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§1. Introduction.

In [KW] Knapp and Wallach gave an explicit imbedding of the
discrete series of a connected semisimple Lie group G with finite center
as a subrepresentation in the nonunitary principal series. However, it
was in an infinitesimally equivalent fashion. Recently, when real rank
of G is 1, Blank [B] gave an explicit projection operator that transfers
a reducible unitary principal series onto a limit of discrete series in a
global level. In this paper, applying Zuckerman’s technique (see [Z]),
we shall shift Blank’s result and construct a representation of G which
is infinitesimally equivalent to a discrete series. Then the unitarity of
the representation corresponds to the square-integrability on G of the
image of the Szego operator, which was conjectured in [KW]. When
G=S8U(n, 1), we shall obtain the square-integrability by applying the
complex structure of the hermitian symmetric space G/K, and then we
get a global construction of the discrete series.

This method is completely different from ordinary one, for it starts
with a limit of discrete series. This implies that the representations
constructed by our method must be attached to a limit of discrete series,
and thus they are unfortunately a part of the discrete series of G (see
§6). Square-integrability of the image of the Szego operator is still an
unsettled problem except for G=SU(n, 1), however, all others obtained
in this paper are valid for all real rank 1 semisimple Lie groups.

Let G be a connected semisimple Lie group with finite center and fix
a maximal compact subgroup K of G. We assume that rank G =rank K,
that is, G has a compact Cartan subgroup T K. Then by Harish-Chandra
[HC] this condition is equivalent with that G has a discrete series. Let
t be the Lie algebra of T and W, the Weyl group of K. Then the set
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of discrete series is in bijective correspondence with the set of W c-orbits
of non-singular integral forms on t. We denote by 7, the discrete series
corresponding to a nonsingular integral form 4 on t.

Let G=ANK be an Iwasawa decomposition of G and M the centralizer
of A in K; let t,* and a,* be the dual spaces of the complexifications of
t and the Lie algebra a of A respectively. Let (z;, V) (vet,*) be the
lowest K-type of =, and (o; H;) the representation of M given by
restricting z,(M) to the M-cyclic subspace H, generated by the highest
weight vector of V,. Let

C=(K, o)={f € C*(K, H)) ; f(mk)=0,(m)f(k), meM, ke K},

Co(G. 2y=1f €C*G, V) ; fka)=r:(k)f (@), ke K, zEG}. D

Then the discrete series =, is realized on the L’ kernel of the Schmid
operator D on C=(G, 7,) (see [Sc] and §2 in [KW]) and the (non) unitary
principal series =, (v€a.*) is realized on the space C=(K, ;) as the
compact picture (see §2.1). According to the induced picture of =,
each function f e C>(K, ;) can be extended to the function f on G by
defining

flank)=e""8 f(k) (aec A, ne N and ke K) 1.2)
and this extension belongs to C=(G, o:x¢*). Then the Szego map
S: C(K, 6)— C=(G, 72) 1.3)
is defined by

S() @)=\ zathyf (k) . (1.4

Knapp and Wallach in [KW] notice that the Szego map S gives a
relation between 7, and =,,.; actually, for v=y, €a* defined by \ (see
(2.15a) and (2.15b)) S carries C=(K, g;) into the kernel of the Schmid
operator D on C~(G, 7;) and moreover, 7,,,,, onto 7, in an infinitesimally
equivariant fashion. Here “infinitesimally” means that the correspondence
holds between K-finite vectors of the domain and the range of the
mapping. Therefore, as conjectured in §11 in [KW], it is worth re-
alizing the discrete series m, on the image of S without the K-finiteness
assumption.

Now we assume that G has a simply connected complexification G,
and that G has real rank one. Then the above result can be extended
to a singular integral form 4 such that (4, a,y =0 for a noncompact
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simple root a, and {4, 8)>+#0 for all other positive roots 3. In this case
we have two choices of the system of positive roots, we say 4 and
4" =4"—{a}U{—a,}. Then we can define Szego maps S and S’ corre-
sponding to 4" and 4% respectively (see [KW], §12). Since p; equals
0, half the sum of the positive restricted roots with multiplicities, =,
corresponds to a limit of discrete series and x,,, to a reducible unitary
principal series. In particular, z,, , is infinitesimally equivalent with the
direct sum of the K-finite images of S and S’, which give two irreducible
constituents of the reducible principal series (see [KW], Theorem 12.6).
The boundary value map

L : the image of S—— C*(X, o;) (1.5)
is defined as follows (see §2.2):
L(S(f)Ne) =1im E(e*™ (1, o(w™k).f)(@)) (ke K), (1.6)

where E denotes the orthogonal projection from V, onto H; and w a
representative of the nontrivial coset of the Weyl group W of A, which
has order 2. Then in [B] Blank shows that in a G-equivariant fashion
the composition map

LoS : C*(K, 0;)— C*(K, 0,) 1.7)

is a projection operator and, as shown in [KS], it consists of a linear
combination of the identity operator and a principal value operator (see
[B] and §2.3). In his method the K-finiteness assumption does not re-
quired. This means that, in a global fashion, the limit of discrete series
7w, (v;=p) is realized on the image of LoS equipped with the L*norm
on K.

We retain all the assumptions on G. Our aim of this paper is to
give a global, not infinitesimal, realization of a discrete series. As
mentioned above, when 7, is a limit of discrete series (v;=p), the Szego
map S: C°(K, 0;)—C>(G, 7;) gives a global realization of =z, by taking
the boundary value. Therefore, if we can shift the realization of the
limit of discrete series =, to a discrete series, we can construct the
diserete series in a global fashion; therefore, the discrete series we shall
treat below must be attached to a limit of discrete series. In order to
shift the realization of x,, we shall apply Zuckerman’s technique intro-
duced in [Z], roughly speaking, we shall form a suitable projection of
tensor products of 7, and a finite dimensional representation of G.

Let ¢ be a dominant integral form on t and let (z,U) be a finite
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dimensional representation of G with lowest weight —p. Suppose that
w satisfies some conditions related with the order of weights (see §3
and Theorem 4.6). Then a discrete series =,., is realized as a sub-
representation in the nonunitary principal series:

7t4+,uc(7t01_.u,lq_’,’ Cco(Kv al—y)) . (1'8)

Actually, first we take the tensor product of o v im s and 7, and then
define a map

C*(K, 01_,) —C=(G, 0:Xe" X 3) , (1.9)

where @ is the restriction of = to MAN (see (3.1)); next we extract
a component of C>~(G, g;,xe°xXR), which is contained in C~(G, ¢,xe")=
C~(K, o;), and we apply the Szego maps S and S’ on the component
(see (3.3)). Combining these proceedings, we can define the G-equivariant
operators

S, and S, : C=(K, 0;_,)— C=(G, V) (1.10)

(see Proposition 3.2). Let 2,, be the kernel of S, on C*(X, 4;_,). Then
2, is nontrivial, G-invariant and moreover, S, is injective on 2,, (see
Lemmas 4.5 and 5.4). In their proofs we use the fact that the limit of
discrete series 7, is realized in a global fashion. When G/K is hermitian;
G=8U(n, 1), we see that S,(2,,) is contained in L*G,V;) (see Theorem
4.6). Therefore, inducing the L* norm of 2, , from the one of the image
S,.(2;,), we can obtain a unitary representation (rcal_.wn_y, 2,,.). Finally,
in Theorem 5.6 we show that the representation is irreducible and matrix
coefficients are square-integrable on G, so (Toz_ vz e 22,0 is a discrete
series of G=SU(n,1). This completes a global realization of a discrete
series started with a limit of discrete series.

§2. Notation and preliminaries.

Let G be a connected semisimple Lie group with finite center and
K a maximal compact subgroup of G. Throughout this paper we assume
that rank G=rank K, that G has a simply connected complexification G,
and that real rank G=1.

Let g be the Lie algebra of G. For a subalgebra u of g we denote
the complexification and its dual space by u, and u,* respectively. Let
6 denote the Cartan involution of g determined by K and g=t+p the
corresponding Cartan decomposition of g. Let tCf be a compact Cartan
subalgebra of g, 4 the root system of (g, t,) and 4, (resp. 4,) the set
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of noncompact (resp. compact) roots of 4. Root vectors E, (a€ d) can
be selected in such a way that B(X,, F_,)=2{a, o) and 6(E,)"=—FE_,,
where bar denotes conjugation of g, with respeet to g and B is the
Killing form on g,. Then a(H,)=2 for H,=[FE,, E_.] (cf. [He], p. 155-156).
We fix a noncompact simple root, say a, and let 4* be the set of positive
roots of 4 so that a, is positive. Put 4,"=4,N4* and 4,*=4,N4".
Then a=R(E, +E_,) is a maximal abelian subspace of p. Let )~ denote
a Cartan subalgebra of the centralizer m of a in f. Then t=)"+iRH,,
and =0 +a is a noncompact Cartan subalgebra of g. Let u=
exp 37(E,,—E_,). Then the standard Cayley transform relative to ¢« is
given by Ad(u). It carries t, to §,; in fact, Ad(u) acts trivially on 9~
and Ad(w)H,,= —(E,,+E_,).

Let ¥ be the root system of (g,, §.) and ¥,C¥ the root system of
(m,, §,7). Let ¥+ be the set of positive roots of ¥ obtained by requiring
that a comes before §-, and let ¥, =¥, N¥*. Then T*={v-Ad(u)™;
veScd4}, where S=¥,*U{ve 4; {7, a,y <0} (cf. [KW], Lemma 8.5). Let
Y denote the set of restricted roots of (g, a,) and let 3% be the set of
positive restricted roots obtained by requiring that E, +E_, is contained
in the positive Weyl chamber a* of a. Then the orderings defined by
4%, T+ and Y+ satisfy compatibility. Let §, 6, and 6, be half the sum
of the roots in 4%, 4, and 4, respectively, and let o be half the sum
of the roots in 3* with multiplicities.

Let A and N be the analytic subgroups of G corresponding to a and
n respectively, where n is the sum of positive restricted root spaces.
Then an Iwasawa decomposition of G is given by G=ANK. Let M and
M' be the centralizer and normalizer of A in K respectively and let
W=M'/M. W has order 2; let w be a representative of the nontrivial
coset. Then G=MANUMANwMAN, and if we put V=60(N), we see
that V=wNw™ and MANN V={1}. Let “exp” denote the exponential
mapping of a onto A and “log” the inverse mapping. Then each element
g in G and in the open dense subset MANV of G respectively can be
written as:

g=exp H(g) -n(g)-k(g) (H(g)ea, n(g)e N, k(g) € K),

1
=m(g)-a(9)-n-v(g) (m(@eM, a(g)c A, neN, v(g)eV). @1

We shall normalize Haar measures dk on K, dm on M and dv on V
so that dk and dm have total mass 1 and dv satisfies S e Wdyp=1. Let

14
da denote the Haar measure on A that corresponds to a fixed Euclidean
structure on g under the exponential mapping. Then Haar measures dn on
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N and dg on G respectively can be normalized by the integral formulas:
SNf (n)dn= SVf (wvw™Y)dv

and (2.2)

Saf (9)dg = SASNSKf (ank)e’* sV dadndk

for integrable functions f on N and G respectively. Let A*=exp(a™).
Then G=KCL(A*)K and there exists a continuous function D(a)=0 on
A" such that

dg=D(a)dkdadk’ , (2.8a)
where g=kak' € KA*K, and
s D(g)<C for acA* (2.8b)
(cf. [He], pp. 381-382).
Let
At =g (4) =4 —{a,}) U{—as} , (2.4)

where s, is the reflection with respect to a,. Then 4%’ is a new positive
root system of (g, t.); since E, +E_, =E_, +FE,, it follows that 4*',=4"%,
and the corresponding Iwasawa decomposition is the same as before (cf.
[KW], p. 198).

2.1. Non unitary principal series and intertwining operators. We
shall recall three realizations: induced, compact and noncompact pictures
of (non)unitary principal series representations x,, of G, where yea*
and (g, H) is a finite dimensional irreducible unitary representation of -
M (cf. [KS]). Then the representation space of x=,, in each picture is
respectively given by '

C>(G, o xe)={f €C~(G, H) ; f(mang)=a(m)e""°** f(g),
A man € MAN, geG}, (2.5)
C>(K, o)={f € C~(K, H) ; f(mk)=a(m)f(k), meM, ke K}

and C=(V, H); the action of x,.(g9) (g € G) on each space is given by
T, (9 f(@)=f(xg) (x€G),

7T, (@) f(k)=e""* f(k(kg)) (k€K), (2.6)
70,.,(9) f (v) =a(vg)e’ ' f(v(vg)) weV),
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where ¢ and log are respectively extended to the operator and the
function defined almost everywhere on G by letting

o(manv)=c(m) and log(manv)=log(a) (manve MANYV) . 2.7

The intertwining operator between the induced picture and the compact
one (resp. the noncompact one) is given by restricting f € C~(G, oxe*) to
K (resp. to V) and conversely, the G-equivariant extension of f € C~(X, o)
(resp. fe€C>(V, H)) to an element in C~(G, g Xe*) is given by letting

S (x)=e""= f(k(zx))
(resp. f(x)=a(x)e"* f(v(x))) .

Therefore, giving attention to the restriction and extension, we use the
notation “rw,.(9)f” without distinguishing the three pictures.

Let y=Q1+2)o (z€C). If z€iR, then the L* norm with respect to
the Haar measure on K is preserved by the action given in (2.6), so
it determines a unitary structure of the representation z,,. We put
wo(m)=c(wmw™") (m € M). Then it follows from [KS], Proposition 20
that x,, is reducible if and only if (1) ¢ is equivalent with we, (2) 2=0
and (3) the mean value of g(xw)™ (x € G) equlas 0. Under the assumption
on G, w,, is a reducible unitary principal series of G (cf. [KS], §16).
Let wy(H)=v(wH) (Hea). If Re(z)>0, then an intertwining operator
A(w, o, 2) between x,, and 7, ., is given by

(2.8)

Alw, g, 2)f (k)= SKe“"“’ tos k") =1(feraw) f (K'ke)d k' (ke K) (2.9)

(see [KS], §9) and moreover, if z=0, intertwining operators between =, ,
and 7,, are all of the form: aA,+bI (a, b€ C), where I is the identity
operator and A, is the principal value operator given by

A f (k)= SKeP s =it a) FRIYAE (k€ K) (2.10)

(see Corollary in [KS], p. 517).

2.2, Szego map and boundary value map. For an integral 4,*-
dominant form X\ et * let (z;, V,) be an irreducible unitary representation
of K with highest weight \. Let ¢, be a nonzero highest weight
vector and H, the M-cyclic subspace of V, generated by ¢,. Let (o;, Hy)
denote the representation of M given by restricting z; to H;, and E,

the orthogonal projection from V, onto H,. Then for n<ca,* the Szego
map
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Sﬂ,g . Cw(K, 0'1)_—’C°°(G, T;) (2.11)
is defined by

8,:f @)= e ez, e(g™) f ()l (2.12)
=\ e rwegar,

where in the second integral we denote by the same letter “f” the
G-equivariant extension of feC~ (K, o;) to G according to the induced
picture of #,,, with v=20—7 (see (2.8) and [KW], Lemma 6.2). Then
this map is G-equivariant. If we put emphasis on the dependence of
S, on the choice of the positive root system 4*, we use the notation

“S,.4%)”.
On the image of S,; a boundary value map
L, : image of S,;— C~(K, 7,) (2.13)
is defined by
LS, ()N (k) =lim E;(e""**“"S, (7, (w™ k) f )a)) - (2.14)

Then following [B] and [GTKS], we see that
THEOREM 2.1. Let v=20—n=Q1+2)p. If Re(2)>0, then
LS, :=A(w, 0;, ?)
(see (2.9)) and L, is G-equivariant.

If 2=0, L,°S,; also can be defined by (2.14). On the other hand,
A(w, g3, 2) is not defined for z=0, because the integral (2.9) in the def-
inition does not converge. However, as mentioned in 2.1, we know that
the limiting case z=0 must be of the form aA,+bl, so L,°S,; is of the
same form. This fact is directly investigated in [B].

THEOREM 2.2. L, tramsfers S,:(L*K, o)) into LK, o) wn a G-
equivariant manner and L,°S,; i8 the projection operator of the form
a; I+ A, where A, is given by (2.10) and a; is the constant given by

E, S Ve"” e (k()w) dv=a,l.

2.3. Discrete series and limits of discrete series. Let us suppose
that A=\—6,+0, is 4*-dominant, and that 4 is nonsingular or singular
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with respect to just one pair of roots +w, Then, as shown by [HC]
and [KO], if 4 is nonsingular, it corresponds to a discrete series, otherwise,
to a limit of discrete series of G. Both of them we denote by z,. Then
by [Sc] we know that the lowest K-type of x, is given by z,.

We define 7, and v, €a,* as follows:

By B,y = 2N Tty @) (2.15a)
<C¥o, ao>
and
v;=20—7,, (2.15b)

where n, is the number of positive noncompact roots v satisfying that
7 is not strongly orthogonal to a, and 7+a,€ 4 (see [KW], (6.5a), (6.5b)).
Let

S;=8,(4*)=8,,.,(4*) and S/=8,,(4*") . (2.16)

Then by Theorems 1.1 and 12.6 in [KW] the Szego maps S, and S, give
a relation between 7, and =,,,, as follows.

THEOREM 2.8. (1) S; carries C=(K, g;) into the kernel of the Schmid
operator D (see [Sc] and [KW], §2) on C=(G, 7;). Moreover, in a g-
equivariant fashion it carries the K-finite vectors of oy, ONE0 the K-finite
vectors of mw,. (2) If My=y;=p, then the reducible unitary principal
series m,, , 18 infinitesimally equivalent with the direct sum of the K-finite
tmages of S; and S;.

We note that Theorem 2.2 implies that, if 7,=y,=p, the K-finite
assumption in Theorem 2.3 is not necessary. Therefore, if we put

A1=Lp081 and A2’=Lp083’ ’ (2.17)
it follows from Theorems 2.2 and 2.3 that
A, +A=T, (2.18)

where I is the identity operator on C=(K, ¢)).

2.4. G=8SU(n,1). We shall consider the case that G/K is hermitian,
so G=SU(n, 1) under the assumption that real rank of G is 1. Let

pr= 36, and p= 3 g, (2.19)

aed, acd,—4,~+

where g, is the root space for o, and let P*, P~ be the subgroups of G,
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corresponding to p*, p~ respectively. Then multiplication P~x K, X P*—G,
is one to one, holomorphic, regular and there exists a bounded open subset
2CP* such that

P-K P*=P K. (2.20)

Then G acts on £ by holomorphic automorphism under the definition
z-g=p+(29) (€ 2, g€ G), where p*(-) refers to the P* component of an
element of P~M,P*. Especially, 1-g=1 for ge P"K, and GNP"K,=K, 80
2=G/K (cf. [Kn], pp. 225-226). Let a,=exp(t(E,,+E_.)/2) ((€ R). Then
we recall that

1l.-a,=exp(tht/2 E,) and ltim l-a,=exp(E,) (say o) (2.21)

(see [Kn], Corollary in p. 229), « €42, the boundary of 2, and the
action of G on 2 is holomorphically extended to 02. Then since
Ad(U)@_1oginen € K,, We see that

1 Q=00 Ad(u)a_log(,h t/2) o (2.22)

In what follows we shall abbreviate the symbols 1- and o« - when we
denote functions on 2 and 92 respectively.

Now let us suppose that 7,=y,=p and A;(f)=0 for f e C(K, o).
Then by (2.14) and (2.18) it follows that

S ()=A(f)k)=L,°S:(f)(k)

=lim e*"°¢" F.S;(f)a,wk) . (2.23)
As shown in [B], a limit of (holomorphic) discrete series is realized on
the image of L,oS, equipped with L? norm; so A;/(f)=0 implies that f
has a “holomorphic” extension to 2, which we denote by the same letter
(cf. Theorem 12.6 in [KW], [JW] and [KO], §5). On the other hand,
S,(f) is in the kernel of the Schmid operator and thus, of the Dirac
operator (cf. [KW], Proposition 3.1, Theorem 6.1 and [NO]). Therefore,
(2.22) and (2.23) mean that

ES:(f)a;) ~ e 108 f(Ad(U)A-10g(nemW ) (2-24)

as t tends to o. Especially, noting the fact that A, is a projection
operator, we can deduce from Lemma 3.15 in [B] and its proof that the
right hand side of (3.40) in [B] also satisfies (2.24) and thus

”Sl(f)(at)” ~ e_puogm)I|f(Ad(u)a'—log(cht/z)’w—l)n (2.25)
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as t tendsb to <o, where ||-|| denotes the norm of V,.

2.5. Orthonormal system of L*K, g). Let K~ (resp. M~™) denote
the set of the equivalence classes of irreducible unitary representations
of K (resp. M). For re€ K~ and ge M" let [z; o] denote the multiplicity
of o in the restriction z|M of z to M, and let K;={r e K*; [r; 0]#0}.
In what follows, for simplicity, we suppose that [7; 0]=1 if it is not O,
because this restriction is easily removable. Then for (z, Vo) e K] let
d.=dimz and let e, e, -, e;, denote an orthonormal basis of V. such
that {e;; 1<i=<d,} (d,=dim¢) is carried by 7|M according to g. We put
I.={1,2,.--,d} and I,={1,2,.--,d,}, and denote the matrix coefficients
of ¢ by z,(k)=(c(k)e; e) (i, jeI, ke K). Then we define functions on
K by ,

¢ i(k)= 2 t(k)e,  (Jel) (2.26)
and let ’tp‘,'j = (d,—/da)lﬂqf,,,‘-

LEMMA 2.4. {y. ;;5¢€l,7e K]} is a complete orthonormal basis of
L*(K, o).

PROOF. Since
ge,5(mhk)= 3 7. {(mk)e,
=, 5 culmyz, (b
=o(m)g.{k) (meM, kekK),

and

Gesr $e)=| (S zsllle, 3, Toille)d

K

=5 SKz',,-(k)z-’ﬁ,(k)“dk

= 5rr’5:ij'dadr*1 ’

it follows that all . ; belong to LXK, ¢) and they are orthonormal
each other. Let f be an arbitrary function in L* K, o). Then by the
Peter-Weyl theorem for LK) (cf. [Su], p. 19) f has a decomposition
such as

fB=3 5 3 agrike, (kekK).

TE€EKSH t,5el. p

Then for me M
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Sf(mk)= > P > a’tipfiq(m)fqi(k)ep .

reK$ t,d,9€lp pel,

On the other hand, since f belongs to LK, o), f(mk) must equal
om)fk)=3, > X GuinToi(k)T(me, .

teKp i',5'€l, r,8el,
So, it follows that g=s=4'€ I, i=pel, and a,;,=a,;, for all p, geI,.
Therefore, if we let a;=a,;,,

f)=% > a; ,,% Tpi(k)e,

teKy jel,

=3, 2, &i¢.,i(k) .

teKp jel,p

This completes the proof of the lemma. _ Q.E.D.

§3. G-equivariant maps.

We fix a 4,*-dominant integral form X\ on t, such that A=\—0d,+6, is
A*-dominant and 7,=v,;=p (see (2.15a,b)). Then {4, a;)=0 and {4, B> +0
for all other positive roots g. Especially, «, is a limit of discrete series
of G and L,°S, ;: LK, o) — L*K, 02) is a projection operator (see Theorem
2.2).

Let ¢ be a 4*-dominant integral form on t, and (z,U) a finite di-
mensional representation of G with lowest weight —p. Let d,=dim U,
I.={1,2,---,d,} and g~ (i€ I,) the weights of 7 relative to (t,, 4%), that
is repeated according to their multiplicities and arranged in increasing
order relative to 4%; so, p#,~=—p. Let v,~ denote a normalized weight
vector corresponding to z,~. In the same way let g, (it € I,) denote the
weights of 7 relative to (§,, ") that are arranged as above, and v, (i € I,)
corresponding normalized weight vectors. Then, since g, ~oAd(u)™* and
n(u)v,~ are respectively a weight and its weight vector with respect to
(9,, T+), we may assume that they coincide with one of, respectively, p;
and v; (jel); so we can select i€, such that p,= p~oAd(w)™ and
v, =7m(u)v,~. Since we W acts as +1 on t and —1 on p (see [KnZ],
Lemma 4), each wy,(H)=p,wHw™) (He h,) is also one of the weights
of 7w, and thus w acts as a permutation of I. such as wg,= .. Es-
pecially, if we denote the matrix coefficients of 7 by x,;(9)=(=(g)v;, v.)
@4, jel, ge@), we see that 7, (wg)=1,wi(9)-

Now let us suppose that

(A0) : A—y is 4,*-dominant ,

and we shall construct a nontrivial G-equivariant map of C*(G, g;_, X e"*™*)
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into C*(G,V;). Let & and g denote the representations g;xe? and 7|MAN
respectively, of MAN. For feC~(G, o, X e ") we define

FX0)={ XTI, g2 vodm. . (3.
Then f~eC=(K, ;X n|M) and we can extend it to the function on G so

that f~eC~(G, ¢xnr) (see [KW], p. 193).

LEMMA 3.1. The mapping that transfers f in C*(G, o:_, % e ") to
S~ in C(K, g, Xn|M) is 1njective. '

PROOF. Let P;_,:V,;xU — H,_, be a nonzero K-intertwining operator.
Then by (10.14) in [KW] P,_(f~k))=cf(k) (k€ K) with ¢+#0, and thus the
desired fact is clear. , Q.E.D.

For ke C~(K, g,x7|M) we define functions h; by the expansion
h(g)=; h(g) % n(g)v,
=Z¢“ [§ k(@) (9)]v; . (3.2)
Then each h, belongs to C*(G, g;%Xe¢°) and it is uniquely determined by

the restriction (h(k), n(k)v,) on K. Here for feC~(G, o,_,xe* ) and
Jje I, we define

Sif @)= S(f~NDmile) (9€@),

. 3.
AL =3 A f~ )R k) (ke K) (3.3)

and also define S’ and A'; by replacing S; and A, with S; and A/
respectively (see (2.16) and (2.17)). Then we see that

Sf;, S’f‘ : CN(K, 0'3._#)""'“"000((;” Vz) ’

C 3.4
A'th A,.fl . Cw(Ks ai—p)—)CW(Ky HZ) . ( )
PROPOSITION 3.2. If i,=d,, then all Si and S’f, are G-equivariant.

PROOF. For simplicity, we denote Tozm i B bY f., and let W,
(jeI,) be the MAN cyclic subspace for w;=¢;Xv; in H;x U and put
Ui+1=20i5:,W;. Then by [KW], pp. 193-194, we see that

(fNe)=(f)~(k) modU,,, (keK,xzeG).
Therefore, since 7,=d, by the hypothesis, it follows that
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() kex)=(f2)~(k) . (3.5)
On the other hand,

(f)(9)=f(9%)
=§ I~ (gx)m(ga)v;

=Zt‘. Z". S~ go)m;(gx)v;
=¢§-,“p S~ (92)7 (97, (X)0;
= ; [2 [; Fo(@2)7 (@) I7(9)]v;5

and thus,
(F WD =5 fHen)me@) . (3.6)

Then by (3.3), (8.5) and (3.6) we see that
Si(fXg) = %] SA(f~)9)7;(9)
=Ztl SA(F~))(@)7i9)
=2 8((f )N @) ()7 5(9)
=35 S{(f7,)gx)mp(9%)

by the G-equivariance of S; and then
=Si(f)(g%x) .

So, we show that Si is G-equivariant. By the same way we can obtain
that S’ (j e I,) are also G-equivariant. Q.E.D.

§4. Some properties of S} and A..

We keep the notation in §2 and §3, and let f be in C=(K, Oy

LEMMA 4.1. If SXf)=0 (resp. S":(f)=0), then Si(f)=0 (resp. S"i(f)=
0) for all jelI,.

PrROOF. First we note that for ke K and g€ G
0=Si(f)kg)= 3, Si(f~)(kg).kg)
= 3, T (R)S}(Sf~X@)mi(k)ri(9)

t,jelr
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and thus,
2 T (O)SU()9)=0.

Here we recall that v, is a lowest weight vector of = and n*(x)==r(4(x))™*
(x € G). Therefore, it follows that

| Ty(@) = (k(x) (®eG).
Then we can obtain that

3 T@SKF)e)=0

for all , g€ G. Since x is irreducible, the matrix coefficients = ;(x) (x€ G)
are linearly independent on G, and thus it easily follows that S;=0 for
all jel,. Q.E.D.

LeMMA 4.2, If Si(f)=0 (resp. S'i(f)=0), them A:r9(f)=0 (resp.
A3 (£)=0).

PROOF. We note that for ac A and ke K
0=Si(fNaw™ k)= 3. S,(f~Naw™ k)r;(aw'k)
=e" "“°g‘“”i§ S:(f~ N aw k), (k) .

Therefore, we see that
AR (f)k)=1im e'r—rd’ 8@ B, (Si( fY(awk))=0 .
Q.E.D.

LEMMA 4.3. If Ai(f)=0 (resp. A"(f)=0) for all j€ I, then A;f~;=0
(resp. A)'f~;=0) for all jelI,.

PrROOF. The assumption means that
(k) A~ k), Auf k), -+, Aof 0 (B)'=0 (ke K).

Then, applying n(k)™* to the both sides, we can obtain the desired re-
sult. Q.E.D.

LEMMA 4.4. If Ai(f)=0 and A'i(f)=0 for all jelI,, then f=O.

ProoF. By Lemma 3.1 it is enough to show that f~=0. It follows
from (2.18), (3.2) and (3.3) that
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Frl)= ,,Z;-,”f ~ ()7, (k)v;
=5§ (AL)E) + A" F))v; =0 .
" QE.D.
Now let
Q2.={feC(K, 0:_,); S'Uf)=0 for all jel.}. (4.1)
Then we have the following
LEMMA 4.5. 2',, is G-invariant and S; is injective on 2',,.

PrOOF. This is clear from Proposifion 3.2, Lemmas 4.1, 4.2 and
4.4. Q.E.D.

THEOREM 4.6. Let G=SU(n, 1) and suppose that p satisfies
(AQ) n—p is 4, -dominant,
(A1) <y, ap>0,
(A2) y=d,.
Then Si(f)e L*G,V)) for all f€2',, and jeI,.

PROOF. Since

Sifkg)=:k) X, T;,(k)S(f)9) (ke K, geG)

(cf. the proof of Lemma 4.1), it follows from (2.3a) that

ISiANraro=5 § { _ ISUA@R)D@)dadk .

r

Therefore, by noting (2.3 b), to obtain the square-integrability it is enough
to show that

ISESNak)l| ~ e~erragtese  (f—c0),

because {#,, a) ={t, a;y)>0 by (Al) and (A2) (see §3). Here, for sim-
plicity, we put d=d, and

(s a) =mn, ;

{a, ay

so u#,(log(a,))=mnt and n,,=—n,. Then by Proposition 3.2 and (3.3) we
see that

Su)(ak)=Suf)(a)=S((fi"),)a)e"* .
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Since f belongs to £’;,, it follows from Lemmas 4.2 and 4.3 that
A ((f))=0 for all jeI,. Therefore, we can apply the asymptotic
behavior (2.25) to S;((f.™),)(a.;) and thus, as ¢ tends to o, we see that
for r=tht/2

IS:(fi)p) (@) || ~ e~ 5 | (™) (Ad(U)@-10gmw ™)l
= e-—p(log(at)) ” ((fk~)(Ad(u)a—log(r)w_l); 7z--(I&d-(u)af—-log('r)u)—l)’vp) ”

(see (8.2)), where we used the fact that f,~ also has a holomorphic ex-
tension to 2 which follows from the K-type decomposition of f in £',,
(cf. Lemma 5.3 below). We note that (f,)Ad@)a_iginw™)—fi~(w™)
(t—o) and (B, ary =Q(H,)=0 for all ge¥?, (cf. [He], pp. 221-224).
Therefore, it follows from the definition (8.1) of f,~ and (A2) that

1S:((Fi™)) (@) || ~e~P o8 (v, T(AA(U)E _10g(r))Vuim)

Now let (z,,V,) (ne N) denote the irreducible representation of
SL(2, C) with degree n-+1, that is realized on the homogeneous poly-
nomials of degree = in variables z, and 2z, (cf. §6 and [Su], p. 326).
Here noting that H, and E., generates a Lie algebra isomorphic to
38l(2, C), we may deduce that ‘

(@ —10g(r)2,72," 77, 2,") =c(sh(—log(r)))?(ch(—log(r)))"~7
~c(r~t—r)

~ce it

as t tends to . Therefore, regarding = as a (reducible) representation
of 8I(2, C), we can show that (m(Ad(U)@_i0en)?V; vs) (r=1tht/2) equals 0 or
behaves asymptotically like e~ "¢t (t— ). Then

llsl(fk~)p(at)|l ~ g Pllogla)) g=(ngtnp)t
and thus,
IIS2(F)(a.k)|| ~ et tra) dostan (t— o) .

This completes the proof of the theorem. Q.E.D.

§5. Main theorem.

We continue the notation in the previous section. Let G=SU(n, 1)
and suppose that p satisfies (A0), (A1) and (A2) in Theorem 4.6.
For fe;, let
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1 l2,x= 18Kl 226,72 | (5.1)

(see Lemma 4.5 and Theorem 4.6), and let 2,, denote the completion of
', with respect to this norm. Then by Proposition 3.2 and Lemma
4.5 we easily see that :

LeEMMA 5.1. =,,_ ., (9) (9 €G) preserves ||-|,, and 2; , i8 G-invariant;
S0 (7:01_#,,1_#, 2:.4) 18 a unitary representation of G.

LEMMA 5.2. Let H be a G-invariant closed subspace of 2;, If
¥, ;, belongs to H for some j,€l. and teK;, , then all . ; (e l)
belong to H.

PROOF. By the definition of . ; we see that

VeiKK)= 2 Tii(k)be, () (K, BT € K) (5.2)

and in particular,
Vo) = s Iz 06k 5.3)

Since H is G-invariant, 4 ;(kk') also belongs to H as a function of k.
Therefore, by the definition of the Riemann integral and the fact that
H is closed, (5.3) means that «. ;€ H for all jeI. Q.E.D.

We put
Ki.={r.e K;,_,; £>8\N)+p=N—a+} . (5.4)
Then we see the following
LEMMA 5.3. Let f be in 2;,. Then f has a decomposition such as

f=z a't,j'\b‘r,j ’
where jeI. and 7€ Kj3,.

PrROOF. We shall give attention to the right K-type decomposition
of f (see Lemma 2.4); it follows from (3.1) that f and f~ have the
same K-types which appear in their decompositions, and from (3.2) that
f~ and f~, have the difference of the K-types of 7. So f~, and f have
the difference of the K-types of #. Then the assumption implies that
S'i(f)=0 for all jeI,, and thus it follows from Lemmas 4.2 and 4.3
that A;/(f~,)=0 for all 1€ I,. Therefore, the desired result follows from
Theorem 12.6 in [KW]. Q.E.D.
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LEMMA 5.4. Let t=73,4. Then . ;€ 2;, for all jeI,, and in par-
ticular, 2, ,#{0}.

PrOOF. By the same argument in the proof of Lemma 5.8 we see
that highest weights of the K-types which appear in the decomposition
of (y. ;) (t€I,) are greater than or equal to A. Therefore, S;’ vanishes
all (v, )™, (see [KW], Theorem 12.6). This means that S"i(y. ,)=0 for
all 4, jeI, and thus 4, ;€ Q';, for all jeI.. Q.E.D.

LEMMA 5.5. S} is injective on 2, ..
PROOF. This is clear from Lemma 4.5. Q.E.D.

THEOREM 5.6. Let G=SU(n,1) and suppose that a 4, -dominant
integral form n satisfies 7,=y,=p and a A*-dominant integral form
p does (A0), (Al) and (A2) respectively. Then (m,z_#_,z_#, 2:,0) 18 an
irreducible unitary representation of G, whose matrix coefficients are
square-integrable on G.

ProOOF. We obtained in Lemma 5.1 that (xaz_u,”_#, 2,.) is a unitary
representation of G, so we shall prove the irreducibility. Let H be a
nonzero G-invariant, closed subspace of 2;, and let f be a nonzero
element in H. Then by Lemma 5.5 there exists a point g,€G for
which S:(f)(g,)#0. Since S} is G-equivariant (see Proposition 3.2) and H
is G-invariant, by replacing f with f,, we may assume that Si(f)(e)#0,
that is, :

Su(f)(e) =ZI. S:(f~)(e)r.(e)

=S;(f~)(e)
- sz-l(k)’l F(k)dk =0 . (5.5)

Here we recall that f can be written as f=>)a. ¥.; Where 7€ Kj,
(see Lemma 5.3); so the highest weight of ¢ is greater than or equal
to n+p¢ and thus, by the same argument in the proof of Lemma 5.3
highest weights of K-types which appear in the decomposition of f~;
are greater than or equal to . Therefore, if we put z,=7;,., We see
that

| 0 e k=0 ().

Then (5.5) implies that a., ;0 for some j,€ I,.
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On the other hand, it follows that

[ Zosoo ) F U =3 01 5| Ty (B T (I, )
=a’to,.‘i°"/rt‘o,i°(k) .

Here we recall that a.,;#0 and f is in a closed, G-invariant subspace
H. Therefore, applying the proof of Lemma 5.2, we can deduce that
Veoio € H and thus, 4 ;€ H for all je I, by Lemma 5.2. If H+2;, by
replacing H with the orthogonal complement H’ of H in the above
argument, we can also deduce that 4. ;€ H' for all jelI.. This con-
tradicts the fact that HNn H'={0}; so we see that H=®,, and thus the
representation is irreducible.
Now we shall consider the linear functional L on £2,, defined by

L(f)=<8Suf)e), e
for f€2;, Then there exists a ¢ in 2,, for which
LSi(f)e), e =(f, 9) ,
and thus, by Proposition 3.2, it follows that
(¢ 8)=L(3.)=<(Si(g.)e), e =<Su(p)®), &> (€ €G).

Therefore, the matrix coefficient (¢, ¢) belongs to L*G) (see Theorem
4.6). Since the representation is irreducible and unitary, it follows from
Theorem 1 in [V], p. 435 that all matrix coefficients are square-integrable

on G.
This completes the proof of the theorem. Q.E.D.

REMARK 5.7. If we start the argument with 4%’ instead of 4%, we
can obtain another class of the discrete series of G.

§6. Examples.

We shall apply Theorem 5.6 to the cases of SU(1, 1) and SU(2, 1),
and check up on the representations (7,,_,,.,_,» 21,)-

6.1. Let SU(, 1) be the subgroup of SL(2, C) which leaves in-
variant the hermitian form —|z|*+|z,/>. Then the discrete series of G
is originally realized on the L® weighted Bergman space on the unit disc
D={z€C; |z|<1} (cf. [Su], p.237); actually, let m€3Z and |m|=1, then
for m=1 the Bergman space A, ,_,(D) is defined by
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A2,,,,_1(D)={F: D—C; F is holomorphic on D and
1/2
1Pl nea=] | IF@FQ— ez ] <o 6.1

and for m< -1, A,,_,(D) is made up of conjugate holomorphic functions
on D with finite norm, where we replace m by |m|. Let T,(g) (g€ G)
denote the operator on A,,_,(D) defined by

T.(9)F(2)=J(g™", 2)"™F(g™*2) (mz=1),

6.2
T(@F@=leonj J(g™, DI Flg™2)  (ms—1), 6.2
where J(g, 2)=8"2z+a~ and
oy 2+ _|l® B '
g-z= Szt for g—[B_ a‘] and zeD. (6.3)

Then the representations (7., A,._(D)) (me€3Z and |m|=1) of G are
irreducible and unitary. They are called the holomorphic and antiholo-
morphic discrete series, respectively for m=1 and for m=<—1; they
exhaust the whole discrete series of G (ef. [Su], p. 290).

Let p=4na, (n € N) and V, the vector space of all homogeneous poly-
nomials of degree » in variables 2z, and z,, and let x,(9) (g € G) denote
the operator on V, defined by

w.(9)p(2)=¢(2-9) , (6.4)

where z-g=(az,+cz,, bz,+dz,) for g-——l:gg and 2=(z,, 2,) Then (z,,V,)

(ne N) is a finite dimensional representation of G with lowest weight
= d, =dimV,=n+1 and {v,"=[({—-D!(n+1-7)1]"2 72,7, 1<j5<
n+1} is the set of normalized weight vectors with respect to the compact
Cartan subgroup K=SO0(2) of G (see §3 and [Su], p. 326). Then we see
that p¢ satisfies the conditions (A0), (Al) and (A2) in Theorem 5.6.

By comparing the infinitesimal characters and the lowest K-types,
we see that the representation (Tar_ i 22,) V=P, t=4%n0) constructed
in Theorem 5.6 is equivalent to the antiholomorphic discrete series
(T Ay, i(D)) for m=—3%(n+1). Therefore, there exists an intertwin-
ing operator between £2,, and A4,, (D). In fact, we can. obtain the
intertwining operator by applying the Fourier transform associated with
a discrete series, which was investigated in [K] and [K2]; for f € L*¥G)
the Fourier transform F,.(f) associated with T, is defined by
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F.N@=\ f@T.a1@ds  (zeD), (6.5)

where 1 is the constant function on D taking the value 1. Some basic
properties of F, are summarized as follows. Let + be the normalized
matrix coefficient of T, corresponding to the lowest K-type of 7,. Then
F.(f)=F,(y*f)€A; n (D) and F,:¢xL¥G)—A,, (D) is bijective and
norm preserving (see [K], Theorem 5.2). On the other hand, since
dim 7;=1, it follows from Theorem 4.6 that S.(f)e€ L¥G) for feQ,,.
Therefore, we can obtain a composition map

F°S;11 . Ql,,u_—’Az,m—1(D) ’ (6°6)
and it is G-equivariant (see Proposition 3.2 and (6.5)).

THEOREM 6.1. Let n=p, pt=3na, and m=—(n+1)/2 (n=1). Then
the G-equivariant map F,oS, i1s an intertwining operator between
(7:,,2_#,,2_#, 2, and (T,, A, ._(D)); that s, it is bijective and

27 f s u=nlFnoSi()lems for feli,,
where ¢ 18 a constant which does nmot depend on f and n.

Before giving the proof we note the following

LEMMA 6.2. Let #=m, and C;-'=S 7 ;(ke)e "?d0 1=<j=n+1). Then
K
n+1
1_2: IC3P=2"" .

PrROOF. We note that » and Ad(u) (see §2) are respectively given

by
u—2“’2[ 1 1}
- -1 1

cos 30 isin %0}
18in 30  cos 36

and

Ad(uw)k,= !:

for k,=diag(e’’?, e"*?). Therefore, by substituting
7t (ks) = ((ko)v;, v,) = (w(Ad(u)ko)v;~, v,7) ,

where v,~=[(j—1)!(n+1—7)1]"%2,7'2,""~ 1<j<m+1), we can obtain the
desired result from combinatorial calculation. Q.E.D.
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PrROOF OF THEOREM 6.1. First we shall prove the equation of the
norm. Since dimz;=1, it follows from the proof of Theorem 5.6 that
for fe2;, Sif)x)=<(Sif)(x), e, (x€G) is a matrix coefficient of the
discrete series T, (m=—3(n+1)); so it is a linear combination of the
normalized matrix coefficients of T, (see (3.2) in [Ka]). In particular,
it follows from Lemma 3.1 and Theorem 5.2 in [Ka] that

n”Fmo /jl-(f)Hz,m—l=c|lql"*sft(f)||L2(G)
=c”Em(S,Lll(f))”L2(G) ’

where E’m(f)(oc)=s e f(k.x)d6 (x € G). Here we note that
K

B (S@=| e 3, Si(f ko), es)do

=| e 3 87 0@) 3wt
= 5, GSAH@) -

Therefore, as in the proof of Theorem 4.6 we can deduce that

| En(Si(Nl 22 =€ 22 [CHF 20 ISl 2
=¢27"|| fll1,. (by Lemma 6.2) .

This is nothing but the desired equation. Especially, F,oS; is injective and
the image is closed in A4, ,_,(D). Since the map F,oS; is G-equivariant,
the image must be G-invariant. Therefore, noting the irreducibility of
T, we see that the image coincides with A,,_,(D), so the surjectivity
of F,oS, is obtained.

This completes the proof of the theorem. Q.E.D.

REMARK 6.3. (1) The representation stated in Remark 5.7 corre-
sponds to the holomorphic discrete series and Theorem 6.1 holds with
m=3n+1)=1.

(2) When p¢=0 (n=0, m==+1%), Theorem 6.1 also holds if we replace
A, ._.(D) by the Hardy space H*(D) for m=3% and the conjugation for
m=—%. In this case, F.,, are defined by using the limits of discrete
series T.,, (cf. [Su], Chap. V, §2). Especially, S, and S’; coincide with
S, and S,’ respectively; so this case is nothing but the classical theory
of the Szego operator (cf. [Ru] and [Ra], p. 178).

(3) Let G=SU(n,1) and suppose that the lowest K-type of the
discrete series (”"2—;“"2—#’ 2,,) is of one dimensional. Then it is possible
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to generalize Theorem 6.1 as a relation between 2, , and the L* weighted
Bergman space on G/K. Actually, by using the Fourier transform as-
sociated with a discrete series (see [K2]), we can obtain the generalization
by the same argument as above.

6.2. Let G=SU(2, 1) be the subgroup of SL(3, C) leaving the her-
mitian form |z,*+|2,]*—|2,]> invariant; K=S(U(2)x U(1)) and

cht sht
A={{a,= 1 s tER} . (6.7)
sht cht
Then g,=38I(3, C)={X € M,,(C); tr(X)=0} and
t,={T, ,=diag(a, b, ¢); a+b+c=0, a, b, c€C}. (6.8)

Let 4,7 be the positive root system of (g, t.) requiring that
a(T,)>0 for a€4,* (6.9)

and let a,, o, be the simple roots in 4,". Let A4, and 4, be the basic
highest weights defined by

p=2utd g it (6.10)
3 3
Then 2{4,, a;)/{a; a;)=08,; 1=14, j=2); 4, and 4, span t,*.

As obtained in §7 in [W] each element in G”, the set of all equiva-
lence classes of irreducible unitary representations of G, is parametrized
as w,, where A=k A, +k, A, (k, k,€C). Actually, the discrete series and
the limit of discrete series are parametrized by a pair of integers k,
and k, satisfying the following conditions (see [W], pp. 183-184);

the holomorphic discrete series (HD): k,+k,<—2, k, <0, £,=0
the antiholomorphic discrete series (AHD): k,+k,<—2, k,<0, k,=0

the nonholomorphic discrete series (NHD): k,+k,<—-2, k,<-—1, k,<-—1
the limits of discrete series (LD1): k,+k,=—2 k>—1

the limits of discrete series (LD2): k,+k,=—2, k,>—1.

Then G~ consists of the representations listed above combined with the
irreducible unitary principal series, the extra representations and the
trivial representation.

Now we shall check up on the representations (o i 2,,,) obtained
in Theorem 5.6. First we replace the positive root system 4,7 with
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4t ={—a, a, — g} =8,8,4," (6.11)

where s, is the reflection in t,* with respect to a, (1=<1<2). Then
a,= —q; is the positive noncompact simple root and

1 -1
u,=expGn(E,—E_))=1"2 * vV'2 (6.12)
1 1

(see §2). Therefore, the Cayley transform Ad(u,) carries t, to

—u/2 v/2
b=4H,,= U su, veC)} . (6.13)
v/2 —u/2 J ‘
Actually,
Ad(u,)(T.,)=H,,, ; u=b, v=2a+b, (6.14)

and if we put g,=Ad(u,)a; 1<1=8), we see that

Bl(Hu,v)= ""3%"}"'1) ’
B(H, ) =3u+v, (6.15)
IBS(Hu,v)"—"z'v 4

Therefore, the positive roots system ¥* of (g, §.) defined in §2 is given
by

w+={/61, Bas Bs} . (6-16)

We note that the representation x, in [W] corresponds to R p—syts, I
our notation, and then, x=—/4 (see §2.8). Therefore, the limit of dis-
crete series 7, (v;=p) in §2.8 corresponds to (LD1) in [W] because )=
—(k,4,+k,4,) is dominant with respect to 4,*={—a,}, so k=0, and y,=p
implies that k,+k,=—2.

Let =z, be a finite dimensional representation of G with lowest
weight —puet* with respect to 4*. In order to apply Theorem 5.6 to
SU(2, 1) we have to determine the set of x satisfying the conditions:

(A0) A— is 4,*-dominant , .
(A1) {ty ay>0, (6.17)
(A2) i=d,, .

We recall that (A2) implies that g, =—poAd(u,)*€h* is the highest
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weight of 7, with respect to ¥* (see §3). Then, by the classification
of finite dimensional representations of 8I(3, C) (cf. [AS], p. 1231), we see
that g satisfies (A2) if and only if

p=—md, (m=0,1,2,---). (6.18)

Suppose that g is of this form. Then p satisfies (Al) for m>0 and
(A0) for m<k, when x=—kA,—k.,A,, k,+k,=—2 and k, =0; so the set
of p satisfying (6.17) is given by

(= —md; 1sm=<k,}) (6.19)

for the above ). Therefore, we conclude that the representations
(o i 2;,) correspond to the antiholomorphic discrete series with
lowest K-type n+ gt (74, in [W]), and they exhaust the whole (AHD) in
the list.

Similarly, if we start the argument with J4*=s,8,4,% instead of
s,8,4,%, we can obtain the holomorphic discrete series (HD) in the list
(see Remark 5.7). However, we cannot obtain the nonholomorphic dis-
crete series (NHD) in our method, because ¢ has to satisfy the condition
(6.19).
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