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1. Introduction and results.

A stochastic prooess $\{X(t)\}$ is said to be H-self-similar (H-ss) for $H>0$ if for any $c>0$,

all finite-dimensional distributions of $\{X(ct)\}$ are the same as those of $\{c^{H}X(t)\}$ , and to
have stationary increments (si) if any finite-dimensional distribution of $\{X(t+b)-X(t)\}$

does not depend on $b$ . It is also said to be $\alpha$-stable if any finite-dimensional distribution
of $\{X(t)\}$ is $\alpha$-stable.

In this paper, we examine the H\"older continuity of H-ss si $\alpha$-stable processes.
There are two main classes of H-self-similar $\alpha$-stable processes with stationary

increments: the linear fractional stable processes and the harmonizable fractional stable
processes. In [T], Takashima showed the H\"older continuity of the linear fractional
stable processes when $1<\alpha<2$ and $1/\alpha<H<1$ , and also pointed out that the exponent
in the H\"older continuity cannot be bigger than $ H-1/\alpha$ . However, we can get a better
H\"older continuity for the harmonizable fractional stable processes as follows. The
harmonizable fractional stable process is a complex-valued process defined by

$X(t)=\int_{-\infty}^{\infty}\frac{e^{it\lambda}-1}{i\lambda}|\lambda|^{1-H-1/\alpha}d\tilde{M}_{\alpha}(\lambda)$ ,

where $0<H<1$ and $\tilde{M}_{\alpha}$ is a complex rotationally invariant $\alpha$-stable motion, (see
[CM]). This is an H-ss si rotationally invariant $\alpha$-stable process.

THEOREM 1. Let $0<H<1$ and $0<\alpha<2$ . For the harmonizable fractional stable
process, there exists a version $\chi*such$ that
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$\lim_{\delta\downarrow 0}\sup_{t,se[0,1]}\frac{|X^{*}(t)-X^{*}(s)|}{|t-s|^{H}|\log|t-s||^{1/\alpha+1/2+\epsilon}}=0$

for any $\epsilon>0$ .
In [KM], we gave a partial result on the H\"older continuity of the harmonizable

fractional stable process, where $H$ is replaced by any $\gamma<H$.
As mentioned above, Takashima [T] showed that the sample paths of the linear

fractional stable process have the H\"older continuity of $|t-s|^{H-1/\alpha}$ with the help of
some slowly varying function, if $1<\alpha<2$ and $1/\alpha<H<1$ . In the following theorem, we
can see that this is also true for general H-ss si $\alpha$-stable processes with $1<\alpha<2$ and
$1/\alpha<H<1$ .

THEOREM 2. Let $X=\{X(t)\}_{t\geq 0}$ be H-ss si $\alpha$-stable with $1<\alpha<2$ and $1/\alpha<H<1$ .
Then there exists a version $X^{*}ofX$ on $[0,1]$ such that

$\delta\downarrow 0\lim_{t}\sup_{|-s|<\delta}\frac{|X^{*}(t)-X^{*}(s)|}{|t-s|^{H-1/\alpha}|\log|t-s||^{1/\alpha+1+\epsilon}}=0t,se[0,1]$

for any $\epsilon>0$ .
$\alpha$-stable processes have $\gamma$-th moments for any $\gamma<\alpha$ . Then, by the property of H-ss

si, we have

$E[|X(t)-X(s)|^{\gamma}]=E[|t-s|^{H\gamma}|X(1)|^{\gamma}]$

$=C|t-s|^{H\gamma}$ .
If $1<\alpha<2$ and $1/\alpha<H<1$ , then we can find $ 1<\gamma<\alpha$ such that $H\gamma>1$ . This means that
H-ss si $\alpha$-stable processes with $1<\alpha<2$ and $1/\alpha<H<1$ satisfy Kolmogorov’s moment
condition

(1.1) $E[|X(t)-X(s)|^{\gamma}]\leq K|t-s|^{H\gamma}$ ,

where $\gamma>1,$ $K>0,$ $H\gamma>1$ . It follows from Proposition 1.3 of [B] that (1.1) implies the
existence of a version $X^{*}$ of $X$ satisfying

(1.2)
$\delta\downarrow 0\lim_{t}\sup_{|-s|<\delta}\frac{|X^{*}(t)-X^{*}(s)|}{|t-s|^{H-1/\gamma}|\log|t-s||^{1/\gamma+\epsilon}}=0t,s\in[0,1]$ , for any $\epsilon>0$ .

However, it is noted that (1.2) is not enough to get Theorem 2, because we cannot
replace $\gamma$ in (1.2) by $\alpha$ .

The proofs of Theorems 1 and 2 are given in the subsequent sections.
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2. Proof of Theorem 1.

The basic idea to prove Theorem 1 is to use the LePage representation of
complex-valued rotationally invariant stable processes. The LePage representation
allows us to regard stable processes as conditionally Gaussian processes and we next
use the known results for Gaussian processes.

We state results for the LePage representation and Gaussian processes as lemmas.
Let $\psi$ be an arbitrary probability measure equivalent to Lebesgue measure on $R$

and let $\varphi$ be its Radon-Nikodym derivative, $\psi(d\lambda)=\varphi(\lambda)d\lambda$ . Let $\{\xi_{j}\}_{j\geq 1}$ be a sequence
of iid random variables with the distribution $\psi$ , and let $\{g_{j}\}_{j\geq 1}$ be a sequenoe of iid
rotationally invariant complex-valued random variables with $E[g_{1}]=0$ and
$E[|{\rm Re} g_{1}|^{\alpha}]=1$ . Let $\{\Gamma_{j}\}_{j\geq 1}$ be a sequence of Poisson arrival times with unit rate.
Suppose that $\{\xi_{i}\},$ $\{g_{j}\},$ $\{\Gamma_{j}\}$ are mutually independent.

LEMMA 1. Let $0<\alpha<2$ and suppose $X=\{X(t)\}_{t\geq 0}$ is represented as

$X(t)=\int_{-\infty}^{\infty}f(t, \lambda)d\tilde{M}_{a}(\lambda)$ .

Then $\{X(t)\}_{t\geq 0}$ has the same finite-dimensional distributions as $\{Y(t)\}_{t\geq 0}$ defined by

(2.1) $Y(t)=C\sum_{j=1}^{\infty}g_{j}\Gamma_{j}^{-1/\alpha}\varphi(\xi_{j})^{-1/a}f(t, \xi_{j})$ ,

where the last series converges almost surely for each $t$ .

This result was shown in [MP]. However, there is a small gap in their proof, which
is filled in [KM].

The next lemma due to [K] was shown for real-valued processes, but it is easily
seen to be valid also for the complex-valued case. More precisely, the lemma can be
given from Theorem 1, Corollary 1 and the comment at the end of the proof of
Theorem 1 of [K].

LEMMA 2. Let $\{Y(t)\}_{te[0,1]}$ be a centered Gaussian process satisfying

$E[|Y(t)-Y(s)|^{2}]\leq\sigma^{2}(|t-s|)$ ,

where $\sigma(x)$ is a non-decreasing function defined on $(0, \infty)$ and $\sigma(x)|\log x|^{1/2}$ is also
non-decreasing near the origin. Then

$\lim_{\delta\downarrow 0|t}\sup_{-s|<\delta}\frac{|Y(t)-Y(s)|}{\sigma(|t-s|)|\log|t-s||^{1/2}}\leq\sqrt{2}$

PROOF OF THEOREM 1. Recall that

$X(t)=\int_{-\infty}^{\infty}f(t, \lambda)d\tilde{M}_{a}(\lambda)$ ,
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where

$f(t, \lambda)=\frac{e^{it\lambda}-1}{i\lambda}|\lambda|^{1-H-1/a}$

Take

$\varphi(\lambda)=\frac{a_{\eta}}{|\lambda||\log|\lambda||^{1+\eta}}$ ,

where $\eta>0$ and $a_{\eta}$ is the normalization for $\int\varphi(\lambda)d\lambda=1$ , and fix $\{\xi_{j}\}$ and $\{\Gamma_{j}\}$ in (2.1)
to regard $Y$ as a conditionally Gaussian process.

We denote the expectations with respect to $\{g_{j}\}$ and $\{\xi_{j}\}$ by $E_{g}$ and $E_{\xi}$, respectively.
In what follows, $C$ denotes a positive constant which may differ from one inequality
to another. We then have

(2.2) $E_{g}[|Y(t)-Y(s)|^{2}]=CE_{g}[|g_{1}|^{2}]\sum_{j=1}^{\infty}\Gamma_{j}^{-2/\alpha}\varphi(\xi_{j})^{-2/a}|f(t, \xi_{j})-f(s, \xi_{j})|^{2}$

$=Ca^{2}(|t-s|)$ ,

where

$a^{2}(z)\leq\sum_{j=1}^{\infty}\Gamma_{j}^{-2/a}\varphi(\xi_{j})^{-2/a}\sup_{|t-s|<z}|f(t, \xi_{j})-f(s, \xi_{j})|^{2}$

$\leq C\sum_{j=1}^{\infty}\Gamma_{j}^{-2/a}\varphi(\xi_{j})^{-2/a}\{|z\xi_{j}|^{2}\wedge 1\}|\xi_{j}|^{-2(H+1/a)}$ .

Then we can prove

(2.3) $\sum_{n=1}^{\infty}\frac{a^{2}(2^{-n})}{b^{2}(2^{-n})}<\infty$ a.s. $(\xi, \Gamma)$ ,

where

$ut)=t^{H}|\log|t||^{(1+\eta)/\alpha}$

We are going to show (2.3). We have

$ E_{\xi}[a^{2}(z)]\leq C\sum_{j=1}^{\infty}\Gamma_{j}^{-2/a}\int_{0}^{\infty}\varphi(x)^{1-2/a}\{|zx|^{2}\wedge 1\}|x|^{-2\langle H+1/a)}d\kappa$

$=c\sum_{j=1}^{\infty}\tau_{j}^{-2/a}\{\int_{0}^{\iota/z}+\int_{1/z}^{\infty}\}$

$=:C\sum_{j=1}^{\infty}\Gamma_{j}^{-2/a}\{I_{1}+I_{2}\}$ ,

where
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$I_{1}\leq Cz^{2}\int_{0}^{1/z}(x|\log x|^{1+\eta})^{-\langle 1-2/\alpha)}x^{-2\langle H+1/a)+2}dx$

$\leq Cz^{2H}|\log z|^{-\langle 1+\eta)\langle 1-2/\alpha)}$

and

$I_{2}\leq C\int_{1/z}^{\infty}(x|\log x|^{1+\eta})^{-\langle 1-2/\alpha)}x^{-2\langle H+1/\alpha)}dx$

$\leq Cz^{2H}|\log z|^{-\langle 1+\eta)\langle 1-2/\alpha)}$ .
Therefore

$E_{\xi}[a^{2}(z)]\leq(C\sum_{j=1}^{\infty}r_{j}^{-2/a})z^{2H}|\log z|^{-\langle 1+\eta)\langle 1-2/\alpha)}$ ,

and thus

$ E_{\xi}[\sum_{j=1}^{\infty}\frac{a^{2}(2^{-n})}{b^{2}(2^{-n})}]\leq(C\sum_{j=1}^{\infty}\tau_{j}^{-2/\alpha})\sum_{n=1}^{\infty}n^{-1-\eta}<\infty$ ,

which implies (2.3). Hence

$\lim_{z\downarrow 0}\frac{a(z)}{b(z)}=0$ a.s. $(\xi, \Gamma)$ ,

and for small $z>0$ ,

$a(z)\leq Cz^{H}|\log|z||^{\langle 1+\eta)/\alpha}$ a.s. $(\xi, \Gamma)$ .
This combined with (2.2) gives us

$E_{g}[|Y(t)-Y(s)|^{2}]\leq C|t-s|^{2H}|\log|t-s||^{2\langle 1+\eta)/\alpha}$

If we regard this right-hand side as $\sigma^{2}(|t-s|)$ in Lemma 2, it satisfies the conditions in
Lemma 2. Therefore by Lemma 2, almost surely with respect to $(\xi, \Gamma)$ ,

$\lim_{\delta\downarrow 0|t}\sup_{-s|<\delta}\frac{|Y(t)-Y(s)|}{|t-s|^{H}|\log|t-s||^{1/a+1/2+e}}=0$

for any $\epsilon>0$ . The proof is thus completed. $\square $

3. Proof of Theorem 2.

We need a real variable lemma.

LEMMA 3. Let $\{f(t)\}_{t\in[0,1]}$ be a real-valued continuous function. Then we have
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$\sup_{|t-s|<2^{-n}}|f(t)-f(s)|\leq 3\sum_{r=n1}^{\infty}\max_{\leq k\leq 2^{r}}|f((k+1)2^{-r})-f(k2^{-r})|$ .

$PR\infty F$ . Write the binary expansion of $t\in[0,1]$ as

$t=\sum_{j=0}^{\infty}a_{j}\langle t$)$2^{-j}$ , $a_{j}(t)=0$ or 1;

and put

$t_{r}=\sum_{j=0}^{1}a_{j}(t)2^{-j}$ .

Then for $t,$ $s$ satisfying $|t-s|\leq 2^{-n}$ ,

$|f(t)-f(s)|\leq\sum_{r=n}^{\infty}|f(t_{r+1})-f(t_{r})|+|f(t_{n})-f(s_{n})|+\sum_{r=n}^{\infty}|f(s_{r+1})-f(s_{r})|$

$\leq 3\sum_{r=n}^{\infty}\max_{1\leq k\leq 2^{r}}|f((k+1)2^{-r})-f(k2^{-r})|$ .

This concludes the lemma. $\square $

$PR\infty F$ OF THEOREM 2. As mentioned in Section 1, H-ss si $\alpha$-stable processes with
$1<\alpha<2$ and $1/\alpha<H<1$ satisfy moment condition (1.1). Hence there exists a version
$X^{*}$ with continuous sample paths. We write it $X$ for simplicity of the notation. We
restrict $X(t)$ on $\{t|t\in[0,1]\}$ . Put

$\Delta_{n}(X)=\max_{1\leq k\leq 2^{n}}|X((k+1)2^{-n})-X(k2^{-n})|$ .

By Lemma 3, we see

(3.1) $\sup_{|t-s|<2^{-n}}|X(t)-X(s)|\leq 3\sum_{r=n}^{\infty}\Delta_{r}(X)$ .

Let $\Phi(x)$ be a nonnegative, nondecreasing convex function defined on $[0, \infty$ )
satisfying $\Phi(0)=0$ and

$\Phi(x)\sim\frac{x^{\alpha}}{(\log x)^{1+\eta}}$ as $ x\rightarrow\infty$

for some $\eta$ with $ 0<\eta<\epsilon\alpha$ . Denote the inverse function of $\Phi(x)$ by $\Phi^{-1}(x)$ . $\Phi^{-1}(x)$ is a
nonnegative, nondecreasing concave function on $[0, \infty$ ) and satisfies

$\Phi^{-1}(x)\sim\frac{1}{\alpha}x^{1/a}(\log x)^{\langle 1+\eta)/\alpha}$ as $ x\rightarrow\infty$ .
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Since $X$ is $\alpha$-stable with $\alpha<2$ , we know

(3.2) $P\{|X(1)|>x\}\sim Cx^{-\alpha}$ as $ x\rightarrow\infty$ ,

and therefore

(3.3) $ E[\Phi(|X(1)|)]<\infty$ .

For simplicity, we put $\beta:=H-1/\alpha(>0)$ below.
We now have

$E[\sum_{n\cdot 1}^{\infty}\frac{\sup_{|t-s|\leq 2^{-n}}|X(t)-X(s)|}{2^{-n\beta}n^{1/\alpha+1+\epsilon}}]\leq 3\sum_{n=1}^{\infty}\frac{1}{2^{-n\beta}n^{1/\alpha+1+\epsilon}}\sum_{r=n}^{\infty}2^{-rH}E[\frac{\Delta_{r}(X)}{2^{-rH}}]$ (by (3.1))

$=3\sum_{n=1}^{\infty}\frac{1}{2^{-n\beta}n^{1/\alpha+1+\epsilon}}\sum_{r=n}^{\infty}2^{-rH}E[\Phi^{-1}\circ\Phi(\frac{\Delta_{r}(X)}{2^{-rH}})]$

$\leqq 3\sum_{n=1}^{\infty}\frac{1}{2^{-n\beta}n^{1/\alpha+1+\epsilon}}\sum_{r=n}^{\infty}2^{-rH}\Phi^{-1}(E[\Phi(\frac{\Delta_{1}(X)}{2^{-rH}})])$

(by Jensen’s inequality), where we have

$E[\Phi(\frac{\Delta_{r}(X)}{2^{-rH}})]\leqq\sum_{k=1}^{2^{r}}E[\Phi(\frac{|X((k+1)2^{-r})-X(k2^{-r})|}{2^{-rH}})]$

$=\sum_{k=1}^{2^{r}}E[\Phi(|X(1)|)]$ (by H-ss si)

$=C2^{r}$ (by (3.3)).

Hence we have

$E[\sum_{n=1}^{\infty}\frac{\sup_{|t-s|\leq 2^{-n}}|X(t)-X(s)|}{2^{-n\beta}n^{1/\alpha+1+\epsilon}}]\leq C\sum_{n=1}^{\infty}\frac{1}{2^{-n\beta}n^{1/\alpha+1+\epsilon}}\sum_{r=n}^{\infty}2^{-rH}\Phi^{-1}(C2^{r})$

$\leq C\sum_{n=1}^{\infty}\frac{1}{2^{-n\beta}n^{1/\alpha+1+\epsilon}}\sum_{r=n}^{\infty}2^{-rH}2^{r/2}(\log 2^{r})^{\langle 1+\eta)/\alpha}$ (by (3.2))

$\leq C\sum_{n=1}^{\infty}\frac{1}{2^{-n\beta}n^{1/\alpha+1+\epsilon}}2^{-n\langle H-1/\alpha)}n^{\langle 1+\eta)/\alpha}<\infty$ ,

implying

$\sum_{n=1}^{\infty}\frac{\sup_{|t-s|\leq 2^{-n}}|X(t)-X(s)|}{2^{-n\beta}n^{1/\alpha+1+\epsilon}}<\infty$ a.s



100 NORIO K\^ONO AND MAKOTO MAEJIMA

Therefore, there exists an $N$ such that for any $n\geq N$,

(3.4) $\sup_{|t-s|\leq 2^{-n}}|X(t)-X(s)|<2^{-n\beta}n^{1/\alpha+1+\epsilon}$

For any $t,$ $s$ satisfying $|t-s|<2^{-N}$ , take $n\geq N$ such that $2^{-n}\leq|t-s|<2^{-n+1}$ . Then we
have by (3.4)

$|X(t)-X(s)|<|t-s|^{\beta}|\log|t-s||^{1/\alpha+1+\epsilon}$ a.s.

and hence

$\sup_{|t-s|\leq 2^{-N}}\frac{|X(t)-X(s)|}{|t-s|^{\beta}|\log|t-s||^{1/\alpha+1+\epsilon}}<1$

Since $\epsilon>0$ can be arbitrarily taken, we conclude Theorem 2. $\square $
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