Generalization of Lucas' Theorem for Fermat's Quotient II

Nobuhiro TERAI
Waseda University
(Communicated by T. Kori)

Introduction.

Let p be an odd prime number and let m be a positive integer prime to p. We define Fermat's quotient $q_{p}(m)$ by $q_{p}(m)=\frac{m^{p-1}-1}{p}$. Lucas ([2], [5]) proved that $q_{p}(2)$ is a square only for $p=3$ and 7. To generalize Lucas' theorem, we consider whether the equation

$$
\begin{equation*}
q_{p}(m)=x^{l} \tag{*}
\end{equation*}
$$

has solutions or not, where l is a prime and x is a positive integer.
In the previous paper [9], we considered the three cases of (*):

$$
\begin{align*}
q_{p}(m)=x^{2} & \tag{I}\\
q_{p}(r)=x^{r} & (r \text { is an odd prime }) \tag{II}\\
q_{p}(2)=x^{l} & (l \text { is an odd prime }) \tag{III}
\end{align*}
$$

and we obtained the following three theorems:
Theorem A. If m is odd, then the equation (I) has the only solution $(p, m, x)=(5,3,4)$.

Theorem B. If the equation (II) has solutions, then p and r satisfy the congruences

$$
2^{r-1} \equiv 1\left(\bmod r^{2}\right) \quad \text { and } \quad p^{r-1} \equiv 1\left(\bmod r^{2}\right)
$$

Theorem C. The equation (III) has the only solution $p=3$.
In this paper, we treat more general cases of (*). In §1, we discuss the equation (*) when m is even and $p>3$. Then it is proved that if Catalan's conjecture holds, namely, if the only solution in integers $m>1$,

[^0]$n>1, x>1$ and $y>1$ of the equation
$$
x^{m}-y^{n}=1
$$
is $(m, n, x, y)=(2,3,3,2)$, then the equation (*) has the only solution (p, m, x, l) $=(7,2,3,2$) (Theorem 1).

In $\S 2$ and $\S 3$, we consider the equation (*) when m is odd $\geqq 3$. The following is our main result:
If l is a prime >3 and $m \pm 1 \not \equiv 0\left(\bmod 2^{l-2}\right)$, then the equation ($*$) has no solutions (p, m, x, l) (Theorem 2).

In particular, if m is even, the equation (I) has the only solution ($p, m, x)=(7,2,3)$ by Theorem 1 and Remark. The equation (II) has no solutions by Theorem 4. Combining these with the previous results in [9], the equations (I), (II) and (III) have been solved completely.
§ 1. The equation $q_{p}(m)=x^{l}$ (m is even).
In this section we treat the equation $q_{p}(m)=x^{l}$ when m is even. Then we prove the following:

THEOREM 1. Suppose Catalan's conjecture holds. If p is a prime >3 and m is even, then the equation

$$
\begin{equation*}
q_{p}(m)=x^{l} \tag{1.1}
\end{equation*}
$$

has the only solution $(p, m, x, l)=(7,2,3,2)$.
Proof. By the equation (1.1), we have

$$
\left(m^{(p-1) / 2}+1\right)\left(m^{(p-1) / 2}-1\right)=p x^{l}
$$

Since m is even, we have the following two cases;

$$
\left(m^{(p-1) / 2}+1, m^{(p-1) / 2}-1\right)=\left\{\begin{array}{l}
\left(y^{l}, p z^{l}\right) \tag{a}\\
\left(p y^{l}, z^{l}\right)
\end{array}\right.
$$

where y and z are positive integers with $x=y z$.
We first consider the case (a). Then we have

$$
\begin{equation*}
y^{l}-m^{(p-1) / 2}=1 \tag{1.2}
\end{equation*}
$$

If Catalan's conjecture holds, then the equation (1.2) has the only solution ($p, m, y, l)=(7,2,3,2)$. Thus from $m^{(p-1) / 2}-1=p z^{l}, z=1$ and so $x=3$.

We next consider the case (b). Then we have

$$
\begin{equation*}
m^{(p-1) / 2}-z^{l}=1 \tag{1.3}
\end{equation*}
$$

If Catalan's conjecture holds, then the equation (1.3) has the only solution ($p, m, z, l)=(5,3,2,3)$. But this solution can not satisfy $m^{(p-1) / 2}+1=p y^{l}$. This completes the proof of Theorem 1.

Remark. It was proved that if $\min .(m, n) \leqq 3$, the only solution integers $m>1, n>1, x>1$ and $y>1$ of the equation

$$
x^{m}-y^{n}=1
$$

is (m, n, x, y) $=(2,3,3,2)$ (cf. Lebesgue [3], Chao Ko [1] and Nagell [6]). Therefore we see that Theorem 1 unconditionally holds for $l=2$ and 3 .
§ 2. The equation $q_{p}(m)=x^{l}$ (m is odd and l is a prime >3).
In this section we treat the equation $q_{p}(m)=x^{l}$ when m is odd and l is a prime >3. We use the following lemma to prove Theorem 2.

Lemma 1 (Störmer [10]). The Diophantine equation

$$
x^{2}+1=2 y^{n}
$$

has no solutions in integers $x>1, y \geqq 1$ and n odd $\geqq 3$.
Theorem 2. Let m be odd $\geqq 3$ and l be an odd prime >3. If $m \pm 1 \not \equiv 0\left(\bmod 2^{i-2}\right)$, then the equation

$$
\begin{equation*}
q_{p}(m)=x^{l} \tag{2.1}
\end{equation*}
$$

has no solutions (p, m, x, l).
Proof of Theorem 2. By the equation (2.1), we have

$$
\left(m^{(p-1) / 2}+1\right)\left(m^{(p-1) / 2}-1\right)=p x^{l} .
$$

Since m is odd, we have the following four cases;

$$
\left(m^{(p-1) / 2}+1, m^{(p-1) / 2}-1\right)= \begin{cases}\left(2 y^{l}, 2^{l-1} p z^{l}\right) & \text { (a) } \\ \left(2^{l-1} y^{l}, 2 p z^{l}\right) & \text { (b) } \\ \left(2^{l-1} p y^{l}, 2 z^{l}\right) & \text { (c) } \\ \left(2 p y^{l}, 2^{l-1} z^{l}\right) & \text { (d) }\end{cases}
$$

where y and z are positive integers with $x=2 y z$. Then we put $n=\frac{p-1}{2}$.
We first consider the case (a). Then we have

$$
\begin{equation*}
m^{n}+1=2 y^{l} \tag{2.2}
\end{equation*}
$$

If n is even, it follows from Lemma 1 that the equation (2.2) has no solutions. Suppose n is odd. We also have the equation

$$
m^{n}-1=2^{l-1} p z^{l}
$$

Hence we obtain the congruence $m-1 \equiv 0\left(\bmod 2^{l-1}\right)$, since m and n are odd. This contradicts our assumption.

We next consider the case (b). Then we have

$$
m^{n}+1=2^{l-1} y^{l}
$$

If n is even, we have $\left(m^{n / 2}\right)^{2} \equiv-1(\bmod 4)$, which is impossible. If n is odd, we obtain the congruence $m+1 \equiv 0\left(\bmod 2^{l-1}\right)$, which contradicts our assumption.

The case (c) also yields a contradiction as in the case (b). Finally, we consider the case (d). Then we have

$$
\begin{equation*}
m^{n}-1=2^{l-1} z^{l} \tag{2.3}
\end{equation*}
$$

If n is odd, we obtain $m-1 \equiv 0\left(\bmod 2^{l-1}\right)$, which is a contradiction by our assumption. Suppose n is even. Then we show that $n \not \equiv 0(\bmod 4)$. Suppose the contrary, say $n=4 k$ for some positive integer k. Then by the equation (2.3), we have the following two cases;

$$
\left(m^{2 k}+1, m^{2 k}-1\right)=\left\{\begin{array}{l}
\left(2 z_{1}^{l}, 2^{l-2} z_{2}^{l}\right) \tag{d1}\\
\left(2^{l-2} z_{1}{ }^{l}, 2 z_{2}^{l}\right)
\end{array}\right.
$$

where z_{1} and z_{2} are positive integers with $z=z_{1} z_{2}$. In the case (d1), we have

$$
\begin{equation*}
m^{2 k}+1=2 z_{1}{ }^{l} \tag{2.4}
\end{equation*}
$$

It follows from Lemma 1 that the equation (2.4) has no solutions. In the case (d2), we have

$$
m^{2 k}+1=2^{l-2} z_{1}{ }^{l}
$$

Since $l>3$, we obtain $\left(m^{k}\right)^{2} \equiv-1(\bmod 4)$, which is impossible. Therefore $n \not \equiv 0(\bmod 4)$. Thus we can put $n=2 k$ for some odd k, since n is even. Then by the equation (2.3), we have the following two cases;

$$
\left(m^{k}+1, m^{k}-1\right)=\left\{\begin{array}{l}
\left(2 z_{3}^{l}, 2^{l-2} z_{4}^{l}\right) \tag{d3}\\
\left(2^{l-2} z_{3}^{l}, 2 z_{4}^{l}\right)
\end{array}\right.
$$

where z_{3} and z_{4} are positive integers with $z=z_{3} z_{4}$. In the case (d3), we have

$$
m^{k}-1=2^{l-2} z_{4}^{l} .
$$

Since k is odd, we obtain $m-1 \equiv 0\left(\bmod 2^{l-2}\right)$, which gives a contradiction by our assumption. In the case (d4), we have

$$
m^{k}+1=2^{l-2} z_{3}^{l}
$$

Hence we obtain $m+1 \equiv 0\left(\bmod 2^{l-2}\right)$, which gives a contradiction. This completes the proof of Theorem 2.

Using Theorem 2, we show the following corollaries:
COROLLARY 1. Let m be odd $\geqq 3$ and l be an odd prime >3. If $m \equiv 3,5(\bmod 8)$, then the equation

$$
q_{p}(m)=x^{l}
$$

has no solutions (p, m, x, l).
Proof. If $m \equiv 3,5(\bmod 8), m \pm 1 \equiv 2,46(\bmod 8)$ and so $m \pm 1 \not \equiv 0$ $(\bmod 8)$. Thus we obtain $m \pm 1 \not \equiv 0\left(\bmod 2^{l-2}\right)$, since l is an odd prime >3. Hence by Theorem 2, the equation

$$
q_{p}(m)=x^{l}
$$

has no solutions (p, m, x, l). This completes the proof of the corollary.
Corollary 2. Let m be odd $\geqq 3$ and l be an odd prime >3. If m is a biquadratic number, then the equation

$$
q_{p}(m)=x^{l}
$$

has no solutions (p, m, x, l).
Proof. By the proof of Theorem 2, it follows that in the case (a), (b) and (c), the equation $q_{p}(m)=x^{l}$ has no solutions when n is even, and in the case (d) the equation $q_{p}(m)=x^{l}$ has no solutions when $n \equiv 0$ $(\bmod 4)$. If m is a biquadratic number, it implies that $n \equiv 0(\bmod 4)$, in the proof of Theorem 2. Therefore the equation $q_{p}(m)=x^{l}$ has no solutions (p, m, x, l) if m is a biquadratic number. Hence the proof of the corollary is complete.
§3. The equation $q_{p}(m)=x^{3}$ (m is odd).
In this section we consider the equation $q_{p}(m)=x^{3}$, where m is odd $\geqq 3$. Then in view of the proof of Theorem 2, we have the following four cases;
(a)

$$
m^{n}+1=2 y^{3} \quad \text { and } \quad m^{n}-1=4 p z^{3},
$$

(b) $m^{n}+1=4 y^{s} \quad$ and $\quad m^{n}-1=2 p z^{3}$,
(c)
$m^{n}+1=4 p y^{3}$ and $m^{n}-1=2 z^{3}$,
(d)
$m^{n}+1=2 p y^{3}$ and $m^{n}-1=4 z^{3}$,
where $n=\frac{p-1}{2}$.
Now we prepare the three lemmas which we use in this section. The following lemma is well known (cf., e.g., Nagell [8]):

Lemma 2. The Diophantine equation

$$
x^{3}+y^{3}=2^{n} z^{3} \quad(n=0,1,2)
$$

has no solutions in integers x, y and z with $x y z \neq 0$ other than $x^{3}=y^{3}=z^{3}$ when $n=1$.

Lemma 3 (Nagell [7]). The Diophantine equation

$$
A x^{3}+B y^{3}=C
$$

($C=1$ or $3 ; 3 \nmid A B$ if $C=3 ; A, B, C$ positive integers) has at most one solution in nonzero integers (x, y). There is the unique exception for the equation $2 x^{3}+y^{3}=3$, which has exactly the two integral solutions $(x, y)=(1,1)$ and $(4,-5)$.

Lemma 4 (Ljunggren [4]). The Diophantine equation

$$
\frac{x^{n}-1}{x-1}=y^{3}
$$

where $n \geqq 3$ with $n \neq-1(\bmod 6)$ and $|x|>1$, has the only integral solution $(x, y, n)=(18$ or $-19,7,3)$.

We start with the following proposition:
Proposition 1. (1) The Diophantine equation

$$
x^{2}-1=4 y^{3}
$$

has no solutions in integers x and y with $y \neq 0$.
(2) The Diophantine equation

$$
x^{3}+6 y^{3}=1
$$

has no solutions in integers x and y with $y \neq 0$.
Proof. (1) Since we have $(x+1)(x-1)=4 y^{3}$ and $(x+1, x-1)=2$, there exist integers u and v with $y=u v \neq 0$ such that

$$
x+1=2 u^{3} \text { and } x-1=2 v^{3} .
$$

Therefore we obtain $1^{3}=u^{3}+(-v)^{3}$. By Lemma 2, the equation has no solutions.
(2) We write the equation as

$$
(x-1)\left(x^{2}+x+1\right)=6(-y)^{3} .
$$

The greatest common divisor of the two factors on the left is 1 or 3. It is easily seen that $x^{2}+x+1$ is odd and is not divisible by 9 . Hence we obtain the following two cases;

$$
x-1=2 u^{3} \quad \text { and } \quad x^{2}+x+1=3 v^{3},
$$

or

$$
x-1=2 * 3^{3} * u^{3} \quad \text { and } x^{2}+x+1=3 v^{3},
$$

for some nonzero integers u and v. Thus it suffices to show that the equation

$$
X^{2}+X+1=3 Y^{3}
$$

has no solutions in integers X and Y with $X \neq 1,-2$. Since the above equation can be written as

$$
\begin{equation*}
\left(\frac{X+2}{3}\right)^{3}+\left(\frac{1-X}{3}\right)^{3}=Y^{3} \tag{3.1}
\end{equation*}
$$

we see that the equation (3.1) has no solutions in integers X and Y with $X \neq 1,-2$, by Lemma 2.

Now we may assume that n is odd in the cases (a), (b), (c) and (d), by the proof of Theorem 2 and Proposition 1 (1).

We first treat the case $p=3$. Then we have the following:
Proposition 2. Let m be odd $\geqq 3$. Then the equation

$$
q_{3}(m)=x^{s}
$$

has the only solution $(m, x)=(5,2)$.

Proof. As easily seen, the four cases (a), (b), (c) and (d) when $p=3$, are reduced to the following two cases;

$$
\begin{align*}
& X^{3}+6 Y^{3}=1 \tag{3.2}\\
& 2 X^{3}+3 Y^{3}=1 \tag{3.3}
\end{align*}
$$

with nonzero integers X and Y.
By Proposition 1 (2), the equation (3.2) has no solutions (X, Y). By Lemma 3, the equation (3.3) has the only solution $(X, Y)=(-1,1)$. Hence the equation $q_{3}(m)=x^{3}$ has the only solution $(m, x)=(5,2)$.

Further, we may assume that $n=\frac{p-1}{2}$ is odd $\geqq 3$, since we considered the case $p=3$. Therefore from the cases (a), (b), (c) and (d), we have only to treat the equations

$$
\begin{align*}
& X^{n}-1=2 Y^{3}, \tag{3.4}\\
& X^{n}-1=4 Y^{3}, \tag{3.5}
\end{align*}
$$

where n is odd $\geqq 3$ and X, Y are integers with $|X|>1$. Then we show the following:

Proposition 3. (1) Suppose X is an integer satisfying the following two conditions;
(i) $\frac{X-1}{2}$ is not a cube, or if $\frac{X-1}{2}$ is a cube, then $X \not \equiv 1,5$ and $6(\bmod 7)$.
(ii) $\frac{X-1}{2}$ is not of the form $q^{2} a^{3}$, where a is an integer and q is an odd prime >3.
Then the equation (3.4) has no solutions in integers X, Y and n with $|X|>1$ and n odd $\geqq 3$.
(2) Suppose X is an integer satisfying the following two conditions;
(i) $\frac{X-1}{4}$ is not a cube, or if $\frac{X-1}{4}$ is a cube, then $X \not \equiv 1,2$ and $3(\bmod 7)$.
(ii) $\frac{X-1}{4}$ is not of the form $q^{2} a^{3}$, where a is an integer and q is an odd prime >3.

Then the equation (3.5) has no solutions in integers X, Y and n with $|X|>1$ and n odd $\geqq 3$.

Proof. (1) We may assume that n is an odd prime, say q. Suppose $q=3$. Then the equation (3.4) becomes

$$
\begin{equation*}
X^{3}-1=2 Y^{3} . \tag{3.6}
\end{equation*}
$$

The equation (3.6) has no solutions in integers X and Y with $|X|>1$, by Lemma 2. Thus we may suppose that $q>3$.

It is easily seen that $\frac{X^{q}-1}{X-1}$ is odd, and the greatest common divisor d of $X-1$ and $\frac{X^{q}-1}{X-1}$ is 1 or q, and $\frac{X^{q}-1}{X-1} \equiv q\left(\bmod q^{2}\right)$, if $d=q$. If $d=1$, then we obtain by the equation (3.4)

$$
\begin{equation*}
\frac{X-1}{2}=a^{3} \quad \text { and } \quad \frac{X^{q}-1}{X-1}=b^{3} \tag{3.7}
\end{equation*}
$$

for some integers a and b. When $q \neq-1(\bmod 6)$, it follows from Lemma 4 that the second equation in (3.7) has no solutions in integers X, b and q with $|X|>1$, since $q>3$. When $q \equiv-1(\bmod 6)$, we put $q=6 k-1$ for some integer k. Then by the equation (3.4), we have

$$
X^{e k-1}-1=2 Y^{3}
$$

so

$$
X^{e k}-X=2 X Y^{3} .
$$

Taking the equation modulo 7 , we obtain

$$
1-X \equiv 2 X Y^{s} \quad(\bmod 7) .
$$

Since $X \not \equiv 1,5$ and $6(\bmod 7)$, we have

$$
Y^{3} \equiv 2,4 \text { and } 5 \quad(\bmod 7),
$$

which is impossible.
If $d=q$, then we obtain by the equation (3.4)

$$
\begin{equation*}
\frac{X-1}{2}=q^{2} c^{3} \quad \text { and } \quad \frac{X^{q}-1}{X-1}=q d^{3} \tag{3.8}
\end{equation*}
$$

for some integers c and d. But the first equation in (3.8) contradicts the condition (ii).
(2) Similarly we can prove the case (2).

Proposition 4. Let m be odd $\geqq 3$. If m is a cube, then the equation

$$
q_{p}(m)=x^{3}
$$

has no solutions (p, m, x).
Proof. Since m is a cube, it suffices to consider the equations

$$
X^{3}-1=2 Y^{3}
$$

and

$$
X^{3}-1=4 Y^{3},
$$

respectively, where X and Y are integers with $|X|>1$. It follows from Lemma 2 that the equations have no solutions.

Using Proposition 2 and Proposition 3, we immediately obtain the following:

Proposition 5. Let m be odd $\geqq 3$. If $m<50$, then the equation

$$
q_{p}(m)=x^{s}
$$

has the only solution $(p, m, x)=(3,5,2)$.
Proof. If $p=3$, we have the only solution $(p, m, x)=(3,5,2)$ by Proposition 2. If $p>3$, then $X= \pm m$ satisfy the conditions of Proposition 3 when $m<50$ except for $X=-15$. When $X=-15$, the congruence

$$
X^{e k}-X \equiv 2 X Y^{3} \quad(\bmod 13)
$$

does not hold. Therefore the equation $q_{p}(m)=x^{s}$ has no solutions (p, m, x), if $p>3$.

Now, by Corollary 1 in $\S 2$ and Proposition 5, we obtain the following:

Theorem 3. Let m be odd $\geqq 3$ and l be odd prime. If $m \equiv 3,5$ $(\bmod 8)$ and $m<50$, then the equation

$$
q_{p}(m)=x^{l}
$$

has the only solution $(p, m, x, l)=(3,5,2,3)$.
Finally, we prove the following theorem on the equation

$$
q_{p}(r)=x^{r} \quad(r \text { is odd } \geqq 3)
$$

which we considered in [9].
Theorem 4. If r is odd $\geqq 3$, then the equation

$$
q_{p}(r)=x^{r}
$$

has no solutions (p, r, x).
Proof. We may clearly assume that l is odd $\geqq 3$ in Theorem 2 in §2. If $r>3$, the congruence $r \pm 1 \not \equiv 0\left(\bmod 2^{r-2}\right)$ holds. Hence it follows from Theorem 2 that the equation $q_{p}(r)=x^{r}$ has no solutions (p, r, x), if $r>3$.

If $r=3$, the equation $q_{p}(r)=x^{r}$ has no solutions (p, r, x), by Proposition 5.

References

[1] Chao Ko, On the Diophantine equation $x^{2}=y^{n}+1, x y \neq 0$, Scientia Sinica (Notes), 14 (1964), 457-460.
[2] L. E. Dickson, History of the Theory of Numbers, Vol. I, reprinted by Chelsea, 1971.
[3] V.A. Lebesgue, Sur l'impossibilité, en nombres entiers, de l'équation $x^{m}=y^{2}+1$, Nouv. Ann. Math. (1), 9 (1850), 178-181.
[4] W. Ljungaren, Noen setningen om ubestemte likninger av formen $\frac{x^{n}-1}{x-1}=y^{q}$, Norsk. Mat. Tidsskr., 25 (1943), 17-20.
[5] E. Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, reprinted by A. Blanchard, Paris, 1961.
[6] T. NAGELL, Des équations indéterminées $x^{2}+x+1=y^{n}$ et $x^{2}+x+1=3 y^{n}$, Norsk. Mat. Forenings Skrifter, I, No. 2 (1921), 1-14.
[7] T. Nagell, Solution complète de quelques équations cubiques a deux indéterminées, J. Math. Pures Appl. Ser. 9, 4 (1925), 209-270.
[8] T. Nagell, Introduction to Number Theory, Chelsea, 1981.
[9] H. Osada and N. Terai, Generalization of Lucas' Theorem for Fermat's quotient, C. R. Math. Rep. Acad. Sci. Canada, 11 (1989), 115-120.
[10] C. Störmer, L'equation m arctang $\frac{1}{x}+n \operatorname{arctang} \frac{1}{Y}=k \frac{\pi}{4}$, Bull. Soc. Math. France, 27 (1899), 160-170.

Present Address:
Department of Mathematics, School of Science and Engineering
Waseda University
Okubo, Shinjuku-ku, Tokyo 169, Japan

[^0]: Received October 5, 1989

