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Introduction.
Let p be an odd prime number and let m be a positive integer
—1—‘
prime to p. We define Fermat’s quotient g,(m) by q,(m):ﬂ-p———l.

Lucas ([2], [5]) proved that ¢,(2) is a square only for p=3 and 7. To
generalize Lucas’ theorem, we consider whether the equation

(*) g,(m) =’

has solutions or not, where ! is a prime and x is a positive integer.
In the previous paper [9], we considered the three cases of (*):

(I) q,(m) =x" (»>3)
(II) q,(r)=x" (r is an odd prime)
11D q,(2)=x" (I is an odd prime)

and we obtained the following three theorems:

THEOREM A. If m s odd, then the equation (I) has the only solution
(p, m, )=(5, 3, 4).

THEOREM B. If the equation (II) has solutions, then p and r satisfy
the congruences

2'=1 (modr*) and p~'=1 (modr?).
THEOREM C. The equation (III) has the only solution p=3.

In this paper, we treat more general cases of (x). In §1, we discuss
the equation (*) when m is even and p>3. Then it is proved that if
Catalan’s conjecture holds, namely, if the only solution in integers m>1,
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n>1, x>1 and y>1 of the equation
™ —yr=1

is (m, n, z, y)=(2, 3, 3, 2), then the equation (x) has the only solution
(p, m, x, 1)=(1, 2, 3, 2) (Theorem 1).

In §2 and §3, we consider the equation (x) when m is odd =3.
The following is our main result:
If [ is a prime >8 and m+1#0 (mod 2'~%), then the equation (*) has no
solutions (p, m, z, I) (Theorem 2).

In particular, if m is even, the equation (I) has the only solution
(p, m, x)=(7, 2, 3) by Theorem 1 and Remark. The equation (II) has no
solutions by Theorem 4. Combining these with the previous results in
[9], the equations (I), (II) and (III) have been solved completely.

§1. The equation ¢,(m)=2' (m is even).

In this section we treat the equation g¢,(m)=2' when m is even.
Then we prove the following:

THEOREM 1. Suppose Catalan’s conjecture holds. If p 18 a prime
>3 and m 8 even, then the equation

1.1 qp(m) =gt
has the only solution (p, m, x, 1)=(7, 2, 8, 2).
ProOF. By the equation (1.1), we have
(m(p—l)/2+1)(m(p—1)/2_1)=pxl .
Since m is even, we have the following two cases;

', pz") (a)
(py', 2Y) (b)

where y and z are positive integers with x=yz.
We first consider the case (a). Then we have

1.2) Yr—mbr =1,

(m(p—l)/2+1’ m(p—l)/2_1)=

If Catalan’s conjecture holds, then the equation (1.2) has the only solution
(p, m, y, )=(7, 2, 8, 2). Thus from m*»?2—1=pz!, 2=1 and so x=38.
We next consider the case (b). Then we have

(1.3) mPV:_gt=1 .
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If Catalan’s conjecture holds, then the equation (1.3) has the only solution
(p, m, z, 1)=(5, 8, 2, 3). But this solution ecan not satisfy m'»V2+1=py'.
This completes the proof of Theorem 1. ]

REMARK. It was proved that if min.(m, n)<3, the only solution
integers m>1, n>1, x>1 and y>1 of the equation

xm_ynzl
is (m, n, z, ¥y)=(, 3, 8, 2) (cf. Lebesgue [3], Chao Ko [1] and Nagell [6]).
Therefore we see that Theorem 1 unconditionally holds for =2 and 3.
§2. The equation ¢,(m)=x' (m is odd and ! is a prime >3).

In this section we treat the equation ¢,(m)=2' when m is odd and
l is a prime >8. We use the following lemma to prove Theorem 2.

LEMMA 1 (Stormer [10]). The Diophantine equation
4+ 1=2y"
has mo solutions in integers x>1, y=1 and n odd =3.

THEOREM 2. Let m be odd =3 and | be an odd prime >38. If
m+1%£0 (mod 2'2), then the equation

(2.1) q,(m)=q'
has no solutions (p, m, x, 1).
PROOF OF THEOREM 2. By the equation (2.1), we have
(m P24+ 1)(m* 02 —1)=px’ .
Since m is odd, we have the following four cases;

(9%, 2'7'p2") (a)
@2y, 2p2") ()
2 'pyt, 22 (o)
(2pyt, 2172 (d)

where y and z are positive integers with #=2yz. Then we put n=

(m(p—l)/2 + 1, mfe—1/2 __ 1) —

p—1
=
We first consider the case (a). Then we have

(2.2) m"+1=2y".
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If » is even, it follows from Lemma 1 that the equation (2.2) has no
solutions. Suppose 7 is odd. We also have the equation

m"—1=2""pz2! .

Hence we obtain the congruence m—1=0 (mod 2'™'), since m and % are
odd. This contradicts our assumption.
We next consider the case (b). Then we have

mr+1=2""y ,

If » is even, we have (m"*)*= —1 (mod 4), which is impossible. If n is
odd, we obtain the congruence m+1=0 (mod 2'!), which contradicts our
assumption.

The case (c) also yields a contradiction as in the case (b). Finally,
we consider the case (d). Then we have

(2.3) mr—1=2"1g

If » is odd, we obtain m—1=0 (mod 2'"'), which is a contradiction by
our assumption. Suppose 7 is even. Then we show that n#0 (mod 4).
Suppose the contrary, say n=4k for some positive integer k. Then by
the equation (2.3), we have the following two cases;

(22}, 2'%2,}) (d1)

%kt ] m*—1)=
=+ L m= D=2t 22 (d2)

where 2z, and z, are positive integers with z==z22,. In the case (dl1), we
have

(2.4) m*+1=22".

It follows from Lemma 1 that the equation (2.4) has no solutions. In
the case (d2), we have

m*+1=2""" .,

Since />3, we obtain (m*)?*= —1 (mod 4), which is impossible. Therefore
n#0 (mod 4). Thus we can put n=2k for some odd %, since n is even.
Then by the equation (2.3), we have the following two cases;

2z, 27%2")  (d3)

k k_1)=
L =D={gi2 22 (dg)

where z; and 2z, are positive integers with z2=z,2,., In the case (d3), we
have

-
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mr—1=2"%} .
Since % is odd, we obtain m—1=0 (mod 2'~%), which gives a contradiction
by our assumption. In the case (d4), we have
mt+1=2""%;} . |
Hence we obtain m+1=0 (mod 2'"%), which gives a contradiction. This
completes the proof of Theorem 2. O

Using Theorem 2, we show the following corollaries:

COROLLARY 1. Let m be odd =8 and |l be an odd prime >3. If
m=3, 5 (mod 8), then the equation
g,(m)=2x!

has mo solutions (p, m, x, ).

Proor. If m=38,5(mod8), m+1=2,4 6 (mod8) and so m+1#%0
(mod 8). Thus we obtain m+1=£0 (mod 2'~?), since ! is an odd prime >3.
Hence by Theorem 2, the equation

qz»(m):ml_
has no solutions (p, m, «,l). This completes the proof of the corollary. [

COROLLARY 2. Let m be odd =8 and |l be an odd prime >38. If m
18 a biquadratic number, then the equation

qn('m’) =g

has mo solutions (p, m, z, 1).

PROOF. By the proof of Theorem 2, it follows that in the case (a),
(b) and (c), the equation g¢,(m)=2' has no solutions when % is even, and
in the case (d) the equation ¢,(m)=2' has no solutions when n=0
(mod4). If m is a biquadratic number, it implies that n=0 (mod 4),
in the proof of Theorem 2. Therefore the equation g¢,(m)=2' has no
solutions (p, m, x, 1) if m is a biquadratic number. Hence the proof of
the corollary is complete. 1

§3. The equation g,(m)=2x" (m is odd).

In this section we consider the equation ¢,(m)=2°, where m is odd
=8. Then in view of the proof of Theorem 2, we have the following
four cases;
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(a) m"+1=2y* and m"—1=4p2®,
b m"+1=4y* and m"—1=2p2°,
(e) m"+1=4py* and m"—1=22°,
(d) m"+1=2py* and m"—1=42°,

where n= 2-;—1

Now we prepare the three lemmas which we use in this section.
The following lemma is well known (cf., e.g., Nagell [8]):

LEMMA 2. The Diophantine equation
P+y=27 (n=0,1,2)

has mo solutions im integers x, y and z with xyz+0 other than x*=y*=2>
when n=1.

LemmA 38 (Nagell [7]). The Diophantine equation
Ax*+ By*=C

(C=1 or 8; 3YAB +f C=38; A, B, C positive integers) has at most one
solution tn momzero integers (x, y). There is the unique exception for
the equation 2x°+1y*=38, which has exactly the two integral solutions
(x, y)=@1, 1) and (4, —5).

LEMMA 4 (Ljunggren [4]). The Diophantine equation

z—1

— 3
1 v,

where n=8 with n¥* —1 (mod 6) and |x|>1, has the only integral solution
(, ¥y, n)=(18 or —19, 7, 3).

We start with the following proposition:
PROPOSITION 1. (1) The Diophantine equation
' —1=4y*
has mo solutions in integers x and y with y+0.
(2) The Diophantine equation
©*+6y=1
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has nmo solutions in imtegers x and y with y+0.

PROOF. (1) Since we have (®+1(x—1)=4y* and (z+1, 2—1) =2,
there exist integers w and v with Y=uv+#0 such that

r+1=2u> and x—1=2¢°.

Therefore we obtain 1°=wu*+(—v).. By Lemma 2, the equation has no
solutions.
(2) We write the equation as

(e—1)(@*+2+1)=6(—y)*.

The greatest common divisor of the two factors on the left is 1 or 8.
It is easily seen that z*+«+1 is odd and is not divisible by 9. Hence
we obtain the following two cases; :

r—1=2u? and 2*+zx+1=38*,
or
x—1=2x+3*u’* and x*+x+1=3+",

for some nonzero integers » and ». Thus it suffices to show that the
equation

X'+ X+1=8Y"

has no solutions in integers X and ¥ with X= 1, —2. Since the above
equation can be written as

(R2) 4 (155 or,

we see that the equation (3.1) has no solutions in integers X and Y with
X1, —2, by Lemma 2. ]

Now we may assume that » is odd in the cases (@), (b), (c¢) and (d),
by the proof of Theorem 2 and Proposition 1 (1).
We first treat the case p=8. Then we have the following:

PROPOSITION 2. Let m be odd =8. Then the equation
gs(m)=a°

has the only solution (m, x)=(5, 2).
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PROOF. As easily seen, the four cases (a), (b), (¢) and (d) when
p=3, are reduced to the following two cases;

3.2) X*+6Y°=1,
3.3) 2X*+3Y°=1,

with nonzero integers X and Y.

By Proposition 1(2), the equation (3.2) has no solutions (X, Y). By
Lemma 3, the equation (8.3) has the only solution (X, Y)=(—1, 1). Hence
the equation g,(m)=2® has the only solution (m, x)=(5, 2). O

Further, we may assume that n= p~2-1 is odd =38, since we con-

sidered the case p=38. Therefore from the cases (a), (b), (c) and (d), we
have only to treat the equations

(3.4) Xr—1=2Y"°,
3.5) X"—1=4Y?,

where n is odd =8 and X, Y are integers with |X|>1. Then we show
the following:

PROPOSITION 8. (1) Suppose X is an integer satisfying the follow-
ing two conditions;

(i) X—1 s not a cube, or
f X;1 is a cube, then X#1, 5 and 6 (mod 7).
(i1) X ;1 is mot of the form ¢’a®, where a is an integer and q 18

an odd prime >3.
Then the equation (3.4) has mo solutions in integers X, Y and n with
|1 X|>1 and n odd =3.
(2) Suppose X is an integer satisfying the following two con-
ditions;

iy X=L

18 mot a cube, or

if le is a cube, then X=*1, 2 and 3 (mod 7).

XZI is mot of the form q'a’, where a 18 an integer and q 18

(i1)

an odd prime >3.
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Then the equation (8.5) has mo solutions in integers X, Y and n with
| X|>1 and n odd =3.

PROOF. (1) We may assume that » is an odd prime, say q. Sup-
pose ¢=3. Then the equation (8.4) becomes

(3.6) XP—-1=2Y%,

The equation (3.6) has no solutions in integers X and Y with | X|>1, by
Lemma 2. Thus we may suppose that ¢>3.

Xi-1 is odd, and the greatest common divisor

It is easily seen that

d of X—1 and ‘?:11 is 1 or ¢, and );;:llsq (mod ¢%), if d=q. If d=1,
then we obtain by the equation (3.4)
3.7) 2t = ana Llop

for some integers ¢ and 5. When g¢#* —1 (mod 6), it follows from Lemma
4 that the second equation in (8.7) has no solutions in integers X, b and
q with |X|>1, since ¢>3. When ¢=—1 (mod 6), we put ¢g=6k—1 for
some integer k. Then by the equation (3.4), we have

X1 _1=2Y",
S0
X% _X=2XY*.
Taking the equation modulo 7, we obtain
1-X=2XY* (mod 7) .
Since X#1, 5 and 6 (mod 7), we have
Y*=2, 4 and 5 (mod 7) ,

which is impossible.
If d=gq, then we obtain by the equation (38.4)

X—1 5 X?7—1
=g d
2 qgcc an X1

(3.8) =qd?
for some integers ¢ and d. But the first equation in (8.8) contradicts
the condition (ii).

(2) Similarly we can prove the case (2). ]
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PROPOSITION 4. Let m be odd =8. If m is a cube, then the equa-
tion

q,(m)=a"
has no solutions (p, m, ).
PROOF. Since m is a cube, it suffices to consider the equations
X—-1=2Y°
and
X:—1=4Y",

respectively, where X and Y are integers with |X|>1. It follows from
Lemma 2 that the equations have no solutions. O

Using Proposition 2 and Proposition 3, we immediately obtain the
following:

PROPOSITION 5. Let m be odd =8. If m<50, then the equation
g,(m)=2’
has the only solution (p, m, x)=(3, 5, 2).

PRroOF. If p=3, we have the only solution (p, m, x)=(8, 5, 2) by
Proposition 2. If p>38, then X= +m satisfy the conditions of Proposition
3 when m<50 except for X=—15. When X=—15, the congruence

X*—-X=2XY? (mod 13)

does not hold. Therefore the equation ¢,(m)=2* has no solutions (», m, ),
if p>38. E]

Now, by Corollary 1 in §2 and Proposition 5, we obtain the follow-
ing: ,

THEOREM 3. Let m be odd =8 and | be odd prime. If m=3,5
(mod 8) and m <50, then the equation

g,(m)=x'
has the only solution (p, m, z, 1)=(3, 5, 2, 3).

Finally, we prove the following theorem on the equation
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q,(r)=a" (r is odd =3)

which we considered in [9].
THEOREM 4. If r is odd =8, then the equation
g, (r)=x"
has no solutions (p, r, x).

PrROOF. We may clearly assume that [ is odd =8 in Theorem 2 in
§2. If >3, the congruence r+1%0 (mod 272 holds. Hence it follows
from Theorem 2 that the equation ¢,(r)=«" has no solutions (p, r, x), if

r>3.
If r=38, the equation ¢,(r)=2" has no solutions (p, r, ), by Propo-
sition 5. |

References

[1] Cuao Ko, On the Diophantine equation #*=y"+1, xy+0, Scientia Sinica (Notes), 14
(1964), 457-460.

[2] L.E. DicksoN, History of the Theory of Numbers, Vol. I, reprinted by Chelsea, 1971.

[8] V.A. LEBESGUE, Sur I'impossibilité, en nombres entiers, de ’équation z”=y2+1, Nouv.
Ann. Math. (1), 9 (1850), 178-181. .

[4] W. LIUNGGREN, Noen setningen om ubestemte likninger av formen a;__ll =97, Norsk.

Mat. Tidsskr., 25 (1943), 17-20.
[5] E. Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, reprinted by A. Blanchard,
Paris, 1961.
[6] T. NAGELL, Des équations indéterminées x*+z+1=y" et x®+x+1=3y", Norsk. Mat.
Forenings Skrifter, I, No. 2 (1921), 1-14.
[7] T. NAGELL, Solution compléte de quelques équations cubiques a deux indéterminées, J.
Math. Pures Appl. Ser. 9, 4 (1925), 209-270.
. NAGELL, Introduction to Number Theory, Chelsea, 1981.
. OsapA and N. TERAI, Generalization of Lucas’ Theorem for Fermat’s quotient, C. R.
Math. Rep. Acad. Sci. Canada, 11 (1989), 115-120.

[10] C. STorMER, L’equation m arctang i——i—n arctang -1?=k%, Bull. Soc. Math. France, 27
(1899), 160-170.

(8]
[9]

o

Present Address:

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND ENGINEERING
WASEDA UNIVERSITY

OxUBO, SHINJUKU-KU, TOKYO 169, JAPAN




