Hilbert Spaces of Analytic Functions and the Gegenbauer Polynomials

Shigeru WATANABE

Sophia University
(Communicated by N. Iwahori)

Introduction.

Let F be the Fock type Hilbert space of analytic functions f(z) of n complex variables $z = (z_1, z_2, \dots, z_n) \in \mathbb{C}^n$, with the scalar product

$$(f, g) = \pi^{-n} \int_{C^n} \overline{f(z)} g(z) \exp(-|z_1|^2 - \cdots - |z_n|^2) dz_1 \cdots dz_n$$
,

with

$$dz_{\scriptscriptstyle 1}\cdots dz_{\scriptscriptstyle n}\!=\!dx_{\scriptscriptstyle 1}\cdots dx_{\scriptscriptstyle n}dy_{\scriptscriptstyle 1}\cdots dy_{\scriptscriptstyle n}$$
 , $z_{\scriptscriptstyle j}\!=\!x_{\scriptscriptstyle j}\!+\!iy_{\scriptscriptstyle j}$,

and let H be the usual Hilbert space $L^2(\mathbb{R}^n)$. Bargmann constructed in [1] a unitary mapping A from H to F given by an integral operator whose kernel is related in some definite sense to the Hermite polynomials. More precisely, $f = A\phi$ for $\phi \in H$ is defined by

$$f(z) = \int_{\mathbf{R}^n} A(z, q) \phi(q) d^n q$$

with

$$A(z, q) = \pi^{-n/4} \prod_{j=1}^{n} \exp \left\{ -\frac{1}{2} (z_j^2 + q_j^2) + 2^{1/2} z_j q_j \right\} .$$

The purpose of the present paper is to show that similar constructions are possible for some other classical orthogonal polynomials.

§1. The arguments for the Gegenbauer polynomials.

Let λ be a positive real number. The Gegenbauer polynomials C_m^{λ} , $m=0, 1, 2, \cdots$, are defined as the coefficients in the expansion

$$(1-2zq+z^2)^{-\lambda} = \sum_{m=0}^{\infty} C_m^{\lambda}(q)z^m$$
, $(-1 < q < 1, |z| < 1)$

and have the following orthogonality relation:

$$\int_{-1}^{1} C_{m}^{\lambda}(q) C_{k}^{\lambda}(q) (1-q^{2})^{\lambda-1/2} dq = \begin{bmatrix} 0 & (m \neq k) \\ \frac{\pi \Gamma(m+2\lambda)}{2^{2\lambda-1}(m+\lambda)m! [\Gamma(\lambda)]^{2}} & (m=k) . \end{bmatrix}$$

Let ϕ_m^{λ} stand for the normalization of C_m^{λ} with respect to $K_{\lambda} = L^2((-1, 1), (1-q^2)^{\lambda-1/2})$, with the scalar product

$$(\phi, \psi)_{\lambda} = \int_{-1}^{1} \overline{\phi(q)} \psi(q) (1-q^2)^{\lambda-1/2} dq$$
.

 $\{\phi_m^{\lambda} \mid m=0, 1, 2, \cdots\}$ is a complete orthonormal system in K_{λ} since C_m^{λ} is a polynomial of degree m.

The Hilbert space F_{λ} consists of analytic functions f of one complex variable on B, the unit disk, |z| < 1. The inner product is given by

$$\langle f, g \rangle_{\lambda} = \int_{B} \overline{f(z)} g(z) \rho_{\lambda}(|z|^{2}) dxdy \qquad (z = x + iy)$$

where

$$ho_{\lambda}\!(t)\!=\!\!egin{bmatrix} rac{1}{\Gamma(2\lambda\!-\!1)} t^{\lambda\!-\!1}\!\int_{t}^{1}\!\!s^{-\lambda}\!(1\!-\!s)^{2\lambda\!-\!2}\!ds & (\lambda\!>\!1/2) \ t^{\lambda\!-\!1}\!\left\{rac{\Gamma(1\!-\!\lambda)}{\Gamma(\lambda)}\!-\!rac{1}{\Gamma(2\lambda\!-\!1)}\!\int_{0}^{t}\!\!s^{-\lambda}\!(1\!-\!s)^{2\lambda\!-\!2}\!ds
ight\} & (0\!<\!\lambda\!\leq\!1/2)\;. \end{cases}$$

The next equality is easily computed for $\lambda > 1/2$.

$$\int_{B} |z|^{2m} \rho_{\lambda}(|z|^{2}) dxdy = \frac{\pi m!}{(m+\lambda)\Gamma(m+2\lambda)}. \tag{1}$$

From the analyticity with respect to λ , this equality holds also for $0 < \lambda \le 1/2$.

PROPOSITION 1. Suppose that f is an element of F_{λ} with the power series expansion

$$f(z) = \sum_{m=0}^{\infty} \alpha_m z^m$$
.

Then

$$||f||_{\lambda}^2 = \langle f, f \rangle_{\lambda} = \sum_{m=0}^{\infty} \frac{\pi m!}{(m+\lambda)\Gamma(m+2\lambda)} |\alpha_m|^2$$
.

PROOF. For $0 < \sigma < 1$,

$$egin{align} \int_{|z| \leq \sigma} &|f(z)|^2
ho_{\lambda}(|z|^2) dx dy \ &= \sum_{m=0}^{\infty} |lpha_m|^2 \!\! \int_{|z| \leq \sigma} &|z|^{2m}
ho_{\lambda}(|z|^2) dx dy \! \leq \! \|f\|_{\lambda}^2 \; , \end{split}$$

which implies our assertion immediately.

q.e.d.

COROLLARY. If $f \in F_{\lambda}$, then

$$|f(z)| \leq ||f||_2 (h_2(|z|^2))^{1/2}$$

where

$$h_{\lambda}(\xi) = \sum_{m=0}^{\infty} \frac{(m+\lambda)\Gamma(m+2\lambda)}{\pi m!} \xi^{m}$$
.

The preceding corollary asserts that the strong convergence in F_{λ} implies the uniform convergence on every compact subset of B. Hence F_{λ} is a Hilbert space and from Proposition 1 we see that a complete orthonormal system in F_{λ} is given by the functions

$$u_m^{\lambda}(z) = \left(\frac{(m+\lambda)\Gamma(m+2\lambda)}{\pi m!}\right)^{1/2} z^m$$
.

The main theorem is

THEOREM 1. A unitary operator, $f = A_{\lambda} \phi$, of K_{λ} onto F_{λ} is defined by

$$f(z) = \int_{-1}^{1} A_{\lambda}(z, q) \phi(q) (1-q^2)^{\lambda-1/2} dq$$
 ,

where

$$A_{\lambda}(z, q) = rac{2^{\lambda-1/2} \Gamma(\lambda) \lambda}{\pi} \, rac{1-z^2}{(1-2zq+z^2)^{\lambda+1}} \; .$$

PROOF. It is easy to see that

$$A_{\lambda}(z, q) = \frac{2^{\lambda-1/2} \Gamma(\lambda)}{\pi} \sum_{m=0}^{\infty} (m+\lambda) C_m^{\lambda}(q) z^m$$
.

(i.e., $A_{\lambda}(z, q)$ can be regarded as a generating function for the Gegenbauer polynomials.) Therefore

$$A_{\lambda}(z, q) = \sum_{m=0}^{\infty} \phi_m^{\lambda}(q) u_m^{\lambda}(z) . \qquad (2)$$

We can consider that the right-hand side is the Fourier expansion for $A_{\lambda}(z, q)$ as a function of q, because $\sum_{m=0}^{\infty} |u_{m}^{\lambda}(z)|^{2} < \infty$ for $z \in B$.

Let $\phi \in K_{\lambda}$, then

$$(A_{\lambda}\phi)(z) = \left(\sum_{m=0}^{\infty} \overline{u_m^{\lambda}(z)}\phi_m^{\lambda}, \phi\right)_{\lambda}$$

= $\sum_{m=0}^{\infty} (\phi_m^{\lambda}, \phi)_{\lambda} u_m^{\lambda}(z)$.

Hence, $||A_{\lambda}\phi||_{\lambda}^2 = \sum_{m=0}^{\infty} |(\phi_m^{\lambda}, \phi)_{\lambda}|^2$, i.e.,

$$||A_{\lambda}\phi||_{\lambda}=||\phi||_{\lambda}. \tag{3}$$

Substituting ϕ_m^{λ} for ϕ , we obtain

$$u_{m}^{\lambda} = A_{\lambda} \phi_{m}^{\lambda} . \tag{4}$$

It follows from (3), (4) that A_{λ} is a unitary operator of K_{λ} onto F_{λ} .
q.e.d.

The inverse operator A_{λ}^{-1} , which exists by Theorem 1, cannot be expressed as an integral operator like A_{λ} . But we have

Proposition 2. If $f \in F_{\lambda}$, then

$$(A_{\lambda}^{-1}f)(q) = \text{l.i.m.} \int_{|z| \leq \sigma} \overline{A_{\lambda}(z, q)} f(z) \rho_{\lambda}(|z|^2) dxdy$$
,

or, more precisely

$$\lim_{\sigma \to 1} \int_{-1}^{1} \left| (A_{\lambda}^{-1} f)(q) - \int_{|z| \le \sigma} \overline{A_{\lambda}(z, q)} f(z) \rho_{\lambda}(|z|^{2}) dx dy \, \right|^{2} (1 - q^{2})^{\lambda - 1/2} dq = 0.$$

PROOF. Let f be an element of F_{λ} with the power series expansion

$$f(z) = \sum_{m=0}^{\infty} \alpha_m u_m^{\lambda}(z) .$$

Using (2), for $0 < \sigma < 1$, we obtain

$$egin{aligned} \int_{|z| \leq \sigma} \overline{A_{\lambda}(z, q)} f(z)
ho_{\lambda}(|z|^2) dx dy \ &= \sum_{m=0}^{\infty} \phi_m^{\lambda}(q) lpha_m \! \int_{|z| \leq \sigma} \! |u_m^{\lambda}(z)|^2
ho_{\lambda}(|z|^2) dx dy \;. \end{aligned}$$

The right-hand side can be regarded as the Fourier expansion for the left-hand side. Hence,

$$\begin{split} \int_{-1}^{1} \left| (A_{\lambda}^{-1} f)(q) - \int_{|z| \leq \sigma} \overline{A_{\lambda}(z, q)} f(z) \rho_{\lambda}(|z|^{2}) dx dy \right|^{2} (1 - q^{2})^{\lambda - 1/2} dq \\ &= \sum_{m=0}^{\infty} |\alpha_{m} - \alpha_{m} M_{m}^{\lambda}(\sigma)|^{2} \\ &= \sum_{m=0}^{\infty} |1 - M_{m}^{\lambda}(\sigma)|^{2} |\alpha_{m}|^{2} , \end{split}$$

where

$$M_m^{\lambda}(\sigma) = \int_{|z| \leq \sigma} |u_m^{\lambda}(z)|^2
ho_{\lambda}(|z|^2) dx dy$$
.

Therefore, we obtain the assertion.

q.e.d.

REMARK. The Gegenbauer polynomials for $\lambda=1/2$ coincide with the Legendre polynomials P_m , $m=0, 1, 2, \cdots$. Hence if we put $\lambda=1/2$ in Theorem 1, we obtain the desired result for the Legendre polynomials. In particular, we remark that in this case $\rho_{1/2}(t)=t^{-1/2}$.

§2. Some application to spherical harmonics.

We consider some application of Theorem 1 to the Funk-Hecke formula.

For a fixed $n \ge 3$, let S^{n-1} denote the surface of the unit sphere in \mathbb{R}^n , $d\sigma$ the element of surface area on S^{n-1} and ω_n the total surface area. Let finally H_k be the space of all spherical harmonics of order k on S^{n-1} .

Now the Funk-Hecke formula is given in the following theorem.

THEOREM 2 (Funk-Hecke). Suppose that ϕ is an element of $L^1((-1,1), (1-q^2)^{(n-3)/2})$. Then, for $S_k \in \mathcal{H}_k$ and $\omega \in S^{n-1}$,

$$\begin{split} \int_{\mathbf{S}^{n-1}} & \phi((\boldsymbol{\omega},\,\tau)) S_{\mathbf{k}}(\tau) d\sigma(\tau) \\ &= \omega_{n-1} S_{\mathbf{k}}(\boldsymbol{\omega}) \! \int_{-1}^{1} \! \phi(q) P(k,\,q) (1-q^2)^{(n-3)/2} dq \ , \end{split}$$

where

$$P(k, q) = \frac{k! \Gamma(n-2)}{\Gamma(k+n-2)} C_k^{(n-2)/2}(q)$$
.

First of all, we let r be an element of the open interval (-1, 1) and set $\phi(q) = A_{(n-2)/2}(r, q)$ in the Funk-Hecke formula. Using the formula (4) $u_m^{\lambda} = A_{\lambda}\phi_m^{\lambda}$ with $\lambda = (n-2)/2$, we then obtain the following:

$$\int_{S^{n-1}} A_{(n-2)/2}(r, (\omega, \tau)) S_{k}(\tau) d\sigma(\tau)
= 2^{-(n-3)/2} \omega_{n-1} \frac{\Gamma(n-2)}{\Gamma((n-2)/2)} r^{k} S_{k}(\omega) .$$
(5)

On the other hand, the integral kernel $A_{(n-2)/2}(r, q)$ and the Poisson kernel

$$p_r(q) = \frac{1 - r^2}{(1 - 2rq + r^2)^{n/2}}$$

differ only by a constant. So we obtain

$$r^{k}S_{k}(\omega) = \omega_{n}^{-1} \int_{S^{n-1}} p_{r}((\omega, \tau)) S_{k}(\tau) d\sigma(\tau) . \qquad (6)$$

This equation is well-known as the Poisson integral. Thus we conclude that the equation (6) is only a special case of the Funk-Hecke formula.

Conversely, it is possible to obtain the Funk-Hecke formula from the equation (6). Since the element of surface area $d\sigma$ is invariant under the orthogonal group O(n), we obtain that

$$\begin{split} \int_{S^{n-1}} & \phi_{\mathbf{m}}^{\lambda}((\boldsymbol{\omega}, \, \tau)) \phi_{l}^{\lambda}((\boldsymbol{\omega}, \, \tau)) d\sigma(\tau) \\ &= \omega_{n-1} \int_{-1}^{1} \phi_{\mathbf{m}}^{\lambda}(q) \phi_{l}^{\lambda}(q) (1 - q^{2})^{\lambda - 1/2} dq \\ &= \omega_{n-1} \delta_{ml} \end{split}$$

with $\lambda = (n-2)/2$ and $\omega \in S^{n-1}$. Therefore, for $S_k \in H_k$,

$$\begin{split} &\sum_{m=0}^{\infty} u_m^{\lambda}(r) \int_{\mathbf{S}^{n-1}} \phi_m^{\lambda}((\boldsymbol{\omega}, \, \tau)) S_k(\tau) d\sigma(\tau) \\ &= \int_{\mathbf{S}^{n-1}} \sum_{m=0}^{\infty} u_m^{\lambda}(r) \phi_m^{\lambda}((\boldsymbol{\omega}, \, \tau)) S_k(\tau) d\sigma(\tau) \\ &= \int_{\mathbf{S}^{n-1}} A_{\lambda}(r, \, (\boldsymbol{\omega}, \, \tau)) S_k(\tau) d\sigma(\tau) \\ &= 2^{-(\lambda - 1/2)} \omega_{n-1} \frac{\Gamma(2\lambda)}{\Gamma(\lambda)} r^k S_k(\boldsymbol{\omega}) \end{split}$$

with $\lambda = (n-2)/2$ and -1 < r < 1. This implies

$$egin{align} u_{\scriptscriptstyle m}^{\lambda}(r) & \int_{S^{n-1}} \!\! \phi_{\scriptscriptstyle m}^{\lambda}((\omega,\, au)) S_{\scriptscriptstyle k}(au) d\sigma(au) \ & = \delta_{\scriptscriptstyle mk} 2^{-(\lambda-1/2)} \omega_{\scriptscriptstyle n-1} rac{\Gamma(2\lambda)}{\Gamma(\lambda)} r^{\scriptscriptstyle k} S_{\scriptscriptstyle k}(\omega) \; , \end{split}$$

which is equivalent to the following:

$$\begin{split} \int_{S^{n-1}} & \phi_m^\lambda((\omega, \tau)) S_k(\tau) d\sigma(\tau) \\ &= \omega_{n-1} S_k(\omega) \int_{-1}^1 & \phi_m^\lambda(q) P(k, q) (1-q^2)^{\lambda-1/2} dq \ . \end{split}$$

Hence, we obtain the Funk-Hecke formula for ϕ_m^{λ} with $\lambda = (n-2)/2$. It follows from this result that the Funk-Hecke formula is true for any ϕ .

References

- [1] V. BARGMANN, On a Hilbert space of analytic functions and an associated integral transform. Part I, Comm. Pure Appl. Math., 14 (1961), 187-214.
- [2] A. ERDELYI, W. MAGNUS, F. OBERHETTINGER and F. G. TRICOMI, Higher Transcendental Functions, Vol. 2, McGraw-Hill, 1953.
- [3] C. MULLER, Spherical Harmonics, Lecture Notes in Math., 17, Springer-Verlag, 1966.

Present Address:

DEPARTMENT OF MATHEMATICS, SOPHIA UNIVERSITY KIOICHO, CHIYODA-KU, TOKYO 102, JAPAN