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Introduction.

Let F be the Fock type Hilbert space of analytic functions f(z) of

n complex variables z=(z, 2,, ***, 2,) € C", with the scalar product
(f, =7\ FT@o@exp(— e}~ —ladz - da,
with
dz,«+-dz,=dx, - de,dy, - dy., , 2;=x;+1Y; ,

and let H be the usual Hilbert space L*(R"). Bargmann constructed in
[1] a unitary mapping A from H to F given by an integral operator
whose kernel is related in some definite sense to the Hermite polynomials.
More precisely, f=A¢ for ¢ € H is defined by

r@=\_Ae os@da
with
— —n/4n 1 2 2 1/2
Az, ) =7*T] exp{— L& +a) +2"20,} -

The purpose of the present paper is to show that similar constructions
are possible for some other classical orthogonal polynomials.

§1. The arguments for the Gegenbauer polynomials.

Let » be a positive real number. The Gegenbauer polynomials C2,
m=0,1, 2,.--, are defined as the coefficients in the expansion
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(1-22q+2)=3,Ch@e",  (—1<g<1, <)

and have the following orthogonality relation:

0 (m=k)

| ciacioa—gydg=|___zrm+2n) (m=k) .
- 247 (m +1)m! [T ()T

Let g% stand for the normalization of C? with respect to K;=
L*(—1, 1), A—¢»*?), with the scalar product

@, ¥i=\ FDr@A—g)dg .

{¢% | m=0,1,2,.--} is a complete orthonormal system in K, since C} is
a polynomial of degree m. '

The Hilbert space F, consists of analytic functions f of one complex
variable on B, the unit disk, |z|]<<1. The inner product is given by

{fy 2= SBsz)g(z)Pa(IZF)dxdy (z=x+1y)

where
1 1—1 ! -2 . 24—2
o o S‘s (1—s)"*ds (a>1/2)
T g TA=N) 1 laq ey
v TR — Sos A—s)ds}  O<As1/2) .

The next equality is easily computed for »>1/2.

2m 2 — m!
| emeuehdady =Tl . (1)

From the analyticity with respect to ), this equality holds also for
o0<n=1/2.

PROPOSITION 1. Suppose that f is an element of F, with the power
series expansion

fl2)= g‘, 2™ .

Then
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co

2__ — Tm! 2
7=, £3= o

ProoF. For 0<o<1,
|, [f@Peiaidedy

=3 laal| _[emo(al)dady <\ ,

which implies our assertion immediately. q.e.d.
COROLLARY. If feF, then
| F @)= |la(Ra(l2D)

where

mg) =3, mEaLnE R o

The preceding corollary asserts that the strong convergence in F;,
implies the uniform convergence on every compact subset of B. Hence
F, is a Hilbert space and from Proposition 1 we see that a complete
orthonormal system in F; is given by the functions

uf,,(z)=< (m+A)T(m+2)\) )1/2z”' )
Tm!

The main theorem is

THEOREM 1. A wunitary operator, f=A;4, of K, onto F, is defined by

r@=\" A, 9p@A—ay-dg,

where

At A eW)Y 1—2
Az(Z; Q) = (1 —qu +zz)z+1 :

Proor. It is easy to see that

Az, q)= g:i/:ti(}l gﬂ (m+1)CA(Q)z™ .

(i.e., A,(2, ) can be regarded as a generating function for the Gegenbauer
polynomials.) Therefore
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Az 0= 35 SLOUA®) - (2)

We can consider that the right-hand side is the Fourier expansion for
A,(z, q) as a function of ¢, because >in_, [ui(2)[*< = for ze€ B.
Let ¢ € K;, then

(49)@)= (3 D ).
=3 @4 PDiUk(@) .

Hence, ||A:¢/|i=2im=0 [(¢0 #)il*, i.e.,
lAaglla=lglx - (3)
Substituting ¢ for ¢, we obtain
ubh=Ap% . (4)

It follows from (8), (4) that A, is a unitary operator of K, onto F,.
q.e.d.

The inverse operator A;!, which exists by Theorem 1, cannot be
expressed as an integral operator like A;,. But we have

PROPOSITION 2. If fe F,, then

Arn@=lim.| e O @eierdedy ,

or, more precisely

lim|" |@arn@-| TE or@exandedy | a—gy-rdg=0 .

z

PROOF. Let f be an element of F;, with the power series expansion
F@)= 3 autih(@) -
Using (2), for 0<g<1, we obtain

Slzlsamf (2)0:(|2[")dzdy

oo

=3 @a| _wa@reededy .
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The right-hand side can be regarded as the Fourier expansion for the
left-hand side. Hence,

[ [arn@-| @ 0r@edendedy| a—a-dq
= éo |t — M (o)
=3, 1- M)l
where
Mio)=| i@ loieldady

Therefore, we obtain the assertion. q.e.d.

REMARK. The Gegenbauer polynomials for A»=1/2 coincide with the
Legendre polynomials P,, m=0,1,2,---. Hence if we put A»=1/2 in
Theorem 1, we obtain the desired result for the Legendre polynomials.
In particular, we remark that in this case p,,(f)=t""~

§2. Some application to spherical harmonics.

We consider some application of Theorem 1 to the Funk-Hecke

formula.
For a fixed =8, let S** denote the surface of the unit sphere in

R", do the element of surface area on S*' and w, the total surface
area. Let finally H, be the space of all spherical harmonics of order k&

on S" I,
Now the Funk-Hecke formula is given in the following theorem.

THEOREM 2 (Funk-Hecke). Suppose that ¢ is an element of L'((—1, 1),
A—g»)"*?), Then, for S,€ H, and weS*™, :

[, (@, D8 )da()

= Wn_Sy(®) S 11¢(CI)P(’C, Q1 —g»)"2"*dgq ,

where

. k!F(’n—z) n—2) /2
Pk, )= Cr—2/ .
R e N C)
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First of all, we let » be an element of the open interval (—1, 1)
and set ¢(q)=A(,_y.(7, q¢) in the Funk-Hecke formula. Using the formula
(4) ui=A;¢% with A=(n—2)/2, we then obtain the following:

Ssn—lA‘"“z’/ (7, (@, ))S(7)do(7)

—o—(n—-81/2 I'n—2) .
=2 4 ""‘""—_r((n-z)/z) r*S,(w) . (5)

On the other hand, the integral kernel A _,,(r, g0 and the Poisson
kernel

1—7°
A—-2rq+r>)"*

2.(Q)=

differ only by a constant. So we obtain
rSi@ =o' _p(@, D)S(0)do() . (6)

This equation is well-known as the Poisson integral. Thus we conclude
that the equation (6) is only a special case of the Funk-Hecke formula.

Conversely, it is possible to obtain the Funk-Hecke formula from the
equation (6). Since the element of surface area d¢ is invariant under
the orthogonal group O(n), we obtain that

[ @ i, Dot

= w,._lg 1_1¢£.(q)¢§(qx1 —g»)*dq
= wn—laml

with A=(n—2)/2 and w € S**. Therefore, for S, € H,,

5| @, DS
=| _ 5 wmeil@ DS0)dew)

={, .4, @, NSiDdo()

—9-0-1/2 ') r*S,(o)

n—1 F(),)
with A=(n—2)/2 and —1<r<1. This implies
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wh(n)| i@, DSiD)da()

—(a=1 I'(2\) x
=§,,2" 4 o S ,
k Wn_y o0 r*Si(w)

which is equivalent to the following:
Ss’n"'1¢i‘((w’ T))Sk('z')dO'(T)
=a’n—1sk(0))§1_1¢fn(Q)P (k, @)(1—q***dgq .

Hence, we obtain the Funk-Hecke formula for ¢! with A=(n—2)/2. It
follows from this result that the Funk-Hecke formula is true for any .
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