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Introduction.

This paper is the continuation of [15]. In [15], the authors 8howed
that 8ome theorems on function algebras can be generalized to the ca8e
of a wider class of function spaces containing the class of function
algebras. This class is of function spaces having the condition (A) (see
\S 1). In this paper, we introduce the conditions (B) and (C) which are
weaker than (A). In \S 1, we discuss the conditions (B) and (C), and
give some examples connected with them. In \S 2, we consider the class
$\mathscr{B}$ of function spaces having (B) and the class $C$ of function spaces
having (C), and give characterizations to assert that $A=C(X)$ for
$A\in \mathscr{G}$ or $A\in C$. $E8pecially$ , we establish generalization8 of a theorem
of Rudin [13] and a theorem of Hoffman and Wermer [11] (Theorems 2.1
and 2.5).

\S 1. Conditions for function spaces.

Throughout this paper, $X$ will denote a compact Hausdorff space.
$A$ is said to be a function space (resp. function algebra) on $X$ if $A$ is a
closed subspace (resp. subalgebra) in $C(X)$ containing constant functions
and separating points in $X$, where $C(X)$ denotes the Banach algebra of
complex-valued continuous functions on $X$ with the supremum norm.

Let $A$ be a function space on $X$. For a subset $E$ in $X$, we denote

$A(E)=\dagger f\in C(E):fgeA|_{B}$ for any $geA|_{B}$}
$A_{R}(E)=$ {$feC_{R}(E)$ : $fgeA|_{B}$ for any $geA|_{B}$} ,

where $A|_{B}$ is the restriction of $A$ to $E$ and $C_{R}(E)$ is the 8et of all real-
valued continuous functions on $E$.

Let $E$ be a subset in $X$. Then we call $E$ an antisymmetric set for
$A$ if any function in $A_{R}(E)$ is constant. We write $\ovalbox{\tt\small REJECT}^{-}(A)$ the family
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of maximal antisymmetric sets for $A$ .
Let $A$ be a uniformly closed subspace in $C(X)$ or $C_{R}(X)$ . Then a

closed subset $F$ in $X$ is called a peak set for $A$ if $f(x)=1(xeF)$ and
$|f(x)|<1(xeX\backslash F)$ for an $feA$ . A p-set for $A$ is an intersection of
peak sets for $A$ . A closed subset $F$ in $X$ i8 called a BEP-set for $A$ if
for any $feA|_{F}$ and for any closed subset $G$ in $X$ with $ G\cap F=\emptyset$ and
any $\epsilon>0$ , there is a $g\in A$ such that $g=f$ on $F,$ $|g(x)|<\epsilon$ on $G$ and
$||g||=||f||_{F}$ , where $||g||=8Up_{xeX}|g(x)|$ and $\Vert f||_{F}=\sup_{xeF}|f(x)|$ . For a uni-
formly closed subspace $A$ in $C(X),$ $F$ is a BEP-set for $A$ if and only if
$\mu_{F}\in A^{\perp}$ for any $\mu\in A^{\perp}$ , where $A^{\perp}$ denotes the set of measures $\mu$ on $X$

such that $\int fd\mu=0$ for any feA (cf. [8]).

Let $A$ be a uniformly closed sub8pace in $C(X)$ or $C_{R}(X)$ . A closed
subset $F$ in $X$ is called a sharp peak set for $A$ if for any clo8ed subset
$G$ in $X$ with $ G\cap F=\emptyset$ and for any $\epsilon>0$ , there is an $feA$ such that
$f(x)=1(xeF),$ $|f(x)|<\epsilon(xeG)$ and $|f(x)|<1(xeX\backslash F)$ (cf. [7]). We note
that if $F$ is a sharp peak set for $A$ , then $\mu(F)=0$ for any $\mu\in A^{\perp}$ .

The Bishop antisymmetric decomposition theorem for function spaces
is given as follows. This is a generalization of Bishop’8 theorem on
function algebras ([2], [6], [9]).

THEOREM 1.1. Let $A$ be a function space on a compact Hausdorff
space X. Then $X$ is decomposed by the family $\ovalbox{\tt\small REJECT}^{\nearrow}(A)$ of maximal
antisymmetric sets for $A$ and the following is satisfied.

(i) Any $Ke\ovalbox{\tt\small REJECT}^{\prime}(A)$ is a BEP-set for $A$ .
(ii) Iffe C(X) and if $f|_{K}eA|_{K}$ for any $Ke\ovalbox{\tt\small REJECT}(A)$ , then $feA$ .
This theorem was essentially proved in [1]. We also see it in [15].
Now we consider the following three conditions for a function space

$A$ on $X$.
(A) Any peak set for $A$ is a peak set for $A(X)$ .
(B) Any peak 8et for $A$ is a BEP-set for $A$ .
(C) Any peak set for $A$ is a sharp peak set for $A$ .
THEOREM 1.2. Let $A$ be a function space on X. Then the following

are satisfied:
(i) If $A$ has (A), then it has (B).
(ii) If $A$ has (B), then it has (C).

PROOF. (i) Let $A$ have (A) and let $F$ be a peak 8et for $A$ . Then
$F$ is a peak set for $A(X)$ , that is, there is an $f_{0}eA(X)$ such that
$f_{0}(x)=1(xeF)$ and $|f_{0}(x)|<1(xeX\backslash F)$ . By the definition of $A(X)$ ,
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$ff_{0}^{n}e$ $A$ for any $f\in A$ and for any $n\in N$. For any $\mu\in A^{\perp}$ , $\int_{F}fd\mu=$

$\int_{F}ff_{0}^{n}d\mu=-|_{x\backslash F}ff_{0}^{n}d\mu\rightarrow 0(n\rightarrow\infty)$ . From this $\mu_{F}\in A^{\perp}$ and so (B) holds.
(ii) Let $A$ have (B) and let $F$ be a peak set for $A$ . Then $F$ is a

BEP-set for $A$ and a $G_{\delta}$-set. It follows that $F$ is a sharp peak set for
$A$ .

But, implications $(C)\rightarrow(B)$ and $(B)\rightarrow(A)$ are not true in general.

EXAMPLES. (1) The following function space $A$ has (C), but it does
not satisfy (B): Let $D,\overline{D}$ and $\partial D$ be $\{z\in C:1/2<|z|<1\},$ $\{zeC:1/2\leqq$

$|z|\leqq 1\}$ and {$z\in C:|z|=1/2$ or $|z|=1$ } respectively. Let $B$ be the restric-
tion of $A(\overline{D})$ to $\partial D$ , where $A(\overline{D})$ is the function algebra of continuous
functions on $\overline{D}$ which are analytic on $D$ . We put $A=Cf+B=$
$\{xf+g:\lambda\in C, g\in B\}$ , where $f$ is the following function:

$f=\left\{\begin{array}{ll}0 on X_{1}=\{zeC: & |z|=1/2\}\\1 on X_{2}=\{z\in C: & |z|=1\}.\end{array}\right.$

Then $A$ is a function space on $\partial D$ . It is not hard to see that a peak
set $F(F\neq\partial D)$ for $A$ is a closed subset on $\partial D$ of Lebesgue measure $0$ or
$X_{1}$ or $X_{2}$ . It implies that $A$ has (C), because such a subset of measure
$0$ is a sharp peak set for $B$ (cf. [12]). But $A$ has not (B). For, $X_{1}$ is a
peak set for $A$ but not a BEP-set for $A$ .

(2) An example of function spaces which have (B) but not (A).
Let $X=\{zeC:|z|=1\}$ and let $B$ be a disc algebra on $X$. We define a
continuous function $f$ on $X$ as follows:

$f(e^{it})=\left\{\begin{array}{ll}\varphi(t/\pi): & 0\leqq t\leqq\pi\\\varphi(2-t/\pi): & \pi<t\leqq 2\pi,\end{array}\right.$

where $\varphi$ is the Cantor function on $[0,1]$ (cf. [10], p. 83). We put
$A=Cf+B$. Then any peak set $F(F\neq X)$ for $A$ is a closed subset on
$X$ of Lebesgue measure $0$ . It follows that $A$ has (B). But $A$ has not
(A) since $A(X)=C$.

\S 2. Characterizations assert that $A=C(X)$ .
In [15] we gave some characterizations to as8ert that $A=C(X)$ for

function spaces $A$ having the condition (A). After this, we moreover
give characterizations to assert that $A=C(X)$ for function spaces $A$

having the condition (B) or (C) which is weaker than (A).
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We denote by $\partial(A)$ and $Ch(A)$ the Shilov boundary and the Choquet
boundary for a function space $A$ respectively.

Our $fir8t$ goal is to generalize the Rudin’s theorem ([13]) to the case
of function $8paces$ .

THEOREM 2.1. Let $A$ be a function space on $X$ having (C). If $X$

contains no non-void perfect subset, then $A=C(X)$ .
We begin with the following lemma.

LEMMA 2.2. Let $A$ be a function space on $X$ having (C) and let
$Ke\ovalbox{\tt\small REJECT}(A)$ . If $x_{0}e\partial(A|_{K})$ is an isolated point in $K$, then $\{x_{0}\}$ is a sharp
peak set for $A|_{K}$ .

PROOF. Since $x_{0}i8$ an i8o1ated point in $\partial(A|_{K})$ , we have $x_{0}eCh(A|_{K})$ .
Hence there is an $feA|_{K}$ such that ${\rm Re} f\leqq 0,$ ${\rm Re} f(x_{0})>-\alpha$ and ${\rm Re} f(x)<$

$-\beta(xeK\backslash \{x_{0}\})$ for some $\alpha,$ $\beta(0<\alpha<\beta)$ (cf. [5]). By adding a sufficiently
large number $c$ to $f$ if necessary, $f+c$ become8 a scalar multiple of a
peaking function of $\{x_{0}\}$ in $A|_{K}$ . That is, $\{x_{0}\}$ is a peak point for $A|_{K}$ .
It follows that $\{x_{0}\}$ is a sharp peak set for $A|_{K}$ . For, since $A$ has (C)

and $K$ is a BEP-set for $A$ , it implies that $A|_{K}$ has (C).

PROOF OF THEOREM 2.1. If $A\neq C(X)$ , by Theorem 1.1, $K$ i8 not a
8ingleton for some $Ke\ovalbox{\tt\small REJECT}^{\nearrow}(A)$ . We put $I=\{xe\partial(A|_{K})$ : $x$ is an isolated
point in $\partial(A|_{K})$ } and $J=$ {$xeK:x$ is an isolated point in $K$}. Then we
a8sert that $ J\cap\partial(A|_{K})=\emptyset$ . For, if a point $x_{0}eJ\cap\partial(A|_{K})$ , by Lemma 2.2,
$\{x_{0}\}$ is a sharp peak set for $A|_{K}$ . Since $\{x_{0}\}$ i8 open in $K$, there is an
$feA|_{K}$ such that $f(x_{0})=1,$ $f(x)=0(xeK\backslash \{x_{0}\})$ . Hence $feA_{R}(K)$ and it
contradicts that $Ke\ovalbox{\tt\small REJECT}(A)$ . It shows that $ J\cap\partial(A|_{K})=\emptyset$ . Next since
$ I\neq\emptyset$ , we put $x_{1}eI$. Then $x_{1}eI\subset Ch(A|_{K})\subset Ch(A|_{\partial(A1_{K})})$ . By a 8imilar way
as in the proof of Lemma 2.2, we ob8erve that $\{x_{1}\}$ is a peak point for
$A|_{\partial(AI_{K})}$ . Hence $\{x_{1}\}=F\cap\partial(A|_{K})$ for a peak set $F$ for $A|_{K}$ . Since $A|_{K}$ has
(C), $F$ is a sharp peak set for $A|_{K}$ . So it is ea8y to see that $\{x_{1}\}$ is a
sharp peak set for $A|_{\partial\{A1_{K})}$ . We here assert that $ J\cap F=\emptyset$ . For, if
$xeJ\cap F$, there is a representing mea8ure $\mu_{x}$ for $x$ on $\partial(A|_{K})$ . Since
$\mu_{r}-\delta aee(A|_{K})^{\perp}$ and $F$ is a 8harp peak set for $A|_{K},$ $\mu_{g}(F)-\delta_{g}(F)=(\mu_{g}-\delta_{l})(F)=$

$0$ , where $\delta_{\iota}$ is the Dirac measure for $x$ . But $\mu_{a}(F)=\int_{F}d\mu_{g}=\int_{F\cap\partial(4I_{K})}d\mu_{a}=$

$\mu_{g}(\{x_{1}\})$ . From this, $\mu_{x}(\{x_{1}\})=1$ , that is, $\mu_{g}=\delta ae_{1}$ and $x=x_{1}$ . This is a
contradiction 8ince $x_{1}e\partial(A|_{K}),$ $x_{1}=xeJ$ and $ J\cap\partial(A|_{K})=\emptyset$ . So we have
$ J\cap F=\emptyset$ . Now, since $\{x_{1}\}$ is a sharp peak set for $A|_{\partial(41_{K})}$ and $\{x_{1}\}$ i8
open in $\partial(A|_{K})$ , it implie8 that there is a $geA|_{\partial(A1_{K})}$ such that $g(x_{1})=1$ and
$g=0$ on $\partial(A|_{K})\backslash \{x_{1}\}$ . For any $x$ in $J,$ $\mu_{x}-\delta_{x}\in(A|_{K})^{\perp}$ for a representing
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measure $\mu_{x}$ for $x$ on $\partial(A|_{K})$ . Hence $\mu_{x}(F)-\delta_{x}(F)=(\mu_{x}-\delta_{x})(F)=0$ . Since
$ J\cap F=\emptyset$ and $x\in J$, we have $x\not\in F$ and so $\mu_{x}(\{x_{1}\})=\mu_{x}(F)=0$ . Considering $g$

as a function in $A|_{K},$ $g(x)=\int_{\partial(A1_{K})}gd\mu_{x}=\mu_{x}(\{x_{1}\})=0$ for any $x\in J$. Since $\overline{J}=K$,
we have $g=0$ on $K$. Since $g(x_{1})=1$ , it is a contradiction, concluding the
proof.

The Stone-Weierstrass theorem is stated as follows (see [15] for the
case of function spaces having $(A))$ .

THEOREM 2.3. If a function space $A$ on $X$ having (C) is self-adjoint,
then $A=C(X)$ .

PROOF. If $A$ is self-adjoint, the real part ${\rm Re}$ $A$ of $A$ is a real-valued
function space. If $F$ is a peak set for ${\rm Re} A$ , it is a peak set for $A$

since ${\rm Re} A\subset A$ . By (C) $F$ is a sharp peak set, that is, for any $\epsilon>0$ and
any closed subset $G$ with $ F\cap G=\emptyset$ , there is an $f\in A$ such that $f=1$ on
$F,$ $||f||=1,$ $|f|<1$ on $X\backslash F$ and $|f|<\epsilon$ on $G$ . It implies that ${\rm Re} f=1$ on
$F,$ $\Vert{\rm Re} f\Vert=1,$ $|{\rm Re} f|<1$ on $X\backslash F$ and $|{\rm Re} f|<\epsilon$ on $G$ . This shows that $F$

is a sharp peak set for ${\rm Re} A$ . Hence a theorem of Briem ([3]) guarantees
that ReA $=C_{R}(X)$ . From this $A=C(X)$ since $A={\rm Re} A+i{\rm Re} A$ and this
completes the proof.

Next we generalize a theorem of Briem ([4]) as follows (see [15] for
the case of function spaces having $(A))$ .

THEOREM 2.4. Suppose that a function space $A$ on $X$ has (B). If
any peak set for ${\rm Re} A$ is a peak set for $A$ , then $A=C(X)$ .

PROOF. If $A$ has (B), any peak set for $A$ is a BEP-set for $A$ . By
the hypothesis, any peak set for ReA is a BEP-set for $A$ . It follows
that $A=C(X)$ by [14] Theorem 2.2.

Finally, we consider a generalization of the Hoffman-Wermer theorem
([11]) to the case of function spaces.

THEOREM 2.5. Assume that a function space $A$ on $X$ has (B). If
${\rm Re}$ $A$ is closed in $C(X)$ , then $A=C(X)$ .

We begin with the following lemmas.

LEMMA 2.6. Let $A$ be a function space on a compact Hausdorf
space $X$ and let $feC_{R}(X)$ . If $F_{r}=\{x\in X:f(x)\leqq r\}$ is a BEP-set for $A$

for any $reR$ , then $feA_{R}(X)$ .
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PROOF. We can assume that $0\leqq f\leqq 1$ . Put $E_{ni}=\{xeX:2^{-n}(i-1)<$

$f(x)\leqq 2^{-n}i\}(i=0,1, \cdots, 2^{n})$ . Then $E_{n}$ is a difference between two BEP-
sets. Hence if $\mu\in A^{\perp}$ then $\mu_{B_{n}}\in A^{\perp}$ . For any $geA$ , we put $h_{n}=$

$\sum_{i=1}^{2^{n}}i/2^{n}\chi_{B_{n:^{g}}}$ Then I $ h_{n}d\mu\rightarrow[fgd\mu$ for any $\mu eA^{\perp}$ since $h\rightarrow fg$ boundedly

Since $\int h_{n}d\mu=0(n=1,2,3, \cdots)$ , it implies that $\int fgd\mu=0$ for any $\mu eA^{\perp}$

and so $fgeA$ . It shows that $f\in A_{R}(X)$ .
REMARK. Let $X$ be a compact Hausdorff space and let $A$ be a

function space on $X$. Let $\mathscr{G}^{-}$ be the family of all BEP-sets for $A$ .
Then there exists a topology $(\ovalbox{\tt\small REJECT}^{-}X)$ on $X$ such that the family of
closed subsets in $(\ovalbox{\tt\small REJECT}^{-}X)$ is $\mathscr{G}^{-}$ We can here prove the following: Let
$feC_{R}(X)$ . Then $f$ is continuous on $(\ovalbox{\tt\small REJECT}^{-}X)$ if and only if $feA_{R}(X)$ .

LEMMA 2.7. Suppose that a function space $A$ on $X$ has (B). If $A_{R}$

is an algebra, then $A_{R}=A_{R}(X)$ , where $A_{R}=A\cap C_{R}(X)$ .
PROOF. It is clear that $A_{R}(X)\subset A_{R}$ . We first introduce a relation

$\sim$ in $X$ as follows.

$x\sim y-f(x)=f(y)$ for any $feA_{R}$ .
We set $x\sim=\{y\in X:y\sim x\}$ for xeX and $\tilde{X}=\{x:\sim xeX\}$ . $By_{\sim}defining$

a topology in $\tilde{X}$ such that the mapping $\varphi:x\rightarrow Xfrom\sim X$ to $X$ is con-
tinuous, $\tilde{X}$ becomes a compact Hausdorff space. Put $f(x\sim)=f(x)\sim(feA_{R})$

and $\tilde{A}_{R}=\{\tilde{f}:f\in A_{R}\}$ . Then $\tilde{A}_{R}$ is a closed subalgebra in $C_{R}(X)$ containing

1 and separating points in $\tilde{X}$. Hence $\tilde{A}_{R}=C_{R}(\tilde{X})$ . $\sim\sim ForfeA_{R}$ and any
$r\in R$ , put $F_{r}=\{xeX:f(x)\leqq r\}$ . Then $\varphi(F,)=\{x\sim eX:f(x\sim)\leqq r\}$ is clo8ed
in $\tilde{X}$. It follows that $\varphi(F_{f})$ is a p-set for $\tilde{A}_{R}=C_{R}(\tilde{X})$ . Hence $F_{f}$ is a
p-set for $A_{R}$ and 80 it is a p-set for $A$ . Since $A$ has (B), $F$, is a BEP-
set for $A$ . By Lemma 2.6, $feA_{R}(X)$ . Thus we have that $A_{R}\subset A_{R}(X)$

and so the lemma is proved.

LEMMA 2.8. Let $A$ be a function space on $X$ having (C). If ${\rm Re} A$

is closed in $C_{R}(X)$ and $A_{R}=A_{R}(X)$ , then $A=C(X)$ .
PROOF. For $x\in X$, we put $E_{x}=$ {$yeX:f(y)=f(x)$ for any $feA_{R}$}.

Since $A_{R}$ is an algebra, the function $g=-\epsilon(f-f(x))^{2}+1$ is contained in
$A_{R}$ for $\epsilon\in R,$ $feA_{R}$ . It is not hard to see that $E_{r}$ is a p-set for $A_{R}$

by taking sufficiently small $\epsilon>0$ for each function $g$ above. Since $A_{R}=$

$A_{R}(X),$ $E_{x}$ is a BEP-set for $A$ . For, since E. is a p-8et for $A_{R}$ , it is a
p-set for $A_{R}(X)$ and so we see that $E_{x}$ is a BEP-set for $A$ by a similar
argument as in the proof of Theorem 1.2 (i). We here assert that $E_{x}$
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is a singleton. Suppose otherwise. Then there is a peak set $F$ for $A|_{F}$

with $F\subsetneqq E_{x}$ . Since $E_{x}$ is a BEP-set for $A,$ $F$ is a p-set for $A$ . By (C),
$F$ is an intersection of sharp peak sets for $A$ . Since ${\rm Re}$ $A$ is closed, we
have that $(A\cap\overline{A})^{\perp}=A^{\perp}+\overline{A}^{\perp}$ ([5]). Clearly, $A\cap\overline{A}=A_{R}+iA_{R}$ and we here
put $A_{0}=A\cap\overline{A}$ . Take $peF$ and $q\in E_{x}\backslash F$. Then $\delta_{p}-\delta_{q}\in A_{0}^{\perp}=A^{\perp}+\overline{A}^{\perp}$ .
Hence $\delta_{p}-\delta_{q}=\mu+\nu_{1}-i\nu_{2}$ , where $\mu\in A^{\perp}$ and $\nu_{1}+i\nu_{2}\in A^{\perp}(\nu_{1},$

$\nu_{2}$ : real meas-
ures). Since $F$ is an intersection of sharp. peak sets for $A$ , there is a
sharp peak set $F_{1}$ for $A$ such that $F\subset F_{1},$ $p\in F_{1}$ and $q\not\in F_{1}$ . Since
$\mu(F_{1})=0$ and $\nu_{1}(F_{1})+i\nu_{2}(F_{1})=(\nu_{1}+i\nu_{2})(F_{1})=0$ , it implies that $(\delta_{p}-\delta_{q})(F_{1})=$

$\mu(F_{1})+\nu_{1}(F_{1})-i\nu_{2}(F_{1})=0$ . On the other hand, $(\delta_{p}-\delta_{q})(F_{1})=\delta_{p}(F_{1})-\delta_{q}(F_{1})=1$ ,
since $p\in F_{1}$ and $q\not\in F_{1}$ . This contradiction shows that $E_{x}=\{x\}$ for any
$x\in X$. Hence $A_{R}$ is a closed subalgebra in $C_{R}(X)$ containing 1 and sepa-
rating points in $X$. It follows that $A_{R}=C_{R}(X)$ and so $A=C(X)$ .

PROOF OF THEOREM 2.5. By Lemmas 2.7 and 2.8, to prove the
theorem, it remains only to show that $A_{R}$ is an algebra. As in the
proof of Lemma 2.8, if ${\rm Re}$ $A$ is closed, $A_{0}^{\perp}=(A\cap\overline{A})^{\perp}=A^{\perp}+\overline{A}^{\perp}$ . For any
peak set $F$ for $A_{0}$ and for any $\mu\in A_{0}^{\perp}$ , we have $\mu=\mu_{1}+\overline{\mu}_{2}$ for some $\mu_{1}$ ,
$\mu_{2}\in A^{\perp}$ and $F$ is a peak set for $A$ . By (B), $(\mu_{1})_{F}\in A^{\perp}$ and $(\mu_{2})_{F}eA^{\perp}$ .
Hence $\mu_{F}=(\mu_{1})_{F}+(\overline{\mu}_{2})_{F}\in A^{\perp}+\overline{A}^{\perp}=A_{0}^{\perp}$ . It follows that $F$ is a BEP-set
for $A_{0}$ . Since $F$ is a $G_{\delta}$-set, $F$ is a sharp peak set for $A_{0}$ .

We introduce a relation $\sim$ in $X$ as follows:

$x\sim y-f(x)=f(y)$ for any $f\in A_{0}$ .
We put $x\sim=\{y\in X:y\sim x\}$ for $x\in X$ and $\tilde{X}=\{x:\sim x\in X\}$ . By defining

a topology in $\tilde{X}$ such that the mapping $\varphi$ : $ x\rightarrow x\sim$ from $X$ to $\tilde{X}$ is con-
$tinuous\sim’\tilde{X}$ becomes a compact Hausdorff space. Put $\tilde{f}(\tilde{x})=f(x)$ for $f\in A_{0}$

and $A_{0}=\{\tilde{f}:f\in A_{0}\}$ . For any peak set $\tilde{F}$ for $\tilde{A}_{0},$ $F=\varphi^{-1}(\tilde{F})$ is a peak
set for $\sim A_{0}$ . By the fact stated above, $F$ is a sharp peak set for $A_{0}$ .
Hence $F$ is a sharp peak set for $\tilde{A}_{0}$ . By putting $\tilde{A}_{R}=\{\tilde{f}:f\in A_{R}\},\tilde{A}_{R}$ is
a $rea1\sim function\sim$ space on $\tilde{X}$. Since $A_{0}=A_{R}+iA_{R}$ , we have that any peak
$set\sim FofA_{R}\sim$ is a sharp peak set for $\tilde{A}_{R}$ . By a theorem of Briem ([3]),
$A_{R}=C_{R}(X)$ . It implies that $A_{R}$ is an algebra and the proof is finished.
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