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§0. Introduction.

This paper is devoted to the study of Buchsbaum property in terms
of certain spectral sequences and the application of this method to the

investigation of Buchsbaum conditions for the Segre product of graded

modules. In their paper [4], Goto and Watanabe showed the homogeneous
version of Kiinneth’s formula. This gives Cohen-Macaulay condition of
the Segre product of graded modules. On the other hand, some sufficient
conditions that the Segre product of graded modules have Buchsbaum
property has been obtained by Stiickrad and Vogel [15], and Schenzel
[10]. The difficulty of seeking better sufficient conditions is caused by
the difference between Buchsbaum property and quasi-Buchsbaum property.
In other words, Buchsbaum property is not completely described in terms
of local ecohomology group without derived category. Our method is to
describe Buchsbaum property in terms of spectral sequence. This approach
leads to the three theorems in the end of this section.

In Section 1, we introduce the notion of r-Buchsbaum modules. In
(1.8) and (1.11), we give a criterion of r-Buchsbaum property from the
viewpoint of spectral sequence. As their corollaries, we have some in-
equalities concerning extension groups.

Section 2 is the homogeneous version of Section 1. The results of
this section are applied in the later sections. Theorems 2.2 and 2.3 are
the main theorems of this section. In (2.6) these give another proof of
Stiickrad and Vogel [16, Proposition 8.10]. Also, the theorems give how to
calculate the dimension of some extension groups, for example, in (2.9).

Section 8 is, in some sense, an introduction to Section 4. In this
section, we investigate some examples. In fact, the study of Example
3.4 gives the motivation to obtain our main theorems.
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The proofs of Theorems A, B and C appear in Section 4. In this
section, we make use of the notations of Goto and Watanabe [4, Chapter
4]. Let R=@,., R; and S=@,z, S; be finitely generated graded algebras
over an infinite field k=R,=S,. We call such algebras, simply, graded
rings over k. We always assume that each algebra is generated by R,
or S, respectively, that is, R=k[R,] and S=k[S,]. For a graded ring R,
its homogeneous maximal ideal is represented by m,, or often simply by
m. For a graded R-module M and a graded S-module N, we define
MEN=P,;c; (M; R, N;) and call this module the Segre product of M and
N. In particular, R4S is a graded ring over %k and is called the Segre
product of R and S. We consider M#N as a graded R#S-module.

The following are our main theorems:

THEOREM A. Let R and S be graded rings over an infinite field k.
Let M be a finitely gemerated graded R-module with dim M=m=2 and
N a finitely generated graded S-module with dim N=n=2. Suppose that
M and N are Cohen-Macaulay modules. Then the following conditions
are equivalent:

(@) M#N s a Buchsbaum (R%S)-module.

(b) M#N 1is a quasi-Buchsbaum (R#%S)-module.

() Mp(M#H, (N)=0 and mu(Hm™ (M)$N)=0.

THEOREM B. Let R and S be graded rings over an infinite field k.
Let M be a finitely generated graded R-module with dim M=m=2 and
N a finitely gemerated graded S-module with dim N=n=2. Suppose that
M 1s a Cohen-Macaulay module and N is a Buchsbaum wmodule with
depth N=2.

If M3H;(N)=0 and Hy (M)$¥N=0, then M$N s a Buchsbaum
module.

THEOREM C. Let R and S be graded rings over an infinite field k.
Let M be a finitely generated graded R-module with dim M=m=2 and
N a finitely generated graded S-module with dim N=n=2. Suppose that
M is a Cohen-Macaulay module and N is a Buchsbaum module with
2<depth N<n. Let | be an integer with l<n. If there is a subsystem
of parameters x,,---, 2, in R, for M satisfying that x, --- x(Hu,(M);)#0
and H, (N);#0 for some d, then M%N is not a Buchsbaum module.

§1. r-Buchsbaum modules.

Let (A, m) be a local ring with residue field k. Let us assume k is
an infinite field. Let M be a finitely generated A-module of dimension d.
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DEFINITION 1.1. (a) The A-module M is a Buchsbaum module if the
difference I, (M/qM)—e, (M) is an invariant for any parameter ideal q of
M, where I, respectively e, denotes length, respectively multiplicity of q.

(b) The A-module M is a quasi-Buchsbaum module if mH i (M)=0 for
every 0=1=d.

DEFINITION 1.2. The A-module M is an r-Buchsbaum module if, for
every system f,, .-, f; of parameters for M, M/(f,, ---, f)M is a quasi-
Buchsbaum module for 01 r—1.

REMARK 1.3. (a) The A-module M is a 1-Buchsbaum module if and
only if M is a quasi-Buchsbaum module.

(b) The A-module M is a d-Buchsbaum module if and only if M is
a Buchsbaum module. (See Stuickrad-Vogel [13].)

(¢) In (1.2), we have only to take elements f;, -+, f, in m\m® as a
system of parameters for M. (See Suzuki [17, Theorem 3.6].)

Now let us take a minimal generator z,, ---, z, of m satisfying that,
for every 1<, <-+- <%4;,=<m, «,, ***, &, is a system of parameters for M.
This can be done because k is an infinite field.

Let V, be an open set D(x,) for 1<i=<n in U= SpecA {m}. Then
N={V z.<. is an open covering of U. Let C° be the Cech complex

C'(; M) of M. Then we will consider the complex L'=(0—M —>C[ 1)),
where L:=C‘! for 1+#0, L°=M and ¢ is the natural map. What is im-
portant here is that HY(L)=H:M) for every 1.

In this way, we have the double complex C"=Hom,(K, L), where
K is the Koszul complex K ((x, ---, 2,); A) and C»*=Hom/(K,, L?). We
write its differentials as d'»?: C»*— C?**?, and d": C*?—C??*"'. Then we
take two filtrations 'F,(C")=3,:.C?? and "F,(C")=23,2,C?"? The filtra-
tions 'F, and "F, give spectral sequences {"E?f?} and {"E#°} respectively:

'Epi=Kerd"»Im d"»™* \

H>*(C") .
"Ef*=Ker d'”Imd* ™ / ©

Now let (e, --, e*> be the basis of K,((x, +--, 2,); A). Since C?'=
L* @4 N? (@i, Ae}), we have
(1.4) 'Bpo=HIM®. N(D Aet ) -

If A is regular, then the Koszul complex K ((x, **-, ,); A) is a free

resolution of the residue field k. Hence we have "E’ o =Exp4(k, M) and
"E??=0 for ¢>0. This implies that H**(C"")=Exp%*‘(k, M). From now
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on we treat in most cases the first filtration and write E?? for 'E?“.

The spectral sequence {E??% does not depend on the choice of minimal
generators «,, - -+, x, of m.

REMARK 1.5. Let I' be a complex which is quasi-isomorphic to L'.
Then the spectral sequence {F?? d? obtained from the double complex
Hom, (K, I') with first filtration is isomorphic to the spectral sequence
{E?r1, d29.

In fact, let a: I'—L" be a morphism of complexes. The map «
induces a homomorphism a?% F??— E?? for every p, q, and r such that
i d2 =2 % g24,  Assume that a is a quasi-isomorphism. Then
the map a?% F??—E?? is an isomorphism for every » and ¢ because
K,=N*(Pr-, Ae¥) is a free A-module. By induction, we see that
al?: FP*— E?? is an isomorphism for p, q, and 7.

By (1.4), we see that E?'=H(M)R, N*(Pp-, Aef¥) and
d?(zRex N - - - Ae;‘;):i x;2Qef NefN - -+ Nei, for ze HY(M) .
i=1

Hence we have the following:

PROPOSITION 1.6. Let M be a finitely generated A-module of dimen-
sion d. Let {E??} be the spectral sequence associated to the A-module M.
‘Then the following conditions are equivalent:

(@) M is a quasi-Buchsbaum A-module.

(b) dy: EP*— EP*™ 45 a zero map for every p and q (<d).

(e) dY: EY*— EP? is a zero map for every q (<d).

Now suppose that M is a quasi-Buchsbaum module. Setting M=
M/x;M, we have the following exact sequence:
0 — [0: ;] — M- M —— T ——0 .

Since HI([0: 2;],)=0 for ¢=1 and M is a quasi-Buchsbaum module, we
have the following short exact sequence:

0 — HI (M) — Hi (M) — H{M)—0

for 1=¢=<d. Thus we have the following commutative diagram with
exact rows:

0 —> Hi (M) —> Hi (M) —— H{(M) —> 0
(1.7.1) s o ¥ @ #|

0 — Hi (M) -2 Ha-3(3) — Hy(M)—
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for 1<q<d, where ¢, ¢' and + are the mappings induced by the multi-
plication of «, (1#7). Since M is a quasi-Buchsbaum module, ¢ and ¢’
are zero maps. By snake lemma, we get an A-homomorphism «: Hi(M)—
H (M) such that Boyroa=q+. Note that the conditions 4=0 and ¥=0
are equivalent. Let us write ¢ =(x,®=;. Thus we see that M is a
quasi-Buchsbaum module if and only if (x,Qx;) is a zero map for every
2. In other words, M/x,M is a quasi-Buchsbaum module for every 1<:<mn
if and only if (x,Qz;) is a zero map for every 7 and j.

Next assume that, for any I<r—1, M/(x,, -, )M is a quasi-
Buchsbaum module for every 1<1,<.--<%,=n. We will define a homo-
morphism (x;): HY(M)— H"**(M) for r—1=<q9<d, where (x,)=(x;&X---
Xw;,). When r=2, it has been already done. When r>2, the hypothesis
of induction gives the following diagram with exact rows:

0 —s HI (M) — HIYM) — HI(M) — 0

(1.7.2) (wz)l (xz)l (xz)l
00— Hu‘{"""l(M) _LHg—rﬂ(M)__,Hg—Mz(M)____,O

for r—1=<q9<d, where #I=r—1. If the diagram commutes, we can get
a homomorphism (x;)=(x,QRx;): H(M)— HZ " (M) by snake lemma. What
we have to show is that the diagram (1.7.2) is commutative. Now set
I=I—{i}. Let N=M/c,M and N=N/x,N. Then we have a diagram
(1.7.3) such that each row sequence and each column one are exact,
where the broken arrows represent (x:)’s. Here the commutativity of
the diagram (1.7.8) together with the broken arrows follows from the
hypothesis of induction. Note that three left broken arrows and three
right ones in (1.7.83) are zero maps. This gives the maps of snake
lemma H (M) — H (M), HI (M) — H (M), and HI(M)— HI"*(M).
These maps are the column maps (x,) in (1.7.2). Thus the diagram
(1.7.2) commutes. By the diagram (1.7.2), we have, moreover, that
(a,): HY(M)— Hg"*Y(M) is a zero map if and only if (x,): H{(M)—
HI (M) is a zero map. Hence we see that M is an 7r-Buchsbaum
module if and only if (x;): HI(M)— H*"(M) is a zero map for s=r,
r—1=<q9<d and #J=s. Summarizing the preceding argument, we have
the following:

THEOREM 1.8. Let (A, m) be a local ring with an infinite residue
field k. Let M be a minimal generator of m satisfying that, for every
16, <+ <4y=n, 2, -+, &, is a system of parameters for M. Suppose
that, for any 1<r—1, M/(x,, -, x,)M is a quasi-Buchsbaum module for

.
1?
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(1.7.8) 0 0 0
0 0 0
\ ]
0—|——HI *(M)~|——H:*(N)-|——H (M) —0

0 — H:-:+1(M) —_— Hg—:+1(N) —_— H:—rg+z(M) — 0
0—|——H (M)-|—H{(N)-——H (M) —> 0
00— H:—:+1(M) —_ H:-:+1(N) —_— H:—:-{-Z(M‘) —_0

\ y
0—|——H (M)~ ——HE(N)-|——HM) — 0

z"' \ z'/ \ z'/
0 —) Hg—r+2(M) T_) H’q'—r+2(N) _1_’ Hg—r+3(M) _T 0

0 0 0

0 0 0

every 151, <+ <4,=n. Then
()=, Q- - Qw,): HIM)— HI ™M)

1s well-defined.

Furthermore, M/(x,, -+, x,_)M is a quasi-Buchsbaum module for
every 1=1,<-+-<%,_,=n if and only if (x;) defined as above is a zero
map for every subset I={z, +--,1,} of {1, +--, n}.

LEMMA 1.9. Let M be a finitely generated A-module with dimension
d. Suppose that, for any l<r—1, M/(x,, ---, 2, )M 13 a quasi-Buchsbaum
module for every 1=1,<---<t,=n. Then we have

(1) E'=HIM)Q. N(Di-, Aef) for any q+d.
By (1), we can write (d2%),; g HA(M)— HZ (M) for the map from e%-
component to ey Net-component of the map d2°. Then we have

(2) @29, x=(=1)r"0w*e=n (g where (x;) is the map defined in (1.8).

Proor. We will show the lemma by induction on . When r=1,
(1) follows from (1.4). Next, if both (1) and (2) hold for »r<s—1, then
we see that (1) holds for r=s by (1.8).
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Now let us assume that (1) holds for »<s and (2) for r<s—1. Let
us consider the double complex C' associated to M and the double complex
C" associated to M=M/x,M. Then we have the following diagram with
exact rows for 1=<¢<d:

O —_— prq_l ———— CP,Q"I _?__,) C’pﬂ"l PSS 0

(1.10) J 1 l

0— C»* 2 Crt — CP1—0,

where the column maps are d’’»**’s. Now recall that

Cf’"’=(@qu...,iq)®A AP ke}l Ae}:) , 5”’“:(@]@”1...%)@4/\”(@ Ae;‘f) ’

and the maps d”7"?! are the natural map. In (1.7.2), for Z € HI(M), we
take 7€ HYM) such that a(y)=Z. Precisely describing the map a in
(1.10), we have y e C??*' such that u(y)=% and d”’(y)=v(z). Here z=
ZQe% in C*? and y=§Re% in C**!, where ef=ei A---Aef for some fixed
1<k, <+ <k,=n. Since d"d'(y)=—d'd"(y)= —d'v(z)= —vd'(z) =0, we have
d'(y) is a cycle of C?**»?!, In particular, regarding y as an element of

p+hel we see that d2r1 (y)=d2i"(%). By the hypothesis of induction,
we have

(dgi_i’q—l)I,K(g) p— ( — 1)(1‘-—2) (p+q—'r+1)(XI)(g) .

I;Iere we should remark that d”?* ' is the composition of the map of
Cech resolution and (—1)**-multiplication. Thus we have (d%'%); x(Z)=
(—=1)?*(detr ), (F)=(—1)v@*+en(X)(Z). Hence the assertion is proved.

THEOREM 1.11. Let (4, m) be a local ring with an infinite residue
field k. Let M be a finitely generated A-module of dimension d. Suppose
that M is an (r—1)-Buchsbaum module. Then the following conditions
are equivalent:

(a) M is an r-Buchsbaum A-module.

(b) dz9: Er*— EPte1* 45 q zero map for s=r and g<d.

(¢) dy: E¥*— E*"** 438 a zero map for s<r and g<d.

Proor. It follows immediately from (1.8) and (1.9).

COROLLARY 1.12. Let (4, m) be a local ring with an infinite residue
field k. Let M be a finitely generated A-module of dimension d. Let
X, -+, %, be @ minimal generator of m satisfying that, for every 1=
< <=M, B, cc 0, T, 18 o system of parameters for M. Then M s
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an r-Buchsbaum module if and only if, for any Il<r—1, M/(x,, - -+, )M
18 a quasi-Buchsbaum module for every 1=1,<--- <,,=n.

Proor. It follows immediately from (1.8), (1.9), and (1.11).

REMARK 1.13. Under the above conditions, assume that M is an
(r—1)-Buchsbaum module. Even without the assumption that, for every
1=4,<---<4=m, @, -+, v, is a system of parameters for M, the map

(@)=, Q- - Q) : HI(M)— HI (M)
is well-defined by (1.9), (1.11), and (1.12).

COROLLARY 1.14. Let (A, m) be a regular local ring of dimension
n with an infinite residue field k. Let M be a finitely generated A-
module of dimension d. Assume that M, is Cohen-Macaulay for every
prime ideal p (#m) of A. Then

dim Expth, 203 (" Jucaon)

Jor 0=p<d.
Furthermore, equality holds for 0=<p=r if M is an (r+1)-Buchsbaum
module.

ProoF. The spectral sequence {E??} associated to M converges to
{Exti™(k, M)}. Since E??'= HIM)Qi N (Di-, Aef), we see [, (EFr)=
(Z)ZA(H,;',(M ). Thus the inequality is proved. Further, in case M is an
(r+1)-Buchsbaum module, by (1.11), the equality holds.

COROLLARY 1.15. Under the above conditions, let I be an ideal of A.
Assume that A/I is a Buchsbaum ring of dimension d. Then

LExtiCh, AID)S 3 (" NUHAID) + K

where p(K,.;) is the number of minimal generators of the camonical
module K,,; of A/I. If, furthermore, A contains a field, then

n n .
LExtiG, ATV, (" JEiAD)+1.
=\g—
PrROOF. Let us consider the spectral sequence {E?:?} associated to the

A-module A/I. We see that E%¢=[0: m]Hg‘(A,. By local duality, we have
EY*=Hom (K,,;/mK,,;, k), where K,,=Ext:"%(A/I, A). Thus the former



GRADED BUCHSBAUM ALGEBRAS 9

inequality holds. On the other hand, since Exté,,(k, A/I)— HZ(A/I) is not
a zero map by Hochster [8], we see E%%=£0. Hence the latter inequality
holds.

§2. Graded r-Buchsbaum modules.

Let R=Fk[x, ---, 2,] be a graded ring over an infinite field %, where
z;€R, (i=1, ---,a). Let us write m for the graded maximal ideal
R,=@quz; Ri= (2}, +++, x,). Let M be a finitely generated graded R-module
of dimension m.

DEFINITION 2.1. The graded R-module M is a graded »-Buchsbaum
module if, for every homogeneous system Ji +++, fm of parameters in R,
for M, M/(f,, «--, fOM is a quasi-Buchsbaum module for 0=i=r-—1.

Parallel to §1, first, let us define the double complex C”. Let U=
{D.(x)}i-i,..... be an affine open covering of ProjR. Let L'=0->M=>
(Baez C'(; M(d))[—1]), where ¢ is the natural map. Note that L=
Daez C*7(U; M(d)) for p>1. Now we define C#?=Hom,(K,(m; A), L9).
Then the complex C”=(C*? is a double complex of graded R-modules
whose boundary homomorphisms are homogeneous maps. The filtration
F,(C")=3>,,::C?" of the double comple:g C” gives a spectral sequence
{£77. The following theorems are proved in the same way as in §1.

THEOREM 2.2. Under the above conditions, assume that, for every
=< <i,=Za, Xy *v0, Xy, 18 a homogeneous system of parameters
for M. Suppose that, for any I<r—1, M/(x;, «--, %, )M is a quasi-
Buchsbaum module for every 1<i,<--- <u;=a. Then

() =2, Quw,): HIM)—> HI (M)
18 well-defined.

Furthermore, M/, ++-, %, )M is a quasi-Buchsbaum module for
every 1=4,<---<i,_,<a if and only if (x;) defined as above is a zero
map for every subset I={i, ---3,} of {1, ---, al.

THEOREM 2.3. Under the above conditions, suppose that M is an
(r—1)-Buchsbaum module. Then the following conditions are equivalent:

(@) M is an r-Buchsbaum R-module.

(b) di%: EPi— EPti=*tl 45 q zero map for s=<r and qg<m.

(e) dy% EY*— E®** i3 q zero map for s<r and g<m.

REMARK 2.4. Under the above conditions, assume that M is an
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(r—1)-Buchsbaum module. Even without the assumption that, for every
1=4,<- - <i;=Za, #,, ***, &, is a homogeneous system of parameters for

M, the map
(@)=, Q- Qux,,): HIM)—HI (M)
is well-defined by (2.2) and (2.3).

COROLLARY 2.5. Under the above conditions, M is an r-Buchsbaum
graded R-module if and only if M, is an r-Buchsbaum R.-module.

Proor. It follows immediately from (1.8) and (2.3).
COROLLARY 2.6. Under the above conditions, let us define
&={%1) | 0si=m, leZ, Hy(M)+0}.
Suppose that & satisfies the following condition:
For any (3, 1) and (J, n) of &, if i=7, then i+l+1+j+n.
Then M is a Buchsbaum module.

PROOF. Since (E?),=@HI(M );‘, (Bproety,  =@HI (M), and di**
is a graded homomorphism of degree s, the assumption gives that d?? is
zero for any p, ¢ (<n) and s. By (2.8), M is a Buchsbaum module.

COROLLARY 2.7. Let R be the polynomial ring of dimension a over
an infinite field k. Let M be a finitely generated R-module of dimension
m. Assume that M, is Cohen-Macaulay for every graded prime ideals
p(#m) of R. Then :

dim Exti(k, M)< 3, (p" j) Lo(Hi(M))
Jor 0=p<m.
Furthermore, equality holds if M is an (r+1)-Buchsbaum module.

PROOF. The proof is the same as (1.14).

COROLLARY 2.8. Under the above conditions, let I be a graded ideal
of R. Assume that R/I is a Buchsbaum ring of dimension d. Then

i n ) i/ m )
(" BRI 1S 1Ext BID)S B[ AR+
where (Kz;) s the number of minimal gemerators of the camonical
module Kg,; of R/I.
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PrROOF. The proof is the same as (1.15).

EXAMPLE 2.9. Let (X, .&”) be a polarized Abelian variety with
dim X=» and dim I'(X, &)= N+1 such that & is very ample. Let us
consider its coordinate ring A=6P,;,I'(X, Z%"). Let S=P;:, S (X, ).
It is well-known that A is a Buchsbaum ring with #(K,)=1. Hence we
have

dim,, Ext’é“(k, A): z".‘ < N+1 )dlmea Hj—-l(X, $®1)+1=§:,<N+1> (?) .

= \n+1—3 120 I=I\n—J/\J

Considering its grading in the step of calculating dim, ExtZ*'(k, A), more-
over, we have that dim, Ext2*'(k, A)":(nl-i\—r i*‘ _1 d)( d’fl-1> if 2=<d=n+1, and
dim, Ext2*'(k, A),=0 otherwise.

§3. Divisors on Segre products.

Let k& be an infinite field. Let X be an arithmetically Cohen-Macaulay
subscheme of P)=Proj S, that is, its affine cone C(X)=Spec S/J is locally
Cohen-Macaulay, where J=&B,., I'(_%,#(1)). Let V be a subscheme of X
such that 0<dimV=n<dimX. Let A be the homogeneous coordinate
ring of V.

PROPOSITION 3.1 (cf. Schenzel [10]). Under the above conditions, we
have

TRI(@ S ()= t""RIL(A)

in the derived category D;(S) of complexes bounded below of graded S-
modules.

EXAMPLE 3.2. Let X=P} x P be Segre embedding in P=Pr** . Let
V be a divisor of X corresponding to Zx(a, b)= p;“cﬁ};(a)@p;"ﬁp;(b), that
18, [ V]=T%(a, b).
(1) V is an arithmetically Cohen-Macaulay subscheme of P if and
only ©f a—r<b=Za-+s.
(2) The following conditions are equivalent:
(@) V is an arithmetically Buchsbaum subscheme of P.
(b) V is an arithmetically quasi-Buchsbaum subscheme of P.
() a—r—1b=<a-+s+1.

PROOF. The proof is given, for example, by Goto-Watanabe [4],
Stiickrad-Vogel [15] or Schenzel [10, Proposition 5.1]. We will prove



12 CHIKASHI MIYAZAKI

this, however, because our proof indicates the motivation of the next
example and the theorems in §4.

Now let us assume a=b. First of all, let us find the numbers
1<i<r+s and le Z satisfying H(_%,x(1))=0. Recall that _% ; is iso-
morphic to @’s(—a, —b). By Kiinneth’s formula, we have H (Hx(1)=0
if and only if i=7» and b<!<a—r—1. This shows (1) and the implication
from (¢) to (a) in (2). On the other hand it is also clear that (a) implies
(b). Thus it remains to prove that if a—r—1>b, then V is not an
arithmetically quasi-Buchsbaum subscheme of P.

Let us write P*x P*=Projk[X,, -+, X, ]xProjk[Y,,---,Y,]. Then we
see that

-X; : H'(@p(l—a))— H(@p(l+1—a))
is surjective and

.Y; 1 HY(Op(l—b))— H(Zp(l+1—0))
is injective. On the other hand we see

H"(Fx())= H (Per(l—a)) DH(Zrs(l—D)) -

Hence we have that .z H(_%,z(l)) is not a k-vector space if a—r—1>b.
This gives that V is not an arithmetically Buchsbaum subscheme of P.

REMARK 3.8 (cf. Watanabe [20, (3.8)]). In the above example, as-
suming, in addition, V is smooth, =2 and s=2, we see that its affine
cone Y=Spec P, H'(V, &»(1)) has only one normal isolated singularity.
In his paper [9], Ishida proved that a normal isolated Du Bois singularity
is a Buchsbaum singularity in the case chark=0. Here we describe the
condition that Y is a Du Bois (or rational) singularity.

(1) Y has only a rational singularity if and only if b—s=a=r or
a—r=b=<s.

(2) Y has only a Du Bois singularity if and only if b—s=<a=z=r+1
or a—r<b=s+1.

In fact, let us take a resolution ¢: W—Y, where W=8pec, D20 Zr(l).
Recall that Y has only a rational singularity if and only if R¢,Ow=r
and that Y has only a Du Bois singularity if and only if R¢.w[—El1=_+#,
where E is the exceptional divisor and _#, is the maximal ideal of the
singular point of W. We see that R%.(P»)=Diwc H(V, o)) and
Ri¢ (O —E) =@, H(V, o). Since HA(V, o,)=H" (X, F (D))=
H"*(X, ~x(l—a, l—b)) for ¢=1 and {=0, the assertion follows.

The study of Buchsbaum property for a divisor of product of two
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projective spaces was rather simple. However the situation is complicated
for a divisor of the product of three or more projective spaces. In fact,
we have the following:

EXAMPLE 8.4. Let X=P;x P;x P{ be Segre embedding in P= P+,
Let V be a divisor of X corresponding to &x(a—r—1, a, a+r+1). Then
V is an arithmetically r-Buchsbaum subscheme in P but not an arith-
metically (r+1)-Buchsbaum subscheme.

In fact, let (X, -+, X,>)x<(Y,, -+-,Y,>x<(Z, -+, Z.> be a coordinate
of X=P;xP;xP;. We will describe the local cohomology groups
H(Diez H/x(1)) according to Hartshorne [7, Chapter 3, §5]. By Kiinneth’s
formula, we have

H"(@Lf,,,x(l)):O for ¢=0, 7, or 2r,

or 1k — L 1
H (,@z“f"”f(l))—k 1k Y, --Y, ®(go+..§-‘tr=2rk Zio. . .Z;r> ’

0>0,02+,7,.>0

and

H(@ AaW)=(_ 5 k- Xtor Xt ) Qb 1@k ——

Tt eseti, =27 Z .o .Z
ig>o,...,’ir>0 0 ”r

Thus we see that V is arithmetically »-Buchsbaum. On the other hand,
we can show that a homomorphism in our spectral sequence in (2.2)
8, X®Y,RZ) 1 H™(@ 5x(h) — H(D 52 )

is not a zero map. Hence V is not arithmetically (r+1)-Buchsbaum.
We will give another proof of this fact in (4.7).

§4. On Buchsbaum property of Segre product.

The aim of this section is to investigate the condition that the Segre
product of two graded modules has Buchsbaum property. We will use
the notations of Goto-Watanabe [4, Chapter 4].

Let R=EK[R,] and S=k[S,] be graded rings over an infinite field k.
Let us put R=k[x,, -+, z,] and S=k[y,, - -+, y;], where 2, eR, (t=1,---, a)
and y;€8, (=1, ---b). Let M be a finitely generated graded R-module
with dimM=m=2 and let N be a finitely generated graded S-module
with dim N=»n=2.

REMARK 4.1. It is well known that dim M#N=m+n—1 and
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pr(IQpr(N)=(MEN)™.

Proj R <, ProjS BELIN Proj S
p1l
Proj R

Let I' be the minimal injective resolution of M in the category
M,(R) of the graded R-modules. For each ¢, we put I'="I'@"I*, where
Ass'T*={m} and m¢ Ass;"I*. Let E’ be the minimal injective resolution
of N in M,(S) and let us put E‘="E‘@"E* for each ¢ similarly.

Now let us define the complex I’ which will be used afterwards.

PROPOSITION 4.2. Let R be a graded ring. Let M be a finitely
generated R-module of depth M =2. Then the following complexes L’ and
I’ are isomorphic in the derived category Di(R) of complexes bounded
below of graded R-modules:

L=(0— M— @ CW; MA)[—-1) and
I'=0— M——"I'-1]),
where T°=M, T*="I"* for i=1 and both & and ¢ are the natural maps.
PROOF. Let X=SpecR and Y= V(m). Consider the triangle
AN /S
+IN /
RI(X-Y, M) .

Since ~H X, M)=0 for i=1 and depth M=2, we have isomorphisms
RIy(M)=7,RIy(M)=(z,R[(X—Y, MN[—1] in D}(R). Thus we have iso-
morphisms

RI.(M)=(z,R[(X-Y, M)[-1]1= (z'o(ﬂaz RI'(Proj R, M@))—1l=L

in Di(R). What we have to do is to construct a quasi-isomorphism:

0———>M——-—>"I°———>"I1———’

T S

00— '] —> ' — 12— oo

We write
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i i
{:(? :;i:} . 'I'll @ HIi > ’Ii+1 @ "It+1 .

Then f° is defined as follows:

f°: M——'I" (the natural map) and
oo "It——'T'" by file)=(—1)a' () for 1=1.

This gives a quasi-isomorphism of the complexes. Hence we see I'=L’
in D (R).

REMARK 4.3. In this way, we can use I’ instead of L' by (1.5) and
(4.2). Similarly we write E° for the complex O0—=N->"E[-1)).

From now on we will write T=R#S and 2i=2,Q¥y;€T. Now let us
consider a complex L'=(F7), where Fi=@, ;- I'#FE¢. Then the complex
F" is a resolution of M#N by Goto-Watanabe [4, (4.1.4)]. Thus we have
the isomorphism ', (F)=RI,(M%#N) in DH(T). Let J =(0—->MN—
Diti=e-"I'$"”E?). By the proof of (4.2), we have the isomorphism
J =Rl (M#%N) in D;j}(T). Thus we can use the complex J  for the
Cech complex Cv"(ll; (M%N)Y™) by (1.5). Now we will apply the theory of
§1 to the double complex C"=Hom,(K.({z,;}; T), J) and its spectral se-
quence {E?%}. Recall that

=8 CT'¥'ENQ(N @ Tein) for g¢z1.
1stsa

iti=a—1 1Zuzh
Putting
Cr @ =("I'$"EH)Q(N* @D Tef,)  for every (i, 5)=(0, 0) and
1stse

1sush

CoO0=MEN)S(N D Tei)

1suzsh

we write C»'=@,,;_,_, C»®?,

PROPOSITION 4.4. Suppose that M is a graded quasi-Buchsbaum
R-module with dim M=m and depth M=2 and N is a graded quasi-
Buchsbaum S-module with dim N=n and depth N=2. Then the graded
(R#S)-module M$N is a quasi-Buchsbaum module if and only if
Mus(MEHZ(N)=0 and muy(HEM)EN)=0.

ProoF. It follows immediately from Kiinneth’s formula (in Goto-
Watanabe [4, (4.1.5)]).
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Now we will discuss r-Buchsbaum property. From now on we assume
that M is a Cohen-Macaulay module and N is a Buchsbaum module with
depth N=2. Note that depth M§¥N=2. Let us calculate the local coho-
mology groups HZ (M#%N). Since M is a Cohen-Macaulay module, we
see that

Hi (M§N)= @ H'CI$H('E)

~ {(M $H(N)DH (M) $HI"H(N)  if g#m
T (MEHz (N)DHZ(M)%N) if g=m.

Suppose that M#N is an (r—1)-Buchsbaum module with »r=2. By (1.4)
and (2.4), we see that

P=HL(M$N)Qr(A® D Tein)  for g<m+n—1.

1gush
Let us put
H> @0 =(H('D$HEN@(N @ Teln)  for every (4, )+(0,0)
1Sush :

and H»©®"=0. Then we see E?'=H»"PH»=" 1™ for ¢<m+n—1.
Let us write d,: H?' 9 — fr+nwi+izi=r+ for the map induced by the map

D, 17,9 ptr,q—r+l
dy: E*— E7 .

LEMMA 4.5. Under the above conditions, all the maps as below are
zero:

(a) dr: Hp,(o,tl—l) —> Hp+r, 0,9—7) fO'r r <q <,n,

(b) dr: Hp,(o,q—l) __,Hp+r,(m-—1,q—m—r+1) fo,’. q<m+n_1’

(¢) d,: Hembem o fJe+n0en for g<m+n— 1, and

(d) dr: Hp,(m—l,q—m) — Hrtr (m—1,q—m—r+1) fOT m+ ’I‘_S_ q<m +n— 1.

ProOOF. First, we will prove the case (a). Notice that

Hr» o0 =(M$HL(N)Q(A? D Tel.) and
1st=a
1sush
Hr#r 000 = (MEHIT (NN AT @D Tek) .
1stsa

1SusSh

By (2.3), we may assume p=0. The T-module H%% 1 ig generated by
the homomorphic images of the elements v@w in C%©1=t  ywhere v is a
cocycle of ”I° and w is a cocycle of "E*”'. Hence we can consider v as
an element of M. According to §1 and §2, let us explicitly describe the
maps in the spectral sequence. We will show that (2,;Qz.)(v@w)=
(,2,0)RQ(y;Qu)w) for every v in M and every w in HZ(N), where
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2,iQzp:: H; (M$N)—HZ*(M#N) and y,Qy;: H: (N)— HI'(N) are defined
in (2.4). In fact, let us consider w as an element of the double complex
Homy(K({y,}; S), "E**). Since N is a quasi-Buchsbaum module, we can
take elements u; for 1<5<b in "E** such that A" (Xlisiss Uied) = <ics Y;wer
in Homy(K,({y;}; S), "E*"). This gives that

(3, (@)@uet)= 3 (@)@ w)els

155<b 1s5sb

in C"* because v is a cocycle. On the other hand we see that
d' (@ 0)Q@ujlels) = 2 ((X2,0) Qs — Y sur))ef s Ak,

in C*»@®, Hence we infer that (2,iQ2)(vQw) = (2,) Q(¥; Ry )w). Sim-
ilarly we can inductively get

(20,5, * - R, Y VQ@W) = (@, + - 2, VIR, Q- + - R )w)

Since N is a Buchsbaum module, we have ¥, Q- Qu; )w=0 by (2.2).
Thus (z,,;,Q- - *®2,,;,)(v@w)=0. Hence the assertion is proved.

Second, we will prove the case (b). Let us take an element @
in H*®?Y where v is a cocycle of "I°and w is a cocycle of "E*!, Hence
we can consider v as an element of /. Here we can assume that vRwW
is a non-zero element. Assume that d'(vQw)=0. Since

d'(v@w) =mZ§,a () Q(yw))e;

1=5sb

and depth M>0, we can take elements u; for 1<j<b in "E°* such that
d"( 33 wed= 3, yowe}  in Homy(K({ws}; S), "E™™) .
This gives that |
(3 (@o)@uet)= 3 (@oS@mw)el; in Ce

1s5sb 1=jsb

because v is a cocycle. Thus we have that dy ' (H> )y H*»*2 through
the map dp% E}*'— E»*2, In the same way, we inductively have that
dy(H* @y Hm ", Hence the assertion is proved.

The remaining cases (¢) and (d) are proved similarly.

Now we will prove Theorems A, B, and C.

PROOF OF THEOREM A. It is clear that (a) implies (b). By Kiinneth’s
formula, we see that
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(4.6.1) m(%‘i HH,?,,(M $N)=(M#%H.; (N))DH(M)EN) .

This gives the equivalence between (b) and (c). Now we will show that
(c) implies (a). Let us consider the spectral sequence {E?®} associated to
M#N. By (4.6.1), we have

Hp, (1,5) — Hp, (0,2—1) @Hp, (m—1,0)

i+i<m+n—2

=(M$H: (N)Q:(A? D Tef JB(HT (MFN)R(N* D Te:.) -
120 123
By (4.5.b) and (4.5.c), all the maps d?'%: E?*— E? """~ for every ¢<m+
n—1 are zero maps. By (2.3), the assertion is proved.

PROOF OF THEOREM B. Since M is a Cohen-Macaulay R-module and
M$H; (N)=Hz (M YN=0, we see that

(4.6.2) S, Hi(M$N)= (2qu<‘nM $H: (NS 2, HI(M)EHZ(N)) -

osg<m+n—1

In other words, we have that

Hp,(i,j).:( Z Hp,(o,q—l))e( Z Hp,(m-—l,q—l)) .
i+i<m+n—2 239<n 28¢<n

By (4.5), all the maps of our spectral sequence d?'*: E?*— E?~"**"* for

every ¢g<m-+mn—1 are zero maps. By (2.3), the assertion is proved.

PrOOF OF THEOREM C. We may assume that S is a polynomial ring
and that M#N is an (I—1)-Buchsbaum 7T-module. By Kiinneth’s formula,
we see that

H: (M#N)=( 3, M#H(N)D(H(M)EN) .
0sg<m+n—1 259sn
Now we will show that the map d,;; H»"™ -V — Hr.m—1,0 {g g non-zero
map. Let us consider the double complex D" =Hom(K (y,, ***, ¥,; S), E
and its spectral sequence {F?}. By the hypothesis there is a non-zero
element v of degree d in F¥!. Since N is a Buchsbaum module, we have
the isomorphism F%'=F%!. Moreover, since S is regular, this spectral
sequence {F?? converges to Exti(k, N). Thus we have a non-zero com-
ponent w of an element of degree d+! in D'® corresponding to v. On
the other hand, there are a subsystem of parameters «,, ---,x, in R,
and an element % in Hr (M), such that «, -2, u+0 in H} (M), Now
we see d,(u@v)=(z,,* - -, u)@w through the map d,: HOm=11=1 _, ff7,(m=1,00
Since z, - -z,u#0 and w0, we have that d; HOm=ui-0 _, ff7.m=1,0 ig g
non-zero map. By (2.8), M#N is not an [-Buchsbaum module. Thus the
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assertion is proved.

REMARK 4.7. Theorem C gives another proof of Example 8.4. Let
us describe this example in terms of §4. Let R=K[X, ---, X,] be a
polynomial ring. We will show that R(a—r—1)¢R(a)tR(a+7r-+1) is not
an (r+1)-Buchsbaum module. We may assume a=0. Note that R(—r—1)
is a Cohen-Macaulay module and X,.- -X,(H,,’,*l(R(—r—l))_,_l)z;éO. On
the other hand, R{R(r+1) is a Buchsbaum module of depth »+1 and
H;"(R$R(r+1))_,_,=(H;*(R)$R(r+1))_,_,+0. By Theorem C and its
proof, we see that R(a —r—1)4R(a)¥R(a+r+1) is not an (r+ 1)-
Buchsbaum module.

ACKNOWLEDGEMENT. The author would like to thank the referee
for his suggestions. '

References

[1]
[2]

[3]
[4]
[5]
[6]
[7]
(8]

[9]

. GODEMENT, Topologie Algébrique et Théorie des Faisceaux, Hermann, Paris, 1958.
. Goro, Buchsbaum rings of maximal embedding dimension, J. Algebra, 76 (1982),
383-399.
. Goro, A note on quasi-Buchsbaum rings, Proc. Amer. Math. Soc., 90 (1984), 511-516.
. Goto and K.-I. WATANABE, On graded rings I, J. Math. Soc. Japan, 30 (1978), 179-213.
. GROTHENDIECK, Local Cohomology, Lecture Notes in Math., 41 (1967), Springer-Verlag.
. HARTSHORNE, Residue and Duality, Lecture Notes in Math., 20 (1966), Springer-Verlag.
. HARTSHORNE, Algebraic Geometry, Graduate Text in Math., 52 (1977), Springer-Verlag.
. HocHSTER, Topics in the Homological Theory of Modules over Commutative Rings,
Regional Conference Series in Math., 24 (1975), Amer. Math. Soc.
. IsgDA, The dualizing complexes of normal isolated Du Bois singularities, Algebraic
and Topological Theories—to the memory of Dr. Takehiro Miyata (edited by M.
Nagata), Kinokuniya, Tokyo, 1986.
. SCHENZEL, Application of dualizing complexes to Buchsbaum rings, Advances in Math.,
44 (1982), 61-77.
[11] P. ScHENZEL, Dualisierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe,
Lecture Notes in Math., 907 (1980), Springer-Verlag.

[12] J. SttckraD, Uber die kohomologische Charakterisierung von Buchsbaum-Moduln, Math.
Nachr., 95 (1980), 265-272.

[18] J. STUCKRAD and W. VoGEL, Eine Verallgemeinerung der Cohen-Macaulay-Ringe und
Anwendungen auf ein Problem der Multiplizititstheorie, J. Math. Kyoto Univ., 13
(1978), 513-528.

[14] J. STUCKRAD and W. VoGEL, Toward a theory of Buchsbaum singularities, Amer. J.
Math., 100 (1978), 727-746.

[15] J. STUCKRAD and W. VoGEL, On Segré product and applications, J. Algebra, 54 (1978),
374-389.

[16] J. STUCKRAD and W. VOGEL, Buchsbaum Rings and Applications, Springer-Verlag, 1986,

[171 N. Suzuki, On quasi-Buchsbaum modules—an application of theory of FLC-modules,

Commutative Algebra and Combinatorics, Advanced Studies in Pure Mathematics,

11 (1987), Kinokuniya/North-Holland.

nx

2 2URP0®

(10]

o



20 CHIKASHI MIYAZAKI

[18] N.V. TRUNG, Toward a theory of generalized Cohen-Macaulay modules, Nagoya Math.
J., 102 (1986), 1-49.

[19] W. VOGEL, A non-zero-divisor characterization of Buchsbaum modules, Michigan Math.
J., 28 (1981), 147-152.

[20] K.-I. WATANABE, Some remarks concerning Demazure’s construction of normal graded
rings, Nagoya Math. J., 83 (1981), 203-211.

Present Address:

DEPARTMENT OF MATHEMATICS

SCHOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY
OKUBO, SHINJUKU-KU, ToxY0 169, JAPAN



