P_{0}$ .

$\rightarrow$ $\rightarrow$ $\rightarrow$

Case 2. $P_{2}P_{1}$ . $P_{2}P_{0}>P_{4}P_{3}$ . $\overline{P_{1}P_{2}}$ is under at $P_{0}$ .
Let $N$ be a sufficiently small regular neighborhood of $\partial D^{2}\cup\overline{P_{1}P_{0}}$ in

$D^{2}$ , and let the disk $D_{0}$ be the closure of $D^{2}-N$. To see that the tangle
obtained above is $T$, we first deform $\overline{P_{0}P_{2}}$ into $ N\times[0,1\exists$ , and then apply
Lemma 4 and its proof to $D_{0}$ to obtain the tangle in Fig. 4-6, which is
$T$ as desired. $\square $

Case 1 Case 2 Case 1 Case 2
FIGURE 4-5 FIGURE 4-6

PROOF OF THEOBEM 2. Let $\hat{K}_{0}$ be the knot projection in Fig. 4-7.
Then

LINK $(\hat{K}_{0})\ominus$ the $(2, p_{1})$-torus knot $\#\cdots\#$ the $(2, p_{n})$-torus knot ,

where $\#$ denotes the connected sum of knots, but the figure eight
knot is not an element of LINK $(\hat{K}_{0})$ . This shows that the condition (2)
is necessary for the condition (1).

Suppose that the knot $K$ satisfies the condition (2). Let $\hat{K}$ be a
reduced projection of $K$. We must show that $\hat{K}$ is a projection of the
figure eight knot. We specify an arbitrary orientation of $\hat{K}$. We choose
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FIGURE 4-7

an arbitrary tear drop disk $\delta$ , the heart disk $\epsilon$ and the crossing point
$P_{0}$ as in the proof of Theorem 1. We trace $\partial\delta$ . from $P_{0}$ in the direction
specified by the orientation of $\hat{K}$, and name the crossing points on $\partial\delta$

$P_{0},$ $P_{1},$ $\cdots$ and $P_{n}$ respectively in the order of their appearance. It is
clear that $n$ is even and $n\geqq 2$ as $\hat{K}$ is reduced. We trace $\hat{K}$ from $P_{0}$ in
the direction specified by the orientation of $\hat{K}$ into the disk $\epsilon$ and rename
the crossing points on $\partial\delta Q_{0}=P_{0},$ $Q_{1},$ $\cdots$ and $Q_{n}$ respectively in the order
of their appearance. We obtain a permutation $(\sigma(1), \sigma(2),$

$\cdots,$
$\sigma(n))$ of

$(1, 2, \cdots, n)$ such that $Q_{i}=P_{\sigma(i)}$ for $i\in\{1,2, \cdots, n\}$ . For $i$ and $j$ with
$0\leqq i<j\leqq n$ or $n\geqq i>j=0$ , we denote by $\overline{Q_{l}Q_{\dot{J}}}$ the image of the sub-arc
of the circle with starting point $Q_{i}$ and terminal point $Q_{j}$ with respect
to the orientation of $\hat{K}$ which has the finite points of intersection with
$\partial\delta$ . See for example Fig. 4-8.

FIGURE 4-8

For $\overline{Q_{i}Q_{j}}$, we denote by $\overline{Q_{i}Q_{j}}$ the $over/under$ informations of the
crossing points of $\overline{Q_{i}Q_{j}}$ specified by the descending process which starts
from $Q_{i}$ and ends at $Q_{j}$ . For the images $M_{1}$ and $M_{2}$ of sub-arcs of the
circle with $M_{1}\cap M_{2}$ composed of finite points, we denote by $M_{1}<M_{2}$

the $over/under$ informations of the crossing points $M_{1}\cap M_{2}$ except their
end points specified by the rule that $M_{2}$ is over $M_{1}$ . We abbreviate
$\overline{Q_{i}Q_{j}},$ $\rightarrow Q_{k}Q_{l}$ and $\overline{Q_{i}Q_{\dot{f}}}<\overline{Q_{k}Q_{l}}$ to $ Q_{i}Q_{j}<Q_{k}Q_{l}\rightarrow\rightarrow$.
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Case 1. There exists an odd number $i$ such that $\sigma(i)>\sigma(i+1)$ .
We add the following $over/under$ informations: $ Q_{0}Q_{i}>\partial\delta>Q_{i}Q_{l+1}>\rightarrow\rightarrow$

$\vec{Q_{i+1}Q_{0}}$ , at $Q_{0},$ $Q_{i}$ and $Q_{i+1}$ as in Fig. 4-9 (a).
We note that $\overline{Q_{i}Q_{i+1}}$ is lying on $\delta$ . Applying Lemma 2 and its proof

to $\overline{Q_{0}Q}_{i}$ and $\overline{Q_{i+1}Q}_{0}$ in the upper and the lower three-balls, and Lemma 4
and its proof to $\overline{Q_{i}Q_{i+1}}$ on $\delta$ , we obtain the figure eight knot as in Fig.
4-9 (b).

(a) (b)

FIGURE 4-9

Case 2. $\sigma(i)<\sigma(i+1)$ for all odd number $i$ , and there exists an even
number $m$ such that $\sigma(m)>\sigma(m+1)$ .

Let $j$ be the least such even number. We further refine on Case 2
as follows.

Case $2a$ . $\sigma(1)<\sigma(j+1)$ . We add the following $over/under$ informations:
$Q_{1}Q_{j}>\partial\delta>\rightarrow\rightarrow\rightarrow\rightarrow Q_{0}Q_{1}>Q_{\dot{f}}Q_{j+1}>Q_{\dot{g}+1}Q_{0}$ , at $Q_{0},$ $Q_{1},$ $Q_{j}$ and $Q_{j+1}$ as in Fig. 4-10 (a).

We note that $\overline{Q_{0}Q_{1}}$ and $\overline{Q_{j}Q_{j+1}}$ are lying on $\epsilon$ . Applying Lemma 2,
Lemma 4 and their proofs, we obtain the figure eight knot as in Fig.
4-10 (b).

(a) (b)

FIGURE 4-10
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Case $2b$ . $\sigma(1)>\sigma(j+1)$ . We note that $\sigma(1)<\sigma(j)$ . We add the fol-
lowing: $\rightarrow\rightarrow Q_{1}Q_{\dot{f}}>\partial\delta>Q_{j}Q_{\dot{g}+1}>\rightarrow\rightarrow Q_{0}Q_{1}>Q_{\dot{g}+1}Q_{0}$ , at $Q_{0},$ $Q_{1},$ $Q_{j}$ and $Q_{j+1}$ as in Fig.
4-11 (a).

We note that $\overline{Q_{0}Q_{1}}$ and $\overline{Q}_{f}\tau_{j+\iota}^{-}$ are lying on $\epsilon$ . Applying Lemma 2,
Lemma 4 and their proofs, we obtain the figure eight knot as in Fig.
4-11 (b).

(a) (b)

FIGURE 4-11

Case 3. $\sigma(i)=i$ for all $i$ . We refine on Case 3 as follows.
Case $3a$ . There are numbers $i$ and $j$ with $0\leqq i<j\leqq n$ such that

$(\overline{Q_{i}Q_{i+1}}\cap\overline{Q_{\dot{f}}Q_{\dot{g}+1}})-\partial\delta\neq\emptyset$ (here we suppose $n+1=0$). In this case, for
the convenience of the proof, we add $over/under$ informations to $\hat{K}$ step
by step.

Step 1. For $k\neq i,$ $j,$ $\overline{Q_{k}Q_{k+1}}>\overline{Q_{i}Q_{i+1}}$ and $\mapsto_{k}Q_{k+1}>\overline{Q_{\dot{f}}Q_{j+1}}$ . For $k\neq i,$ $j$ ,
$m\neq i,$ $j$ with $k<m,$ $ Q_{k}Q_{k+1}>Q_{m}Q_{r\cdot+1}\rightarrow\rightarrow$ .

We deform $ff_{k}\overline{Q_{k+1}}$ into a sufficiently small regular neighborhood of
$\partial\delta$ in $S^{2}$ . See for example, Fig. 4-12 (a) and (b).

(a) (b) (c) (d)

FIGURE 4-12

Step 2. To the crossing points $\overline{Q_{i}Q_{i+1}}\cap\overline{Q_{j}Q_{\dot{g}+1}}-\partial\delta$ , we apply Lemma
5 on $\delta$ or $\epsilon$ to hook them. See, for example, Fig. 4-12 (c) and (d).
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As the projections are on $S^{2}$ , we obtain the form illustrated in Fig.
4-13 (a).

Step 3. Now it is easy to make the figure eight knot by adding
$over/under$ informations to the crossing points on $\partial\delta$ . See Fig. 4-13 (b).

odd (11) $cr$ oss $i$ ngs
–

ev $e\overline{n(\geqq 2)cros}sin\epsilon s\sim$

(a) (b)

FIGURE 4-13

Case $3b$ . $\overline{Q_{i}Q_{i+1}}\cap\overline{Q_{j}Q_{j+1}}-\partial\delta=\emptyset$ for every $i\neq j,$ $(n+1=0)$ . In this
case, we can decompose the knot $K$ as follows:

$K=the(2, m)$-torus knot $\# K_{0}\# K_{1}\#\cdots\# K_{n}$ ,

where $m\leqq n+1$ and $K_{i}$ is the knot which corresponds to $\overline{Q_{i}Q_{i+1}}$. By
the uniqueness of the prime decomposition of knots [4], some $K_{i}$ must
satisfy the condition (2). Therefore the result follows by the induction
on the crossing number of $\hat{K}$ . $\square $

\S 5. Proof of Theorem 3.

LEMMA 6. Let $T_{1}$ and $T_{2}$ be the tangles in Fig. 5-1 which have the
pairwise same end points each other. Let $\hat{T}$ be a tangle projection
which has the pairwise same end points as $T_{1}$ . If there exist at least

$T_{1}$ $T_{a}$

FIGURE 5-1
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three mutual crossing points of $\hat{T}$ , then at least one of the following
holds:

(1) $\hat{T}$ is a projection of $T_{1}$ .
(2) $\hat{T}$ is a projection of $T_{2}$ .
PROOF. Let us denote the end points of $\hat{T}$ by $P_{1},$ $P_{2},$ $P_{\epsilon}$ and $P_{4}$ as

in Fig. 5-2 (a). We trace the component $\overline{P_{1}P}_{2}$ from $P_{1}$ and denote the
first and the second mutual crossing points which we come across by $P_{f}$

and $P_{6}$ respectively. By Lemma 3, we may suppose that both $\overline{P_{1}P_{f}}$ and
$\overline{P_{6}P_{6}}/\overline{P_{1}P_{2}}$ are simple. Then $\overline{P_{1}P_{6}}$ is also simple, otherwise it contradicts
the choice of $P_{f}$ and $P_{6}$ . See Fig. $5\cdot 2(b)$ .

(a) (b)
FIGURE 5-2

Let us denote the sign of $P_{6}$ and $P_{6}$ as in Fig. 5-3.

$P_{1}$ $P_{3}$
$P_{1}$ $P_{4}$

$\backslash .\cdot.’=^{=^{\prime}}\backslash \backslash \times P_{1}\prime^{\prime^{\prime}}...$

’

$\backslash ’=^{=}\times_{\backslash }^{\prime^{\prime^{\prime^{\prime^{\prime}}}}}P_{1}.\backslash $

.
$P_{4}$ $P_{9}$

$p_{\epsilon}$ $P_{a}$

sign$(P_{i})=+1$ $8ign(P_{l})=-1$

FIGURE 5-3

We consider the following eight cases.
Case 1. sign$(P_{6})=sign(P_{6})=+1$ and $\overline{P_{3}P_{6}}\subset\overline{P_{\theta}P_{6}}$ .
Case 2. sign$(P_{6})=sign(P_{6})=+1$ and $P_{\epsilon}P_{6}\supset\overline{P_{s}P_{6}}$.
Case 3. sign$(P_{f})=+1,$ $sign(P_{6})=-1$ and $P_{s}P_{f}\subset\overline{P_{3}P_{6}}$ .
Case 4. sign$(P_{6})=+1,$ $sign(P_{6})=-1$ and $\overline{P_{S}P_{6}}\supset\overline{P_{8}P_{6}}$ .
Case 5. sign$(P_{6})=-1,$ $sign(P_{6})=+1$ and $P_{8}P_{6}\subset\overline{P_{s}P_{6}}$ .
Case 6. sign$(P_{6})=-1,$ $sign(P_{6})=+1$ and $\overline{P_{3}P_{6}}\supset\overline{P_{3}P_{6}}$ .
Case 7. sign$(P_{6})=sign(P_{6})=-1$ and $\overline{P_{3}P_{f}}\subset\overline{P_{3}P_{6}}$ .
Case 8. sign$(P_{f})=sign(P_{6})=-1$ and $\overline{P_{3}P_{f}}\supset\overline{P_{3}P_{6}}$ .
We add $over/under$ informations as follows:
Case 1. $\rightarrow P_{6}P_{2}>\rightarrow P_{1}P_{6}>\rightarrow P_{3}P_{f}>\rightarrow\rightarrow P_{6}P_{4}>P_{6}P_{6}/\overline{P_{3}P_{4}}$. $\overline{P_{3}P_{4}}$ is over $\overline{P_{1}P_{2}}$ at $P_{6}$
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and $P_{6}$ .
Case 3 and Case 7. $\rightarrow P_{a}P_{4}>\rightarrow P_{6}P_{2}$. $ P_{1}P_{2}\rightarrow$. $\overline{Pff_{4}}$ is over $\overline{P_{1}P_{2}}atP_{f}$ . $\overline{P_{1}P_{2}}$

is over $\overline{P_{3}P_{4}}$ at $P_{6}$ .
Case 5. $\rightarrow\rightarrow P_{3}P_{4}>P_{6}P_{2}$. $ P_{1}P_{2}\rightarrow$. $\overline{P_{1}P_{2}}$ is over $\overline{P_{s}P_{4}}$ at $P_{6}$ . $\overline{P_{\epsilon}P_{4}}$ is over $\overline{P_{1}P_{2}}$

at $P_{6}$ .
We note that Case 2, Case 4, Case 6 and Case 8 are reversals of

Case 1, Case 3, Case 5 and Case 7 respectively with respect to the roles
of $P_{3}$ and $P_{4}$ . Hence the additions of $over/under$ informations are similar.
Then we obtain the tangle $T_{1}$ or $T_{2}$ as in Fig. 5-4. $\square $

Case 1 Case 2

Case 3 Case 4

Case 5 Case 6

Case 7 Case 8
FIGURE 5-4

PROOF OF THEOREA 3. The proof of the necessity of the condition
(2) for the condition (1) is similar to that of Theorem 2.
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We show the sufficiency. Suppose that the knot $K$ satisfies the
condition (2). Let $\hat{K}$ be a reduced projection of $K$. We specify an
arbitrary orientation of $\hat{K}$ and choose an arbitrary tear drop disk $\delta$ .
We adopt the same notations as in the proof of Theorem 2.

Case 1. There exists an even number $i$ such that $\sigma(i)>\sigma(i+1)$ .
We add $over/under$ informations to make the three-twist knot as

follows: $ Q_{0}Q_{i}>\partial\delta>Q_{i}Q_{\ell+1}>Q_{i+1}Q_{0}\rightarrow\rightarrow\rightarrow$ , at $Q_{0},$ $Q_{l}$ and $Q_{i+1}$ as in Fig. 5-5.

FIGURE 5-5

Case 2. $\sigma(i)<\sigma(i+1)$ for all even number $i$ , and there exists an odd
number $m$ such that $\sigma(m)>\sigma(m+1)$ .

Let $j$ be the least such odd number. We refine on Case 2 as follows.
Case $2a$ . $j+1<n$ and $\sigma(j+2)<\sigma(j)$ . We add $over/under$ informations

to make the three-twist knot as follows: $\rightarrow\rightarrow\rightarrow Q_{0}Q_{j}>\partial\delta>Q_{\dot{f}}Q_{\dot{g}+1}>Q_{\dot{g}+1}Q_{\dot{g}+2}>$

$ Q_{j+2}Q_{0}\rightarrow$ , at $Q_{0},$ $Q_{j},$ $Q_{j+1}$ and $Q_{j+2}$ as in Fig. 5-6.

FIGURE 5-6

Case $2b$ . $j+1<n$ and $\sigma(j+2)>\sigma(j)$ . We add $over/under$ informations
to make the three-twist knot as follows: $\partial\delta>Q_{j}Q_{\dot{g}+1}>\rightarrow\rightarrow\rightarrow Q_{\dot{g}+1}Q_{j+2}>Q_{0}Q_{\dot{f}}>$

$ Q_{\dot{g}+2}Q_{0}\rightarrow$ , at $Q_{0},$ $Q_{j},$ $Q_{\dot{g}+1}$ and $Q_{j+2}$ as in Fig. 5-7. We note that we can
deform $\overline{Q_{0}Q_{\dot{f}}}$ after deforming $\tau_{J+}\pi$ as in Fig. 5-7.
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FIGURS 5-7

Case $2c$ . $j+1=n,$ $j\geqq 3$ and $\sigma(j-1)>\sigma(j+1)$ .
Case $2d$ . $j+1=n,$ $j\geqq 3$ and $\sigma(j-1)<\sigma(j+1)$ .
Case $2c$ and Case $2d$ are the reversals of Case $2a$ and Case $2b$ re-

spectively. Hence the proof is similar. See Fig. 5-8.

Case $2c$ Case $2d$

FIGURE 5-8

Case $2e$ . $j=1,$ $n=2$ and $\overline{Q_{0}Q}_{1}\cap\overline{Q_{2}Q}_{0}$ has at least four points. We
apply Lemma 6 to $\overline{Q_{0}Q_{1}}\cup\overline{Q_{2}Q_{0}}$ on $\epsilon$ to obtain the three-twist knot as in
Fig. 5-9.

$<$
$or$

$<$
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Case $2f$ . $j=1,$ $n=2$ and $\overline{Q_{0}Q_{1}}\cap\overline{Q_{2}Q_{0}}$ consists of two points. In this
case, we can decompose the knot $K$ as follows: $K=K’\# K_{0}\# K_{1}\# K_{2}$ , where
$K^{\prime}$ is the trivial, the trefoil or the figure eight knot, and $K_{i}$ is the
knot which corresponds to $\overline{Q_{i}Q_{i+1}}(2+1=0)$ . Hence the result follows by
the induction on the crossing number of $\hat{K}$.

Case 3. $\sigma(i)=i$ for all $i$ .
In this case, the proof goes like the proof of Theorem 2. We note

that we can produce the three-twist knot from the form illustrated in
Fig. 4-13 (a). $\square $

\S 6. Proof of Theorem 4.

We say that a link (resp. a tangle) projection $\hat{J}$ is prime if every
simple closed curve on $S^{2}$ (resp. on the interior of $D^{2}$) which intersects
with $\hat{J}$ transversally at two points bounds a trivial ball pair $(B^{2}, B^{1})$ .

Let $\hat{T}_{n}$ be the tangle projection in Fig. 6-1 for each non-negative
integer $n$ .

$\hat{T}_{n}$

FIGURE 6-1

LEMMA 7. Let $T$ be the tangle in Fig. 6-2. Let $\hat{T}$ be a prime tangle
projection which has the pairwise same end points as T. If $\hat{T}$ is not
ambient isotopic $rel$ . $\partial D^{2}$ to any of the tangle projections $\hat{T}_{n}$ , then $\hat{T}$

is a projection of $T$.

FIGURE 6-2

PROOF. In the case that one of the component of $\hat{T}$ has no self-
crossing points, the proof is similar to that of Theorem 2. We consider
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the case that both components have self-crossing points. In this case
we first simplify a component of $\hat{T}$ , and obtain a new tangle projection
$\hat{T}$ ‘. By Lemma 3, it holds that TANG $(\hat{T})\supset TANG(\hat{T}$ ‘ $)$ . Therefore it is
sufficient to check the case that $\hat{T}$ ’ is of the form as illustrated in Fig. 6-3,
where $ t_{i}\wedge$ is a sub-tangle projection. By assumption some $ t_{i}\wedge$ must have

$FlGURE6-3$

self-crossing points. As $\hat{T}$ is prime, there exists an eliminated part of
$\hat{T}$ which intersects with $ t_{i}\wedge$ . Then it is in any case straightforward to
make the tangle $T$ from $\hat{T}$ by careful determination of $over/under$ in-
formations. See for example, Fig. 6-4. $\square $

FIGURE 6-4

LEMMA 8. Let $T$ be the tangle in Fig. 6-5. Let $\hat{T}$ be a prime tangle
projection which has the pairwise same end points as T. If $\hat{T}$ is not
ambient isotopic $rel$ . $\partial D^{2}$ to any of the tangle projections $\hat{T}_{n}$ in Fig. 6-1,
then $\hat{T}$ is a projection of $T$.

FIGURE 6-5
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The proof is similar to that of Lemma 7.

PROOF OF THEOREM 4. Let $\hat{L}(p_{1}, p_{2}, p_{3})$ be the knot projection in
Fig. 6-6 for each triple of non-negative odd numbers $p_{1},$ $p_{2}$ and $p_{3}$ .
Then it is easily checked that LINK $(\hat{L}(p_{1}, p_{2}, p_{3}))\partial$ the $(2, 5)$-torus knot.
This shows the necessity of the condition (2) for the condition (1).

FIGURE 6-6

In order to show the converse, we show the following assertion.

ASSERTION. Let $\hat{K}$ be a reduced prime knot projection. If
LINK $(\hat{K})\not\supset the$ $(2, 5)$-torus knot, then $\hat{K}$ is one of the knot projections in
Fig. 6-7 (a) or (b), where $p_{1},$ $p_{2}$ and $p_{\theta}$ are non-negative odd numbers
and $q_{1}$ and $q_{2}$ are non-negative even numbers.

(a) (b)

FIGURE 6-7

It is easily seen that the knots which have these projections are
the pretzel knots $L(\gamma_{1}r_{2}, r_{3})$ with $r_{i}$ odd numbers where $|r_{i}|\leqq p_{i}$ for
$i=1,2,3$ , or $|r_{1}|\leqq q_{1}+1,$ $|r_{2}|\leqq q_{2}+1$ and $|r_{3}|=1$ .
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Now let us prove the assertion. Let $\hat{K}$ be a reduced prime knot
proiection. We choose a tear drop disk $\delta$ and adopt the same notations
as in the proofs of the previous theorems, particularly the permutation
$\sigma(i)$ of $ie\{1,2, \cdots, n\}$ . For the convenience, we take a sufficiently
small $\epsilon$-neighbourhood of the point $P_{0}=Q_{0}$ on $S^{2}$ and look at the com-
plementary tangle projection $\hat{T}$ . See Fig. 6-8.

FIGURE 6-8

We list up the cases in which TANG $(\hat{T})\ni T_{1}$ , where $T_{1}$ is the tangle
in Fig. 6-9. We note that if TANG $(\hat{T})\ni T_{1}$ , then LINK$(\hat{K})\ni the(2,5)-$

torus knot.

FIGURE 6-9

Case 1. There exists an even number $i$ such that $\sigma(i)<\sigma(i+1)$ . See
Fig. 6-10.

FIGURE 6-10

Case 2. There exist odd numbers $i$ and $j$ with $i<i$ such that $\sigma(i)<$
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$\sigma(j)<\sigma(j-1)<\cdots<\sigma(i+2)<\sigma(i+1)$ , and $\sigma(j)<\sigma(j+1)$ . See Fig. 6-11.

FIGURE 6-11

Case 3. There exist odd numbers $i$ and $j$ with $i<js\overline{uch}$that
$\sigma(j+1)<\sigma(i)<\sigma(j)<\sigma(j-1)<\cdots<\sigma(i+2)<\sigma(i+1)$ . See Fig. 6-12.

FIGURE 6-12

Case 4. There exist odd numbers $i$ and $i$ with $i<i$ 8uch that $\sigma(j)<$

$\sigma(i)<\sigma(j-1)<\cdots<\sigma(i+2)<\sigma(i+1)$ , and $\sigma(i)<\sigma(i-1)<\sigma(i-2)<\cdots<$

$\sigma(2)<\sigma(1)<\sigma(i+1)$ . See Fig. 6-13.

FIGURE 6-13

Case 5. There exist odd numbers $i,$ $j$ and $k$ with $1<k<i<j$ such
that $\sigma(j)<\sigma(i)<\sigma(j-1)<\cdots<\sigma(i+2)<\sigma(i+1)$ , and $\sigma(i)<\sigma(i-1)<\cdots<$

$\sigma(k+1)<\sigma(k)<\sigma(i+1)<\sigma(k-1)$ . See Fig. 6-14.

FIGURE 6-14
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Case 6. There exists an odd number $i$ such that $\sigma(i)<\sigma(n)<\sigma(1)<$

$\sigma(i+1)$ . See Fig. 6-15.

FIGURE 6-15

From the cases mentioned above, it follows that if TANG $(\hat{T})\not\supset T_{1}$ ,
then one of the following two cases holds:

Case 7. There exists an odd number $i$ such that $a(i)<\sigma(i-1)<\cdots<$

$\sigma(2)<\sigma(1)<\sigma(n)<\sigma(n-1)<\cdots<\sigma(i+2)<\sigma(i+1)$ . See Fig. 6-16 (a).
Case 8. $\sigma(n)<\sigma(n-1)<\cdots<\sigma(2)<\sigma(1)$ . See Fig. 6-16 (b).

(a) (b)

FIGURE 6-16

In these cases, if there exist numbers $i\neq j\in\{0,1, \cdots, n\}$ with
$\{i, j\}\neq\{0, n\}$ such that $\overline{Q_{i}Q_{i+1}}\cap\overline{Q_{j}Q_{j+1}}\neq\emptyset$ , then an application of Lemma
5 ensures us that TANG $(\hat{T})\ni T_{1}$ . See for example Fig. 6-17.

FIGURE 6-17

For the rest of the cases, the applications of Lemma 7 and Lemma
8 to the sub-tangles $u$ in Fig. 6-18 establish the assertion since the
tangles $T_{2}$ and $T_{3}$ in Fig. 6-19 can produce the $(2, 5)$-torus knot as in
Fig. 6-20. $\square $
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FIGURE 6-18

FIGURE 6-19

FIGURE 6-20

\S 7. Remarks and questions.

REMARK 1. For $\mu\geqq 2$ , the pair $(\mathfrak{L}^{\mu}, \leqq)$ is not a partially ordered set
For example, let $L_{1}$ be the two-component split link of two right

handed trefoil knots, and $L_{2}$ be the two-component split link of th $($

right- and left-handed trefoil knots. Then $L_{1}\neq L_{2}$ , but PROJ $(L_{1})=$

$PROJ(L_{2})$ . Hence $L_{1}\leqq L_{2}$ and $L_{I}\geqq L_{2}$ .
REMARK 2. In contrast to the example in Remark 1, the $followin\{$

hold: the square knot $\not\leqq$ the granny knot, and the square knot $\not\geqq th($

granny knot.
To see this, let $\hat{K}_{1}$ and $\hat{K}_{2}$ be the knot projections in Fig. 7-1. The]

we can check the following:

LINK $(\hat{K}_{1})=$ {$0_{1},3_{1},4_{1},5_{1},5_{2},6_{3}$ , the square knot, $8_{18},8_{20}$} $\not\supset$ the granny knot,

LINK $(\hat{K}_{2})=\{0_{1},3_{\iota},$ $4_{1},5_{1},5_{2},6_{1},6_{2}$ , the granny knot, $7_{7},8_{19},8_{21},9_{40},9_{42},9_{46},9_{4^{\prime}}$

$\not\supset$ the square knot.
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QUESTION 1. Is the pair $(\mathfrak{L}^{1}, \leqq)$ a partially ordered set?
This question is equivalent to the following:
Is the function $K\mapsto PROJ(K)$ a complete knot invariant?
QUESTION 2. Does it hold that $K_{1}\# K_{2}\geqq K_{1}$ for $K_{1},$ $K_{2}\in \mathfrak{L}^{1}$?
QUESTION 3. Let $K_{1}$ be a satelite knot with a companion knot $K_{2}$ .

Does it hold that $K_{1}\geqq K_{2}$?
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