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Introduction.

Valuation theory has an intimate relation with number theory and
algebraic geometry. The following Theorem $0$ , for instance, shows a role
of di8crete valuation rings.

Let $K$ be a field. We consider the following four conditions for a
set $W$ consisting of valuation rings with quotient field $K$:

(W-O) $ W\neq\emptyset$ .
(W-1) If $ReW$, then $R$ is a discrete valuation ring.

(W-2) For any $xeK$, the set $\{ReW|x\not\in R\}$ is finite.

(W-3) If $R_{1},$ $R_{2}eW,$ $ U^{(1)}R_{1}\cap m(R_{2})\cap\bigcap_{ReW}R=\emptyset$ , then $R_{1}=R_{2}$ ,

where $m(R)$ is the unique maximal ideal of a local ring $R$ , and $U^{(l)}R=$

$1+m(R)^{2}(i\geqq 1)$ . Then,

THEOREM $0$ . Let $K$ be a field. Then there exists an inclusion-
reversing bijection between the set of all Dedekind domains $A$ with
quotient field $K$, and the set of all $W$ satisfying the conditions (W-0),
(W-1), (W-2) and (W-3). The bijection is defined by

$\left\{\begin{array}{l}A\mapsto WW\prime\dot{\iota}s\\PA\\W\mapsto AA\\W\end{array}\right.$

For a proof, see [3], Theorem 1.3, Theorem 1.4, and p. 441.

In this paper, we shall generalize Theorem $0$ (see Theorems 9 and 13)
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and prove the analogous result (see Theorem 15). And as applications
of these results, we shall show Theorems 20, 21, 22, 23, 25 and 28.
Especially, Theorem 15 (together with Theorem $0$) implies that the
conditions (W-O), (W-1), (W-2) and (W-3) characterize the set of all
closed points of a noetherian affine scheme $(\neq\emptyset, \neq\{K\})$ consisting of
valuation rings of $K$. And Theorem 22 is a characterization of global
fields of dimension zero or one, without using the Archimedean valua-
tions. Comparing with this, Artin-Whaples’ theory is a characterization
of global fields of dimension one, using the Archimedean valuations (see
[3], p. 470).

The author wishes to express his thanks to Professor Yukiyosi
Kawada.

\S 1. Here we induce a topology and a presheaf of rings on a set
consisting of valuation rings. Let $K$ be a field. We denote by Zar $K$

the set of all valuation rings with quotient field $K$. For a subset $E$ of
$K$, we put Zar$(K|E)=$ {$ R\in$ Zar $K|E\subset R$}. Let $(E_{i})_{teI}$ be a family of
subsets of $K$. Then:

(1) $Zar(K|\bigcup_{i\in I}E_{i})=\bigcap_{i\in I}Zar(K|E_{i})$ ,

(2) $Zar(K|\bigcap_{ieI}E_{i})\supset\bigcup_{i\in I}Zar(K|E_{i})$ .
For $R_{1},$ $ R_{2}\in$ Zar $K$, we have

(3) $R_{1}\subset R_{2}$ if and only if $m(R_{2})\subset m(R_{1})$ ,

and then we also have,

(4) $ m(R_{2})\in$ Spec $R_{1}$ , $R_{2}=(R_{1})_{mtR_{2})}$ , $R_{1}/m(R_{2})\in Zar(R_{2}/m(R_{2}))$ .
Topology. Letting $I$ be a finite set in (1), there exists a unique

topology of Zar $K$ with open basis
(5) $\Sigma=$ {$Zar(K|E)|E$ is a finite subset of $K$}.

We call an element of $\Sigma$ a fundamental open set of Zar $K$. Until the
end of this paper, we always induce the relative topology of the topology
defined by (5), on a subset $X$ of Zar $K$ . It is called the Zariski topology
on $X$. Then for $R\in X$, we have

(6) $\overline{\{R\}}=\{R’\in X|R’\subset R\}$ .
Hence $X$ is a $T_{0}$-space. Especially, if $A$ is a subring of $K$ and $X=$

$Zar(K|A)$ , then the mapping defined by
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$\overline{\{R\}}\rightarrow Zar(R/m(R)|A+m(R)/m(R))$

(7) $(l)$ $t1$)

$R’\mapsto R’/m(R)$

is an inclusion-preserving homeomorphism. And if $\varphi:R\rightarrow R/m(R)$ is the
canonical map, then the mapping

(7’) $Q\mapsto\varphi^{-1}(Q)$

is the inverse map of (7).

Presheaf of rings. Let us induce the presheaf $\rho_{X}$ on a subset $X$

of Zar $K$. For an open set $U$ of $X$, we put

(8) $df_{X}(U)=\left\{\begin{array}{ll}\bigcap_{ReU}R, & where U\neq\emptyset\\ 0 . & where U=\emptyset\end{array}\right.$

Let $U,$ $V$ be two open subsets of $X$ and $U\subset V$. If $ U\neq\emptyset$ , then $\rho_{X}(V)\subset$

$P_{X}(U)\subset K$ and we denote by $\rho_{V,U}$ the inclusion map. If $ U=\emptyset$ , we put
$\rho_{V,U}=0$-map. Then it is clear that $p_{X}$ is a presheaf of rings on $X$.
And for a family $(V_{i})_{leI}$ of non empty open subsets of $X$, we have

(9) $\theta_{X}(\bigcup_{leI}V_{i})=\bigcap_{ieI}d_{X}(V_{i})$ .
REMARK. In general, for a subset $W$ of Zar $K$, we put

(8’) If $ W=\emptyset$ , then $\bigcap_{ReW}R=K$ and $p_{W}(W)=0$ .
LEMMA 1. Let $K$ be a field and $X$ a subset of Zar K. Then:
(i) the presheaf $p_{X}$ defined by (8) satisfies the locally uniqueness

conditions.
(ii) for any $R\in X$, we have $p_{X,R}\rightarrow\sim R$ .
(iii) the presheaf $p_{X}$ satisfies the locally existence conditions if and

only if $X$ is either irreducible or empty.

PROOF. (i) is obvious.
(ii) By the definition of $\rho_{V,U}$ , we may assume cf $X,R=\bigcup_{U}d_{X}(U)$ , for

all $R\in X$, where $U$ runs over the set of all open subsets of $X$ containing
$R$ . Then let us prove $R=p_{X,R}$ . It is clear that $R\supset P_{X,R}$ . Conversely,
for any $x\in R,$ $U=X\cap Zar(K|\{x\})$ is an open neighborhood of $R$ in $X$. For
any $R^{\prime}\in U$, we have $x\in d_{X}(U)$ , since $x\in R^{\prime}$ . Thus we obtain $R\subset P_{X,R}$ .

(iii) Since X==Spec $0$ is an affine scheme, we may assume $ X\neq\emptyset$ .
Proof $of\Leftarrow$ Let $U=\bigcup_{ieI}V_{\ell}$ be an open covering of $U$, and $s_{i}\in d_{X}(V_{i})$

satisfy the conditions $\rho_{V_{i},V_{i}\cap V_{j}}(s_{i})=\rho_{V_{j},V_{i}\cap V_{j}}(s_{j})$ for all $i,$ $jeI$. We may
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assume $ V_{i}\neq\emptyset$ for any $ieI$. Since $X$ is irreducible, we have $ V_{i}\cap V_{j}\neq\emptyset$ .
Hence $s_{i}=s_{j}$ in $K$. Let $s=s_{i}\in K$ for all $i\in I$. Then we obtain se $ff_{X}(U)$

by (9). It is clear that $\rho_{U,V_{i}}(s)=s_{l}$ . Proof $of\Rightarrow$ Let us assume that
$X$ is reducible. Then there exist two open subsets $V,$ $W$ of $X$ such that
$V,$ $ W\neq\emptyset$ and $ V\cap W=\emptyset$ , since $X$ is not empty. If we put $U=V\cup W$ ,
$s_{1}=0\in d_{X}(V),$ $s_{2}=1\in p_{X}(W)$ , then it is impossible that there exists an
element $s\in P_{X}(U)$ such that $\rho_{U.V}(s)=s_{1}$ and $\rho_{U,W}(s)=s_{2}$ . Q.E.D.

COROLLARY. Let $X$ be an irreducible subset of Zar K. Then (X, $p_{X}$)
is a locally ringed space.

REMARK. In general, the homeomorphisms (7) and (7’) are not iso-
morphisms of locally ringed spaces. Let $Y=\overline{\{R\}}\subset X=Zar(K|A)$ , and we
renew the definition of sheaf on $Y$ by

$(8^{\prime\prime})$

$\mathcal{E}_{Y}^{p^{\prime}}(U)=\bigcap_{R^{\prime}eU}R^{\prime}/m(R)$

for a non empty open subset $U$ of Y. Then the mappings (7) and (7’)
become isomorphisms of locally ringed spaces. However, until the end
of this paper, we always induce the presheaf $p_{X}$ of rings defined by (8)
on a sub8et $X$ of Zar $K$.

LEMMA 2. Let $K$ be a field and $X$ a non empty subset of $ZarK$.
Then $Zar(K|\rho_{X}(X))$ is the intersection of all fundamental open sets of
Zar $K$ containing $X$.

PROOF. Let $\Sigma_{X}$ be the set of all fundamental open 8ets of Zar $K$

containing $X$. Then we have $\Sigma_{X}=\{Zar(K|E)|E$ is a finite subset of
$p_{X}(X)\}$ . Hence, by (1), we obtain

$Zar(K|P_{X}(X))=\bigcap_{B}Zar(K|E)=\bigcap_{Ue\Sigma_{X}}UQ.E.D$.
\S 2. Here we consider the integral domains which are integrally

closed in a fixed field, as a preparation of \S 3. First, we shall admit
the following result called Chevalley’s lemma from valuation theory.

LEMMA 3. Let $K$ be a field, $A$ a subring of $K$ and $F$ an algebrai-
cally closed field. Then for any ring homomorphism $\varphi:A\rightarrow F$, there
exist $ReZar(K|A)$ and ring homomorphism $\psi;R\rightarrow F$ such that $\varphi=\psi|_{A}$

(restriction).

The following two lemmas are proved by Lemma 3.

LEMMA 4. Let $K$ be a field and $A$ a subring of K. Then the
mapping $\Phi_{K|A}$ defined by
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$Zar(K|A)\rightarrow SpecA$

(10) $\Phi_{K|A}$ : $(D$ $(D$

$R$ $->A\cap m(R)$

is surjective and continuous.

COROLLARY. dim $Zar(K|A)\geqq\dim A+tr-\deg_{QA}K$, where $QA$ denotes the
quotient field of $A$ .

For the definition of the dimension of topological spaces, see [2],
p. 5.

LEMMA 5. Let $K$ be a field and $A$ a subring of K. Then:
(i) the integral closure of $A$ in $K$ is $\bigcap_{ReZar(K|A)}R$ .
(ii) for any $ P\in$ Spec $A$ , the integral closure of $A_{P}$ in $K$ is $\bigcap_{Re\Phi_{K|A^{(P)}}^{-1}}R$ .
Morphism $\Phi_{K|A}^{t}$ of sheaves of rings. Let $K$ be a field, $A$ a subring

of $K,$ $X=Zar(K|A)$ and $\tilde{A}$ the structure sheaf of affine scheme Spec $A$ .
From (6), we see that $X$ is irreducible. Then the morphism $\Phi_{K|A}^{l}$ : $\tilde{A}\rightarrow$

$(\Phi_{K|A})_{*}p_{X}$ of sheaves of rings on Spec $A$ is defined by

$\tilde{A}(U)\rightarrow\rho_{X}(\Phi_{K|A}^{-1}(U))$

(11) $\Phi_{K|A}^{1}(U)$ : $||$ $\Vert$

$\bigcap_{PeU}A_{P}->\bigcap_{PeU}$ ($the$ integral closure of $A_{P}$ in $K$)

for a non empty open subset $U$ of Spec $A$ . And the induced map of $\Phi_{K|A}^{\$}$

on the stalks is denoted by

(12) $(\Phi_{K|A}^{\#})_{R}$ : $A_{P}\subset\rightarrow R$

for $ReX$ and $P=\Phi_{K|A}(R)\in SpecA$ . Since (12) is a local homomorphism,

$(\Phi_{K|A}, \Phi_{K|A}^{l})$ : (X, $d_{X}$) $\rightarrow(SpecA,\tilde{A})$

is a morphism of locally ringed spaces. By (11), we obtain that $A$ is
integrally closed in $K$ if and only if $\Phi_{K|A}^{\$}$ : $\tilde{A}\rightarrow(\Phi_{K|_{A}1})_{*}p_{X}$ is an isomorphism.
Especially, if $U=D(f)=\{P\in SpecA|f\not\in P\}(f\in A, f\neq 0)$ , then we have
$\Phi_{K|A}^{-1}(D(f))=Zar(K|A_{f})$ and

(11’) $\Phi_{K|A}^{l}(D(f))$ : $A_{f}\subset\rightarrow p_{X}(Zar(K|A_{f}))$ : the
integral closure of $A_{f}$ in $K$ .

LEMMA 6. Let $K$ be a field and $A$ a subring of $K$.
(i) The next four conditions are equivalent:

(a) $Zar(K|A)=\{K\}$ .
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(b) dim $Zar(K|A)=0$ .
(c) $K$ is an integral extension over $A$ .
(d) $A$ is a field and $K$ is an algebraic extension over $A$ .

(ii) If dim $Zar(K|A)\leqq 1$ , then the equality dim $Zar(K|A)=\dim A+$
$tr-\deg_{QA}K$ holds.

PROOF. (i) is obvious from Lemma 5.
(ii) is obvious from the corollary of Lemma 4 and (i). Q.E.D.

COROLLARY. Zar $K=\{K\}$ if and only if $K$ is an algebraic extension
over a finite field.

LEMMA 7. Let $K$ be a field, $A$ a subring of $K$ and $R\in Zar(K|A)$ .
Then the following three conditions are equivalent:
(a) $R\dot{\tau}s$ a closed point of $Zar(K|A)$ .
(b) $R/m(R)$ is an integral extension over $A+m(R)/m(R)$ .
(c) $\Phi_{K|A}(R)em$-SpecA (hence $A+m(R)/m(R)$ is a field) and $R/m(R)$ is

an algebraic extension over $A+m(R)/m(R)$ , where m-Spec A denotes
the set of all maximal ideals of $A$ .
PROOF. Obvious from (6), (7) and Lemma 6. Q.E.D.

PROPOSITION 8. Let $K$ be a field, $A$ a subring of $K,$ $X=Zar(K|A)$
and $W$ the set of all closed points of X. Then:

(i) $\Phi_{K|A}(W)=m$-Spec A. Hence by restriction, the mapping $\Phi_{K|A}$ : $ W\rightarrow$

m-Spec $A$ is well-defined and surjective.
(ii) for any $R\in X$, there exists $R_{0}eW$ such that $R_{0}\subset R$ . Therefore,

we also have $ W\neq\emptyset$ and $p_{W}(W)=p_{X}(X)$ .
PROOF. (i) It is clear that $\Phi_{K|A}(W)\subset$ m-Spec $A$ by Lemma 7. Con-

versely, let $ P\in$ m-Spec $A,$ $F$ the algebraic closure of $A/P$ and $\varphi:A\rightarrow$

$A/P\subset F$ the canonical mapping. Then by Lemma 3, we have $ReZar(K|A)$
and ring homomorphism $\psi$ : $R\rightarrow F$ such that $\psi|_{A}=\varphi$ . By Lemma 7, we
obtain $P=\Phi_{K|A}(R)$ and $ReW$.

(ii) For any $ReX$, there exists a closed point $Q_{0}$ of $Zar(R/m(R)|$

$A+m(R)/m(R))$ . Let $R_{0}$ be the closed point of $\overline{\{R\}}$ corresponding to $Q_{0}$

by the mapping (7). Then we have $R_{0}\in W$ and $R_{0}\subset R$ . Q.E.D.

REMARK. In general, the equality $W=\Phi_{K|A}^{-1}$ ($m$-spec $A$) does not hold.

Here we consider the following two conditions for a subset $W$ of
Zar $K$:

(W-4) If $\bigcap_{ReW}R\subset R’\in$ Zar $K$, then there exists $R_{0}\in W$ such that $R_{0}\subset R’$ .
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(W-5) If $R_{1},$ $R_{2}\in W,$ $R_{1}\subset R_{2}$ , then $R_{1}=R_{2}$ .
It is clear by (2) that (W-4) is equivalent to the following condition:

(13) $Zar(K|\bigcap_{ReW}R)=\bigcup_{ReW}Zar(K|R)$ .
And $W$ satisfies (W-5) if and only if $W$ is a $T_{1}$-space. Moreover, we
observe that (W-4) implies (W-O) by (8’).

Next we consider the relation between $X,$ $A$ and $W$. Let us fix a
field $K$, and we put

(14) $\tilde{\mathscr{F}}=\{X\subset ZarK|X$ is expressed as an intersection of
some fundamental open sets of Zar $K$},

(15) $\tilde{\mathscr{A}}=(A|$ $A$ is a subring of $K$ and is integrally closed in $K$ } ,

(16) $\mathscr{C}^{\tilde{\rightarrow}}=$ { $W\subset ZarK|W$ satisfies (W-4) and (W-5)}.

Then we define the mappings between $c\tilde{\mathscr{F}},\tilde{\ovalbox{\tt\small REJECT}}$ and $\tilde{\ovalbox{\tt\small REJECT}}$ by

(17) $X->A=p_{X}(X)$ , $A->X=Zar(K|A)$ ,

(18) $\left\{\begin{array}{l}A\mapsto W=\{R\in Zar(K|A)|R/m(R)\\A+m(R)/m(R)\\W->A=\theta_{W}(W)\end{array}\right.$

(19) $\left\{\begin{array}{l}W\}\rightarrow X=R\in K|\{R\}\cap W\neq\emptyset\\ X-WX\end{array}\right.$

REMARK. Instead of (19), we can also write

(19’) $W\mapsto X=\bigcup_{ReW}Zar(K|R)=Zar(K|\bigcap_{ReW}R)$

$=$ {$R_{P}|R\in W,$ $ P\in$ Spec $R$}.
Then,

THEOREM 9. Let $K,\tilde{\mathscr{F}}\llcorner\tilde{\ovalbox{\tt\small REJECT}}\tilde{\ovalbox{\tt\small REJECT}}$ be as above. Then the mappings
(17), (18) and (19) between $\tilde{\ovalbox{\tt\small REJECT}}\tilde{M}$ and $\tilde{\ovalbox{\tt\small REJECT}}$ are all bijective and com-
mutative. The mappings (17) and (18) are inclusion reversing. The
mapping (19) is inclusion preserving.

PROOF. Obvious from (6), (19’), Lemmas 2, 5, 7 and Proposition 8.
Q.E.D.

\S 3. Here we consider a relation between Prufer domains and affine
schemes.
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For any integral domain $A$ , we denote by $\mathcal{J}A$ the set of all in-
vertible sub A-modules of the field of fractions $QA$ . Then $\mathcal{J}A$ is a
commutative group and satisfies the following conditions:

(20) $\left\{\begin{array}{l}I\in \mathcal{J}AI\\IA\end{array}\right.$

DEFINITION. An integral domain $A$ is called Pr\"ufer, if any finitely
generated non zero ideal of $A$ is invertible.

PROPOSITION 10. Let $K$ be a field and $A$ a subring of $K$.
(i) The next four conditions are equivalent:

(a) $A$ is a Prufer domain with quotient field $K$.
(b) for any $ P\in$ Spec $A,$ $A_{P}e$ Zar $K$.
(c) for any $ P\in$ m-Spec $A,$ $A_{P}e$ Zar $K$.
(d) A $\dot{r}s$ integrally closed in $K$ and the mapping $\Phi_{K|A}$ : $Zar(K|A)\rightarrow$

Spec A $\dot{\tau}s$ an injectio$n$ .
(ii) If $K$ and $A$ satisfy one of above conditions, then $(\Phi_{K|A}, \Phi_{K|A}^{1})$ is

an isomorphism of locally ringed spaces. Hence, $Zar(K|A)$ is an affine
scheme. $\Phi_{K|A}$ is an inclusion-reversing homeomorphism and the mapping:
$P\mapsto A_{P}$ is the inverse map of $\Phi_{K|A}$ .

PROOF. It is sufficient to prove that (d) implie8 (b). Note that
$\Phi_{K|A}^{-1}(P)=\Phi_{K|A_{P}}^{-1}(P_{P})$ for any $ P\in$ Spec $A$ . Since $A_{P}$ is integrally closed in
$K$, by Lemma 5 (ii), we have $A_{P}=\bigcap_{Re\Phi_{K|A^{(P)}}^{-1}}R$ . Since $\Phi_{K|A}$ is injective,
we have $A_{P}=Re$ Zar $K$. For the other part of proof, 8ee [4], Theorem
64 and Theorem 65. Q.E.D.

PROPOSITION 11. Let $K$ be a field, $X$ a non empty subset of Zar $K$

and (X, $\rho_{X}$) an affine scheme. Then $p_{X}(X)$ is a Prufer domain with
quotient field $K$, and $X=Zar(K|\rho_{X}(X))$ .

PROOF. If we put $A=P_{X}(X)$ , then by the a8sumption there exi8ts
an isomorphism $(\phi, \theta):(X, P_{X})\rightarrow(SpecA,\tilde{A})$ of locally ringed spaces. Com-
posing suitable automorphism of Spec $A$ , we may assume that $\theta(SpecA)$

is the identity map of $A$ . For $feA,$ $f\neq 0$ , we put $V_{f}=\phi^{-1}(D(f))$ , and
for $Pe$ Spec $A$ , we put $R=\phi^{-1}(P)\in X$. Then we have the ring iso-
morphisms $\theta(D(f)):A_{f}\rightarrow p_{X}(V_{f})$ and $\theta_{R};A_{P}\rightarrow R$ . If we denote by $QA$

the field of fractions of $A$ , then we have the ring isomorphi8m $\overline{\theta}:QA\rightarrow$

$K$. Especially, if $PeD(f)$ , then we have the following commutative
diagram:
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$\theta(SpecA):A$ – $A$

$\cap$ $\cap$

$\theta(D(f))$ : $A_{f}\rightarrow p_{X}(V_{f})$

$\cap$ $\cap$

$\theta_{R}$ : $A_{P}\rightarrow R=\phi^{-1}(P)$

$\cap$ $\cap$

$\overline{\theta}$ : $ QA\rightarrow$ $K$ .
Here $\overline{\theta}$ is an A-isomorphism, we have $QA=K$ and $\overline{\theta}$ is the identity map
of $K$. Hence $A_{f}=p_{X}(V_{f})$ and $A_{P}=Re$ Zar $K$. By Proposition 10, $A$ is a
Pr\"ufer domain with the field of fractions $K$. It is clear that $X\subset Zar(K|A)$ .
Conversely, for any $ReZar(K|A)$ , we put $P=\Phi_{K|A}(R)e$ Spec $A$ . Since
$R=A_{P}=\phi^{-1}(P)eX$, we have $Zar(K|A)\subset X$. Q.E.D.

LEMMA 12. Let $K$ be a field, $A$ a subring of $K$ which is integrally
closed in $K$ and $W$ the set of all elosed points of $Zar(K|A)$ . If the re-
striction map of $\Phi_{K1A}$ to $W$ is injective, then $A$ is a Prufer domain
with quotient field $K$.

PROOF. Let $Pe$ m-Spec $A$ and $Y$ the set of all closed points of
$Zar(K|A_{P})$ . Then, we have $A_{P}=d_{Y}(Y)$ . By Lemma 7, $Y=\{ReW|$
$\Phi_{K|A}(R)=P\}$ and $ A_{P}\in$ Zar $K$. By Propo8ition 10, we obtain that $A$ is a
Prufer domain with quotient field $K$. Q.E.D.

Here we con8ider the condition:

(W-6) If $R_{1},$ $R_{2}\in W,$ $m(R_{1})\cap\bigcap_{ReW}R=m(R_{2})\cap\bigcap_{ReW}R$ , then $R_{1}=R_{2}$

for a subset $W$ of $ZarK$. And for a fixed field $K$, we put:

(21) $\mathscr{F}=$ {$X\subset ZarK|X\neq\emptyset,$ $(X,$ $P_{X})$ is an affine scheme},
(22) $\llcorner\ovalbox{\tt\small REJECT}=$ {$A|$ $A$ is a Pr\"ufer domain with quotient field $K$} ,
(23) $\mathscr{G}=$ {$W\subset ZarK|W$ satisfies (W-4), (W-5) and (W-6)}.

Then,

THEOREM 13. Let $K,$ $\mathscr{F}\ovalbox{\tt\small REJECT},$ $\mathscr{C}^{\nearrow}be$ as above. Then the restriction
mappings of (17), (18) and (19) between $\mathscr{F}\ovalbox{\tt\small REJECT}$ and $\mathscr{C}^{\rightarrow}are$ all biiective.Instead of (18), we can also write
(18) $A\mapsto W=$ {$A_{P}|Pe$ m-Spec $A$} $=\Phi_{K|A}^{-1}$ ($m$-Spec $A$).

PROOF. Obvious from Theorem 9, Propositions 10, 11 and Lemma 12.
Q.E.D.
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COROLLARY. Let $X$ be a subset of Zar K. If (X, $\rho_{X}$) is a locally

noetherian scheme, then dim $X\leqq 1$ .
REMARK. Since $\{K\}=Zar(K|K)\rightarrow\sim$ Spec $K$ is an affine scheme, $X=\{K\}$ ,

$A=K,$ $W=\{K\}$ correspond to one another by the mappings (17), (18), (19).

And we can also express:

(21) $\mathscr{F}=$ { $Xe\tilde{\mathscr{F}}|X$ satisfies (W-6)} ,

(22) $\ovalbox{\tt\small REJECT}=$ {$Ae\tilde{\ovalbox{\tt\small REJECT}}|\Phi_{K|4}$ is injective} ,

(23) $\ovalbox{\tt\small REJECT}^{\sim}=$ { $We\mathscr{C}^{\tilde{\prime}}|W$ satisfies (W-6)}.

Here, (21’), (22) follow from Proposition 10 and (23’) is obvious.

Next, we consider the noetherian case. First, we shall admit the
following:

LEMMA 14. Assume that a ring A $sat\dot{j}sfies$ the following two con-
ditions:

(i) for any $Pe$ m-Spec $A,$ $A_{P}$ is a noetherian ring.
(ii) for any $xeA,$ $x\neq 0$ , the set {$Pem$-SpecA $|xeP$} is finite.
Then $A$ is noetherian. Conversely, ,if $A$ is a Dedekind $doma\dot{j}n$ , then

A satisfies the above two conditions.

It is obvious that (W-1) implies (W-5). Then for a field $K$, we put:

(24) $\mathscr{G}_{N}=\{X\subset ZarK|X\neq\emptyset,$ $X\neq\{K\}$ ,
(X, $\rho_{X}$) is a noetherian affine scheme}

$=\dagger Xe\mathscr{F}|X\neq\{K\},$ $(X, \rho_{X})$ is a noetherian scheme} ,

(25) $\ovalbox{\tt\small REJECT}^{N}=$ {$A|$ $A$ is a Dedekind domain with quotient field $K$ }
$=$ { $Ae\ovalbox{\tt\small REJECT}|$ $A$ is noetherian and not a field} ,

(26) $\mathscr{C}_{N}^{\prime}=$ {$W\subset ZarK|W$ satisfies (W-1), (W-2), (W-4) and (W-6)}

$=$ { $We\mathscr{C}^{\rightarrow}|W$ satisfies (W-1) and (W-2)}.

Then,

THEOREM 15. Let $K,$ $\mathscr{F}_{N},$ $\mathscr{A}^{N},$ $\mathscr{C}_{N}^{\prime}$ be as above.
(i) The restriction mappings of (17), (18) and (19) between $\mathscr{F}_{N}$ ,

$\mathscr{A}^{N}$ and $\ovalbox{\tt\small REJECT}_{N}$ are all bijective. Instead of (19), we can also write

(19) $W->X=W\cup\{K\}$ , $X->W=X-\{K\}$ .

(ii) If $Xe\mathscr{F}_{N},$ A $e\mathscr{A}^{N}$ and $W\in C\swarrow\nearrow\nearrow_{N}$ correspond to one another by
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the mappings (17), (18), and (19), then the (Weil) divisor group Div $X$ of
$X$ is the free abelian group generated by $W$ (over $Z$) and is isomorphic
to the ideal group $\ovalbox{\tt\small REJECT} A$ of A. And the divisor class group of $X$ is iso-
morphic to the ideal class group of $A$ .

PROOF. (i) is clear by Theorem 13, Remark and Lemma 14.
(ii) Restricting the map $\Phi_{K|A}$ , we have an inclusion-reversing ho-

meomorphism:

(10) $W\rightarrow^{\sim}$ m-Spec $A$ .
Since a prime divisor of $X$ is identified with an element of $W$, we have
Div $ X\rightarrow FA\sim$. by the definition of Weil divisor group and (10’) (See [2],
condition $(*)$ in p. 130). For $R\in W$ , we denote by $ord_{R}$ the normalized

holds for all $a\in K^{*}$ , we have the last statement.
discrete valuation of $K$ associated with $R$ . Since

$aA=\prod_{R\in W}(\Phi_{K|A}R)^{od_{R}}Q.E.D$ .
EXAMPLES. Let $W$ be a non empty finite subset of Zar $K$. Then:
(i) $\rho_{W}(W)e_{L}sF$.
(ii) If $W$ is a $T_{1}$-space, then $ W\in\llcorner\backslash /\nearrow$

(iii) If $W$ satisfies (W-1), then $\rho_{W}(W)\in L\ovalbox{\tt\small REJECT}^{N}$ . Moreover, $p_{W}(W)$ isa principal ideal domain.
(iv) If $W$ is a $T_{1}$-space and satisfies (W-1), then We $\mathscr{G}_{N}^{\rightarrow}$ .
REMARK. On conditions for a subset $W$ of Zar $K$:
(i) (W-1) implies (W-5). (W-4) implies (W-O) (already described).
(ii) If $We\mathscr{G}^{\prime}$, then $W$ satisfies (W-3).
(iii) (W-3) implies (W-5) and (W-6).
Hence, we also have,

(23) $\mathscr{C}^{-}=$ { $W\subset ZarK|W$ satisfies (W-3) and (W-4)} ,
(26) $\nearrow_{N}^{\prime}=$ { $W\subset ZarK|W$ satisfies (W-1), (W-2), (W-3) and (W-4)}.

\S 4. Here we consider some applications of Theorems 9, 13 and 15.
For this purpose, we shall assume the following four properties for
Pr\"ufer domains and Krull domains (the definition will be stated below).

LEMMA 16. Let $A$ be a Pruffer domain, $K$ the quotient field of $A$

and L. an algebraic extension of K. Then the integral closure $B$ of $A$

in $L$ is a Prufer domain with quotient field $L$ (See [1], (22.3), p. 277).

LEMMA 17. Let $A$ be an integrally closed integral domain and $B$
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an integral extension of A. If $B$ is Prufer, then $A$ is Prufer (See [1],

(22.4), p. 278).

DEFINITION. Let $A$ be an integral domain and $K$ the quotient field of
$A$ . Then $A$ is called a Krull domain, if there exists $W\subset ZarK$ satisfying

the conditions (W-1) and (W-2) such that $A=\bigcap_{ReW}R$ .
REMARK. In the above definition, $W$ can be the empty set. In that

case, $A=K$, that is also a Krull domain (See (8)).

LEMMA 18. The following three conditions for a $r^{J}ing$ $A$ are equiva-

lent:
(a) $A$ is a Dedekind domain or a field.
(b) $A$ is a Prifer domain and a Krull domain.
(c) $A$ is a Krull domain and dim $A\leqq 1$ .

(See [1], (43.16), p. 536).

LEMMA 19. Let $A$ be a noetherian domain, $K$ the quotient field of
$A$ and $L$ a finite extension of K. Then the integral closure $B$ of $A$

in $L$ is a Krull domain with quotient field $L$ (See [51, Theorem 8.3.5,

p. 193).

Using these $re8ults$ , we consider some applications to number theory.

THEOREM 20. Let $A$ be a noetherian subring of a field K. Then,

(i) The following three conditions are equivalent:

(a) $Zar(K|A)$ is a scheme.
(b) dim $Zar(K|A)\leqq 1$ .
(c) dim $A+tr-\deg_{QA}K\leqq 1$ .

(ii) The following three conditions are equivalent:
(d) $Zar(K|A)$ is an affine scheme.
(e) dim $Zar(K|A)=\dim A\leqq 1$ .
(f) $K$ is an algebraic extension of $QA$ and dim $A\leqq 1$ .

PROOF. (i) (a) implies (b). Let $U$ be any affine open set of $Zar(K|A)$

expressed as $U=Zar(K|A_{0}),$ $A_{0}=A[x_{1}, \cdots, x_{n}]$ for 8ome $x_{1},$ $\cdots,$ $x_{n}eK$. Let
$A_{1}$ be the integral clo8ure of $A_{0}$ in $QA_{0}$ and $B$ the integral clo8ure of $A_{0}$

in $K$. Since $U$ is affine, $B$ is a Pr\"ufer domain with quotient field $K$. By

Lemma 17, $A_{1}$ is a Pr\"ufer domain. On the other hand, by Lemma 19,
$A_{1}$ is a Krull domain. By Lemma 18, we have dim $A_{1}\leqq 1$ and dim $U=$

dim $B=\dim A_{1}\leqq 1$ . Hence we obtain that dim $Zar(K|A)\leqq 1$ .
(b) implies (c). This is obvious from Lemma 6, (ii).

(c) implies (a). If $tr-\deg_{QA}K=0$ , then dim $A\leqq 1$ . Let $A_{1}$ be the integral
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closure of $A$ in $QA$ and $B$ the integral closure of $A$ in $K$. By Lemma
19, $A_{1}$ is Krull and $\dim A_{1}\leqq 1$ . By Lemma 18, $A_{1}$ is Pr\"ufer. And by
Lemma 16, $B$ is Pr\"ufer and $K=QB$ . Hence $Zar(K|A)=Zar(K|B)\simeq SpecB$

is an affine scheme. If $tr-\deg_{QA}K=1$ , then dim $A=0$ . There exists an
element $xeK$ such that $x$ is transcendental over $A$ . Then $K$ is an
algebraic extension over $A(x)$ . Let $A_{1},$ $A_{2}$ be the integral closure of
$A[x],$ $A[x^{-1}]$ in $K$, respectively. Then $A_{1}$ and $A_{2}$ are Prufer domains
with quotient field $K$. And we obtain an open covering $Zar(K|A)=$
$Zar(K|A_{1})\cup Zar(K|A_{2})$ . Since $Zar(K|A_{i})\simeq SpecA_{i}(i=1,2)$ is an affine
scheme, $Zar(K|A)$ is a scheme.

(ii) It is sufficient to prove that if dim $A=0$ and $tr-\deg_{QA}K=1$ ,
then $Zar(K|A)$ is not affine. Let $X=Zar(K|A)$ . Then $p_{X}(X)$ is a field.
Since dim $X=1,$ $X$ is not affine. The other parts of proof are similar
to (i). Q.E.D.

COROLLARY. Let $X$ be an open subset of Zar $K$ and (X, $\rho_{X}$) a scheme.
Then dim $X\leqq 1$ .

Letting $A$ be the prime integral domain of $K$ in Theorem 20, we
have,

THEOREM 21. Let $K$ be a field. Then:
(i) Zar $K$ is a scheme if and only if $K$ is an algebrac extension

over a prime field or an extension over a finite field of transcendental
degree one.

(ii) ZarK is an affine scheme if and only if $K$ is an algebraic
extension over a prime field.

Suppose that Zar $K$ is a scheme of finite type over $Z$. Then $K$ is a
finitely generated field over the prime field. Hence we have:

THEOREM 22. Let $K$ be a field. Then, Zar $K$ is a scheme of finite
type over $Z$, if and only if $K$ is a finite field or a global field of
dimension one.

Letting $A$ be a subfield of $K$ in Theorem 20, we have:

THEOREM 23. Let $C$ be a subfield of a field $K$.
(i) $Zar(K|C)$ is a scheme if and only if $tr-\deg_{c}K\leqq 1$ . In this case,

the equality dim $Zar(K|C)=tr-\deg_{c}K$ holds.
(ii) The next four conditions are equivalent:

(a) $Zar(K|C)$ is an affine scheme.
(b) $\{K\}$ is an open subset of $Zar(K|C)$ .
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(c) $K\dot{r}s$ an algebraic extension over $C$.
(d) dim $Zar(K|C)=0$ .

PROOF. By Hilbert’s Nullstellensatz (weak form), we obtain that
(b) implies (c). The other parts of proof follow from Lemma 6 and
Theorem 20. Q.E.D.

To consider the similar formula to (b) over an integral domain, we
introduce the notion of G-domains.

DEFINITION. An integral domain $A$ is called a G-domain, if there exist
$x_{1},$ $x_{2},$ $\cdots,$ $x_{n}eQA$ such that $QA=A[x_{1}, x_{2}, \cdots, x_{n}]$ ($8ee[4]$ , p. 12).

Then:

PROPOSITION 24. Let $A$ be a subring of a field $Kwh$ich $\dot{r}s$ integrally
closed in K. Then the following two conditions are equivalent:
(a) A $\dot{r}s$ a G-domain with quotient field $K$.
(b) $\{K\}$ is an open subset of $Zar(K|A)$ .

PROOF. It is obvious that (a) implies (b).
(b) implies (a). We can express as $\{K\}=Zar(K|A[x_{1}, \cdots, x_{n}])=$

$Zar(K|QA[x_{1}, \cdots, x_{n}])$ for some $x_{1},$ $\cdots,$ $x_{n}eK$. By Lemma 6, $ QA\subset$

$A[x_{1}, \cdots, x_{n}]\subset K$. By Theorem 23, $K$ is an algebraic extension of $QA$ .
Hence we have $K=QA$ . Q.E.D.

Next we consider some applications to algebraic geometry.
Let $C$ be any field, (V, $p_{V}$) a proper integral scheme over $C$ and

$K=RatV$ the function field of $V$. Then the mapping $\Phi_{V}:Zar(K|C)\rightarrow V$

is defined by

(27) $\Phi_{V}(R)=x$ if and only if $R$ dominate8 $p_{V,x}$

for $R\in Zar(K|C)$ and $xeV$. Here we call $x$ the center of $R$ (see [2],
p. 106). Let $U$ be an affine open set of $V$ and $A=d_{V}(U)$ . Then we
have $QA=K$ and

(28) $\Phi_{V}^{-1}(U)=Zar(K|A)$ ,

$Zar(K|C)\rightarrow V\underline{\Phi_{V}}$

(29) $\cup$ $0$ $\cup$

$Zar(K|A)\rightarrow^{\Phi_{K1A}}$ Spec $A\simeq U$ .
Let $Z=Zar(K|C)$ . Then the morphism $\Phi_{\nu}$ : $P_{V}\rightarrow(\Phi_{V})_{*}\rho_{Z}$ of sheaves
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of rings on $V$ is defined by the similar formula to (11). And the induced
mapping of $\Phi_{V}^{\$}$ on the stalks is denoted by

(30) $(\Phi_{V}^{l})_{R}$ : $ p_{V,x}\rightarrow$

for $R\in Z$ and $x=\Phi_{V}(R)\in V$. Hence we obtain that $(\Phi_{V}, \Phi_{V})$ is a morphi8m
of locally ringed spaces and

$Zar(K|C)\rightarrow^{\Phi_{V}}V$

(31)
$\Phi_{K1C}^{\backslash }\backslash 0\downarrow SpecC$

.
The locally ringed space $Z=Zar(K|C)$ is clearly a birational invariant

of V. $\Phi_{V}$ is surjective and maps the closed points of $Z$ to that of $V$.
Moreover, the restriction mapping of $\Phi_{V}$ to the sets of all closed points
is also suriective. And, we have

(32) $V$ is normal if and only if $\Phi_{V}^{\$}$ is an isomorphism.

(33) If $\Phi_{V}$ is injective, then dim $V\leqq 1$ .
(34) dim $V\leqq 1$ if and only if $Z$ is a scheme .
(35) $(\Phi_{V}, \Phi_{V}^{l})$ is an isomorphism if and only if

dim $V\leqq 1$ and $V$ is non-singular.

Especially, if dim $V=1$ , then $V$ is a projective algebraic curve and
the diagram (31) is the normalization and the non-singularization (that
is, the resolution of singulalities). Here we consider the case of dimension
one. From Theorems 15 and 23, we have:

THEOREM 25. Let $C$ be a subfield of a field $K,$ $Z=Zar(K|C)$ and
$Y=Z-\{K\}$ . Then $K$ is an algebraic function field of one variable with
coefficient field $C$ if and only if Z,is a scheme of finite type over $C$ and
$C=\theta_{Z}(Z)\neq K$. In this case, $Z,$ $C$ and $Y$ correspond to one another by
the mappings (17), (18), (19) and Div $Z=\oplus_{ReY}ZR$ holds.

In what follows, we always denote by $K$ an algebraic function field
of one variable with the coefficient field $C$. Further, let $Z=Zar(K|C)$
and $Y=Z-\{K\}$ .

LEMMA 26. (i) $Y$ satisfies (W-O), (W-1), (W-2), (W-4) and (W-5) but
does not satisfy (W-3) and (W-6).

(ii) If A $e-\sigma\tilde{\psi,}C\subsetneqq A\subsetneqq K$, then $A\in\ovalbox{\tt\small REJECT}\nearrow N$
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PROOF. (i) is well-known. (ii) follows from Lemma 18. Q.E.D.

LEMMA 27. (i) If $Xe\tilde{\mathscr{F}}$ and $We\tilde{\ovalbox{\tt\small REJECT}}^{-}$ correspond to each other by
the mappings (19), then $\{K\}\subsetneqq X\subset Z$ if and only if $W\subset Y$. In this case,
$X$ and $W$ also correspond to each other by the mappings (19“).

(ii) If $KeX\subset Z$, then $Xe\tilde{\mathscr{F}}$ And if $\emptyset\neq W\subset Y$, then $We\tilde{\mathscr{C}}^{\wedge}\wedge_{.}$

(iii) If $\{K\}\subsetneqq X\subsetneqq Z$, then $Xe\mathscr{F}_{N}$ . And if $\emptyset\neq W\subsetneqq Y$, then We $\mathscr{F}_{N}$ .
(iv) For a subset $X$ of $Z,$ $X$ is a non empty open subset of $Z$ if

and only $\dot{j}fZ-X$ is finite and $Ke$ X. For a subset $W$ of $Y,$ $W$ is $a$

non empty open subset of $Y$ if and only if $Y-W$ is finite.
PROOF. (i) is obviou8.
(ii) Let $x(R)$ be an element of $K-C$ which has a pole only at $R$ ,

for any $Re$ Y. Then we have

(36) $X=Z\bigcap_{R}\bigcap_{eZ-X}Zar(K|\{x(R)\})$

$=Zar(K|C\cup\{x(R)|ReZ-X\})$ .
Hence $Xe\tilde{\mathscr{F}}$ For a non empty subset $W$ of $Y$, we put $X=W\cup\{K\}$ .
Then $Xe\tilde{\mathscr{F}}$ Hence $W=X-\{K\}e\tilde{\ovalbox{\tt\small REJECT}}$ by (i).

(iii) Let $A=\rho_{X}(X)$ . Then $C\subsetneqq A\subsetneqq K$. Hence $A$ $e\mathscr{A}^{N}$ by Lemma 26.
Thus we obtain $X=Zar(K|A)e\mathscr{F}_{N}$ . For a subset $W$ of $Y$, the proof is
similar to (ii).

(iv) is obvious. Q.E.D.

Hence we obtain,

THEOREM 28. Let $K,$ $C,$ $Z$ and $Y$ as above. Then:
(i) The restriction mappings of (17), (18) and (19) between the

set of all $X$ satisfying $\{K\}\subsetneqq X\subsetneqq Z$, the set of all $Ae\ovalbox{\tt\small REJECT}^{N}$ satisfying
$C\subset A\subset K$ and the set of all $W$ satisfying $\emptyset\neq W\subsetneqq Y$ are au bijective.

(ii) Let $X$ be a non empty open subset of $Z$ and $X\neq Z$. Then $X$

is an affine open subset of $Z$.
(iii) Let $X,$ $A$ and $W$ correspond to one another by the mappings

(17), (18), (19“) in (i). Then the following three conditions are equivalent:
(a) $X\dot{\tau}s$ open in $Z$.
(b) $A$ is a finitely generated ring over $C$.
(c) $W$ is open in Y.

In this case, we can also denote $A=\rho_{Z}(X)=p_{Y}(W),$ $ X=Zar(K|A)\simeq$

Spec $A$ and $W\simeq m$-Spec $A$ .
PROOF. (i), (ii) are obvious.
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(iii) It is clear that (a) and (c) are equivalent. It is also clear that
(b) implies (a). (a) implies (b). Let $X$ be an open subset of $Z$. Then
$Z-X$ is a finite set by Lemma 27, (iv). And by (36), we obtain that $A$

is a finitely generated ring over $C$. Q.E.D.
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