Tokyo J. MATH.
Vor. 13, No. 1, 1990

On the Convergence of Series of Fourier Coefficients
of Vector Valued Functions

Tatsuo KAWATA

Keio University

§1. Introduction.

Let X be a Banach space with norm ||-|| and let x(¢) be an X valued
function on — « <t{< o which is 2z periodie: ||x(t+2x)—x(t)||=0 for every
t, and integrable (in Bochner sense [2]) on T'=(—x, #). One may define
the Fourier coefficients of «(t):

c,,=——S’r x(t)e "dt , n=0, +1,.--. (1)
27 J-n
Kandil [6] has studied the unconditional convergence of > _.c¢, in X
and the convergence of > _.|c.]] when X is a Hilbert space, and he
gave sufficient conditions for those sorts of convergence, which are anal-
ogous to the known criteria for the absolute convergence of ordinary
Fourier series of complex valued functions.

The purpose of this paper is to generalize Kandil’s results as well
as the author’s theorem on the convergence of > |lc,|| when X is the

~ space of random variables [7], [8].

We introduce some notations. Let L?(T) be the class of complex
valued functions f(t) with S |f®)|Pdt<< oo, p>0, as usual. The class of
T

xz(t) with ||z(¢)|| € L?(T) is denoted by L*(T), p=1. We remark that such
function x(t) is integrable. Write

el = " llawlae [, pz1.

Letting

AP 3(E) = ,Z' (—1>r~k<z> 2(t+Kh) ,
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the difference of the r-th order, we describe the r-th integrated modulus
of continuity of «(t) by

3}[156IIiAh"x(-)lllp=M£"(8) , 6>0

and the continuity modulus of () by

sup sup Ildf.”w(t)ll=813£,IIIAIw(-)le——-M"’(B) , 0>0.

k1S3 teT Ik

§2. Unconditional convergence of >, _.c,.

The unconditional convergence in X is usually defined for unilateral
series >, %., 2, € X, n=1, 2, ---, but the definition of unconditional con-
vergence for bilateral series >, _.. «, is also naturally made, and the
equivalence of unconditional convergence in X and the convergence of
all subseries, which is due to Orlicz [10, I], is also true for bilateral
series, and the unconditional convergence of >.» _.x, is equivalent to
the unconditional convergence of both series >\ _. x, and >, «,.

We shall study the conditional convergence of the Fourier series
S o€, Of z(t), ¢, being given by (1). We actually do this along the
line of Kandil [6]. Let X* be the conjugate space of a Banach space X.
Suppose z(t) € L*(T') for some p=1 and let * € X*. The norm of a linear
functional x* is denoted by ||x*||. Write the Fourier coefficients of the
complex valued function x*x(t) by

c:=—21;c-8” errd)eMdt=x%c,, n=0, +1, +£2, ... (2)
We see
lexl=llz*|| - lleall - (3)
Since [x*x(t)|? < ||z*||7- ||2(E)||?,
o*x(t) e L(T) (4)

and the ordinary Hausdorff-Young inequality when 1<p<2 applies to have

(S )" s =\ amawprat [ scle -, . (5)

where, 1/p+1/p’=1, C is a constant depending only on p.
LEMMA 1. If 1=p=<2, xz(t)e L*(T), then
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(2 [z*el”)” <Cllz*|M;" (1/m) (6)

for every positive integer n, where r is any positive integer and C is
a constant depending only on p and r.

PROOF. The Fourier coefficients of 4{"z(t) are c,(1—e*™), k=0, +1,...
and we have from (5) with x*c,(1—e**)" in place of ¢,

L2 mraa—emyi [ scletl- liap sl

C being a constant depending only on p. In what follows C’s are constants
depending only on p and r and may be different on each occurrence.

Integrating both sides of the last inequality with respect to 2 on
(0, 1/n), multiplying by = and using (5), we have

nsl/n( 2. |@*e,|”

k=-—oco

Zsmkzh )‘”’"dh<cnx*nn§ 4Pl dh  (T)

=Cllz*|| sup |[||472()|l],
lhl=1/n
=Clle*|| M3 (1/n) .
On the other hand, the left hand side of (7) is not less than

)up’dh

which is, because of the Minkowski inequality, not less than

h)p':]l/p' .

1/n
2fn§ ( S jw*e,|?”
0

lklzn

sin —
2

2’[2 |2*c,|?’ So ‘sm——z—

el

Since, for |k|=n,

),

n Sk/n
Tk o
the last one is not less than

C( 22, lw*el*y”" .

sin ——
2

sin—;i'fdu;C>0 ,

This shows Lemma 1.

THEOREM 1. Let 1=p=2, x(t)e L*(T). If

S M Ay <eo O (®)
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for some positive integer r, then

S [@ten <o . (9)

n=—oo

ProoF. The proof is carried out by the well known method of
Riemann’s condensation as was done in the author’s papers [7], [8].
We have

3. |z*e. =2 |[z*¢.|

n=3 n=1 k=27+1

which is, by means of the Holder inequality, not greater than

oo on+1 * , 1/p’ e d * , 1/p’
2 S Jare ) sS2ve( 3 lere)”

n=1 k=27 k=2m+1

Because of Lemma 1, this is not less than
Clle*|| 3 27> M (1/2")
n=1
oo 2n
=Cllz*| S 2773, 1)Ma/zy)
n=1 m=2R"141
<Clz*| 32 3 MPA/m)
n=1 m=2"—141
<Cllz*|| 3 m~ " M (1/m)< oo .
m=1

The same is true for >.:2_. |x*c,| and the proof is complete.

The combination of Theorem 1 and Orlicz-Banach’s theorem ([4] p.
93, [9]) that if the Banach space X is weakly complete, then the series
(., n=1,2, --+}, ®#,€X is unconditionally convergent if and only if
S |x*e,| << oo, gives us:

THEOREM 2. Let 1=<p=<2, 2(t)e L*(T). If X is weakly complete and
the condition (8) is satisfied, then >.x._. c, 18 unconditionally convergent.

We note that the conclusion of this theorem cannot be replaced by
the convergence of 3.2 _. |lc.||. This was shown by Kandil [6].
§3. Series of Fourier coefficients of functions of strongly bounded

variation.

Let 2z-periodic X valued function x(t) be of strongly bounded varia-
tion, namely
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V= s})).ij:; fe(t;) —2(t; )| < oo (10)

for all divisions D of T, —n<t,<..-<t,<m. We easily see that for
h>0

Sinllfc(t+h)—m(t)||dt§2hV. (11)
From this and since 4"x(t)=4{""[2(t+h)—x(t)] we have
| lapa@naeszny. (12)
LEMMA 2. If x(t) e L*(T), p=1 and 1is of strongly bounded variation,
then for every positive integer r and for 6>0, 1/p+1/p'=1,
M) =C[M™()]/*'ov" , (13)

where C 18 a constant depending only on r and p.

This is substantially known and in fact the proof is just the same
as that of Lemma 2.1 of [8].. From Lemma 2 and Theorem 1 we readily
have

THEOREM 3. If 1=p=<2, X is weakly complete and x(t) is of strongly
bounded variation, and

S, M) < oo (1)
18 satisfied, 1/p+1/p'=1, then 3.2 _.c, i8 unconditionally convergent.

§4. Series of Fourier coefficients of Hilbert valued functions.

We study the convergence of 3 |c.|| as Kandil [6] did when X is a
Hilbert space.

This case is very much similar to that already considered in [8] and
actually much simpler, because, for Hilbert valued periodic functions, the
Parseval relation holds true: if X s a Hilbert space and x(t) e L¥T),
then

llzlE=2=|" le@irde= 3 lleall - (15)
7T n=--00

For a general Banach valued funection of L*T), (15) does not neces-
sarily hold [2].
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(15) is a particular case of the fact that if x(f) and y(¢) are Hilbert
valued function of L*T), then the Fourier series of

h(t)=-—21 S (x(t—u), y(u))du
T J-r
is absolutely convergent and

hE)= 3 (cn dr)e™ , (16)

n=—co

where (-,-) is the inner product and c,, d, are Fourier coefficients of
2(t) and y(t) respectively.

Now Lemma 1 with p=2 keeps being true if ||c,|| is taken for xz*c,,
and we have

(. énllckllz)"zéCMz‘”(lln) ’ 17)

C being a constant depending only on ». Furthermore the proof of
Theorem 1 goes through, z*c, being replaced by |lc,/| and »=2. Thus
we have the following

TuEOREM 4. If a(t) is a Hilbert valued function of LXT) and the
condition

S MO (1n) < oo (18)

n=1

18 satisfied for some positive integer r, then

3 fedi<ee . (19)

We also have

THEOREM b. If xz(t)€ L¥(T) is a Hilbert valued function of strongly
bounded variation and the condition

S MO /)] < oo (20)

n=1
18 satisfied for some positive integer r, then (19) holds.

These are slight generalizations of Kandil's results [6].

§5. Series of Fourier coefficients of L%0, 1) valued functions.

Let {f.(w), n=1,2,---} be a sequence of real valued functions on
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0, 1). Suppose Sfo(w)e L*0, 1), n=1,2,.--., a=1. Write, as usual, || f.||.=

[ 1rdu [
Orlicz [10] I, II, has given the theorem:

A. If a series 3.7, f.(w), f.(u) € L0, 1), is unconditionally convergent
(#m L*(0, 1)), then
(i) for 1=axs2

iMs

N Salle <o (21)
(i) for 2=a<eo

falls<e . 22)

iMe

Now consider an L*(0, 1) valued, Zn—periodic function of ¢. We may
write such funection (¢, u), t€ T, we(0,1). Suppose throughout (¢, u)
is measurable in rectangle Tx (0, 1).

Write for 1=sa<ow, 12p= o,

N, Mllpe=] 5| lloct, )zt [ (28)
M) =sup [1403(- )l . (24)

for any positive integer ». The class of z(f, u) with [|[2(-,)|||, <o
is denoted by L*»*(Tx(0,1)). Obviously ||[@(:,)ll,.«=[/|(-,)|/l,. and
L»*(T'x 0, 1))DL**(Tx (0, 1)) for 1=p=gq.

For «(t, u) € L»*(Tx (0, 1)), the Fourier coefficients are

cn(u)z—l_S" o(t, wetdt,  m=0, +1,--- 25)
27 J-=

and we see c,(u) € L*(0, 1), for the Minkowski inequality gives, for 1<a,

1 1 T :]a 1/e 1 T
. < — <_.___ . pomand . . oo,
leaMas{§] | tott, it [an} < LY o, dlede=laC- )l o<

Let 1=sa<e, 1=p=<2. Since L%, 1) is weakly complete ([4] p. 289,
290), we see, from Theorem 2, that for x(t, u) € L**(Tx (0, 1)), 3% _. c.(%)
is unconditionally convergent in L=(0, 1), if

ocd

2T M (1 n) < oo (26)
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is satisfied for some positive integer 7.
Now applying A with Rec,.,(u), Ime,,(u), for f,(v) and combining
results obtained, we have

THEOREM 6. Let 1sa<w, 1=p=<2 and z{, u)e L*»*(Tx (0, 1)). If
(26) is satisfied for some positive integer r, then
(i) fo'r 1=sa=2,

P IXOTE @n
(i) fSfor 2=a< o,
S flea(a< e (28)

This result will be partly generalized in the corollary of Theorem 7
later on.

§6. Series of Fourier coefficients of L*(S) valued functions.

We shall now consider the more general case of L*(S) valued functions
where S is a general measure space, a g-field 3 of measurable sets and
(positive) measure ¢ being given.

L*(S) denotes the class of functions f(u) defined on S such that

Sslf (w)|*dpe< o. Let x(t) be 2x-periodic L*(S) valued functions. As before

we write z(t) by x(t, ) so that for each ¢, S |2(t, w)|°dpe<oo. Throughout
S

in what follows we assume that S is ¢g-finite and x(¢, u), te T, ue€S is

measurable on the product space T xS, product measure being introduced.
We write

||(e, -)I|a=Uslw(t, u)l"d#]w (29)

ey Ml.a=[ 5| Mot olizat [, (30)

for 1=a, p. (80) is a generalization of (23). The same notations (23)
and (80) will give no confusion. The class of x(f, u) with |||z(-,)|ly,.<o°
is denoted by L?**(TxS). Since we assume S o-finite and «(¢, ) is in-
tegrable on (T'xS), Fubini-Tonelli theorem is true and the Minkowski
inequality and the interchange of the order of integrals are allowed to
apply in what follows. Write for any positive integer 7, without any
confusion with (24),
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M0y =sup [I1472(, lp.e 31)

Consider the Fourier coefficients of «(f, u) on T

c,,(u)=—1—87r x(t, u)e *"'dt , n=0, +1,:--
27 )=

The author [7] [8] discussed the convergence of 3’ |c,(x)| in the case in
which S is a probability space. The convergence of > ||c.(+)||* for some
B3>0 was also studied implicitly in there. Let 1/p+1/p'=1.

LEMMA 3. If 1<p=<a=<p', 1=sa<o and x(t, u) € L**(TxS), then

[ 2 ez ] sCllat: )l (32)

n=—00

where C 1s a constant depending only on a and p.

This is an immediate consequence of the Minkowski inequality and
the ordinary Hausdorff-Young inequality, because, noting 1=p=<2, a=9p’,

we see that
ngllc,(o)llﬁ']‘@;{ 2 [Sslc"(u)l“dp]p'/“}l/l”
{ [ gm|cn(u)|pl]“/p'd#}w

|

=c| S[LDx(t, u>|rdt]“’”dp ”“

1 .
stk [] mt o] “af
=Clll2(+, .« »
C being a constant depending only on « and p.
Using Lemma 3, we also have

LEMMA 4. Let x(t, w) € L»*(TxS).
(i) If 1=p=2, 1=p<a<w, lla+1l/a’'=1, then

[' k%.n||0k(')Hﬁ']””'§CM$TL(1/%) ’ (33)
() of 1=as=p=<2, then
[ lleullE 1 SCMn/m) @
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where r 18 any positive integer and C’s are constants depending only
on p, @ and 7.

The proof of Lemma 4 is carried out just in a similar way as in the
proof of Lemma 1 with ||c,(+)|l. in place of |x*c,| and as a matter of fact,
the lemma was shown in Theorem 5.2 (5.4) of [8] (in which the left hand
side of (5.4) should be read as [}z, ||Ci(®)]5']¥" and a constant C is
missing on the top of the right hand side of (5.5)), when S is the prob-
ability space. The proof does not require any change.

THEOREM 7. Let 1=p=<2, 1sa<ec, 0<B and suppose x=(t, )€
L»*(TxS).
(i) If 1=sa=p=2, 0<B=a and

S, n P (ML /0)F < oo (85)
n=1
18 satisfied for some positive integer r, them

S llea(liE< oo (36)

N=—00

(i) if 1sp=sa<e, 1=sp=2, 0<B=D" and
> P (ML) < oo 87)

18 satisfied for some positive integer r, then (36) holds.

The proof is carried out by the known argument in the theory of
absolute convergence of ordinary Fourier series ([11], Chap VI, 3. Also
see [8]). Just for completeness, we give the proof.

PrOOF. In order to prove (i) and (ii) simultaneously, we write 6=
min(p, «) and 1/6+1/6'=1. Note that §=1. 1=p=<2 and 0<B=6¢" in both
cases. (35) and (87) reduce to

co

> n PP IM A /M) < oo (38)

Now using the Holder inequality, we have

+

S leMe=5 S lleu()lE
<3 [ 3 Jleile | zreren
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on+1

SIS OUF RS
PR P YOI

m=27"141

<3 5wl Sheer |

I

which is, because of Lemma 4, not greater than

c3 5. morimaamy
=C3, m P [MyL(1/m)) .

1

3
[

C’s are constants depending only on », « and 7.
The same thing is true for 3.;2_..|lc.(+)||4 and the proof is complete.

§7. Some remarks.

First we mention that, for =(¢, u) € L"*(TxS), 1=sa<co,
lew()la—=0,  m—c£oo. (39)

By the ordinary Riemann-Lebesgue lemma, c,(u)—0 as n— oo, and

le.(w)| = K(w)

where K(u)—_—.zl_r \z(t, w)|dt and S K*(uw)dy is, by the Minkowski inequali-
7T J—=n S :
ty, not greater than

I, _21?8 @ (t, u)ldt] dys{2n_g U (¢, u)l“dy] “at}”

= |[la(e, IIlla< e .

Hence the Lebesgue convergence theorem applies to have (39).
Now we give some remarks in connection with Theorem 7.

REMARK 1. If 1=p=<a, 1=p=2, then taking g=p' in Theorem 7 (ii)
we have the covergence of 3.2 _.. |lc.(+)||z" under the condition (87) with
p’ for 8. However from Lemma 3 1f 15p<a5p S |lea( )l|” < oo
without the condition (37).

In this case .2 _. |lc.(*)]|f< = for g=p’ since |c.(:)||,—0. Note for
B>1p’, (87) is automatically satisfied since as we easily see M7\ (1/n)=0(1).

Theorem 7 says that if 0<g<p’, still 3 _.llc.()lls<e as far as
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(37) is satisfied for some positive integer 7.

REMARK 2. We shall give some other special cases of Theorem 7
particularly in relationship to Theorem 6.
We first take 8=1. Then Theorem 7 (ii) becomes:

Let 1=p=<2, 1=psa<. Then the condition that
S VP ML) < oo (40)
n=1
Sfor some positive integer r, implies

PO, (41)

When S=(0, 1), 2 is the o-field of Lebesgue measurable sets and p
is the Lebesgue measure, the condition (40) is no more than (26) and the
condition (41) is much better than (27) in Theorem 6, since |c.(:)||.—0,
n-—>*+oo, so that even if S is the above special case (0, 1), (41) holds
true whether a is less than 2 or not, as far as 1<p<a. Hence this
partly generalizes Theorem 6 (i).

REMARK 3. Taking =2 or a, we have the following special case
of Theorem 7 which we state as a corollary.

COROLLARY (of Theorem 7). Let 1=p=<2, 1=a< and z(t, u)e
L»*(TxS).
(i) 1=p=a<o and

S, n~ M < oo (42)

18 satisfied for some positive integer r, then

0

25 llea(lla< oo . (48)

(ii) 1=p=a=p and

z:',l n= P [ ML) < o (44)

18 satisfied for some positive integer r, then (43) holds.
(iii) 1=Sa<p=2 and

3, n MM < oo (45)
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18 satisfied for some positive integer r, them

3 llea)llg<e (46)

(iv) 1=a=p=2 and
S, e M) < oo | 47)

18 satisfied for some positive integer r, then (46) holds.

In order to get (27) in Theorem 6, the condition (26) and 1=as2,
were needed, while in the above Corollary (i) with S=(0, 1) and Lebesgue
measure, the condition (42) is much weaker and the conclusion (43) is just
the same as (27). Further 1=p=<a does not exclude a>2.

In Corollary (ii), the condition (44) with S=(0, 1) is weaker than (26)
but besides 1=p=a, the restriction a<p’' was made, though this does
not force ax<2.

§8. Almost everywhere convergence of >, |c.(u)| .

We shall consider the almost everywhere convergence of > _.. [c.(uw)]
in S, where c,(u) is the Fourier coefficients of x(t, u) € L»*(T'xS). The
author studied the same problem where S is a probability space and
applied the results to the discussion of sample continuity of a stochastic
process.

Since we have been assuming S g-finite, there are {S;, 7=1, 2, - - -} such
that S= U7, S;, #(S;)<c. Therefore in order to have 3.7 _. |c.(u)|<oo
for almost all w €S, it is sufficient to show it for almost all u € S; for
each 7, and hence it is sufficient to prove

> | le@dp<e . (48)

n=-—oo

Now for a=1

[, leawldusim@)1] | lewldu | S1S1 el

Thus the sufficient condition for >7__. |lc.(+)|l.<cc ensures (48), so that
Theorem 7 with g=1 gives us the following theorem.

THEOREM 8. Let x(t, u) € L»*(TxS). FEither if 1=as<p=2 and
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for

for

(1]
(2]

(3]
[4]
[5]
(6]
[7]
(8]
[9]
[10]

[11]
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S, n VM) < oo (49)
n=1

some positive integer r, or 1f 1=pSas o, 1Zp<2 and
>, 0w ML) < oo (50)
n=1

some positive integer r, them Div _. |c,(u)| <o almost everywhere in
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