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§1. Introduction.

Let M be an n-dimensional compact submanifold of an m-dimensional Euclidean
space R™ and A the Laplacian of M (with respect to the induced metric) acting on
smooth functions on M. We denote by x the position vector of M in R™. Then we have
the following spectral decomposition of x;

(1.1 x=xo+ 3, x, Ax,=Ax, (in L%-sense).
t=1

If there are exactly k& nonzero x,’s (1>1) in the decomposition (1.1), then the sub-
manifold M is said to be of k-type. Here x, in (1.1) is exactly the center of mass in
‘R™. A submanifold M of a hypersphere S™~! of R™ is said to be mass-symmetric in
S™~1 if the center of mass of M in R™ is the center of the hypersphere S™"! in R™.

In terms of these notions, a well-known result of Takahashi (cf. [6]) says that a
submanifold M in R™ is of 1-type if and only if M is a minimal submanifold of a
hypersphere S™~! of R™. Furthermore, a minimal submanifold of a hypersphere $™ !
in R™ is mass-symmetric in S™~!. On the other hand, in [3], mass-symmetric, 2-type
hypersurfaces of S™~! are characterized. In [1], it is proved that a compact 2-type
surface in $3 is mass-symmetric.

In this paper, we will show that many 2-type hypersurfaces of a hypersphere S"*!
are mass-symmetric and that mass-symmetric, 2-type hypersurfaces of S**! have no
umbilic point. More precisely, we will prove the following.

THEOREM 1. Let x: M—S"*! be a compact hypersurface of a hypersphere S"*!
in R"*2. If M is of 2-type (i.e., x=xo+x,+x,) and

In+16
(lp+lq)—mlp}.q2n',

then M is mass-symmetric (i.e., xo,=0).
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THEOREM 2. Let M be a compact and mass-symmetric hypersurface of a hyper-
sphere S"* in R"*2. If M is of 2-type, then M has no umbilic point.

In [2], it is proved that a compact 2-type hypersurface of $"*! is mass-symmetric
if and only if it has constant méan curvature. Therefore, Theorem 1 implies that many
compact 2-type hypersurfaces of S"*! have constant mean curvatures. But this does
not occur when we consider 3-type hypersurfaces of S"*!. More exactly, we will obtain
the following.

THEOREM 3. There is no compact hypersurface of constant mean curvature in S"*!
which is of 3-type.

The author wishes to thank professors K. Ogiue and Y. Ohnita for many valuable
comments and suggestions. '

§2. Preliminaries.

Let M be an n-dimensional compact hypersurface of the unit hypersphere S**1(1)
of R"*2 centered at the origin. Denote by V, D and D’ the Riemannian connection
of M, the normal connection of M in R"*?2 and the normal connection of M in S"* (1),
respectively. Let A, A and H (respectively, h’, A’ and H’) denote the second
fundamental form, the Weingarten map, and the mean curvature vector of M in R"**2
(respectively, those quantities of M in S"*1(1)).

Let e,, -, e, £ be an orthonormal local frame field such that e,, - - -, e, are
tangent to M and & is normal to M in S"*1(1). Let A” denote the Laplacian associated
with D’.

Then we have the following useful formula.

LEMMA A ([4]). Let M be a hypersurface of S"*1(1) in R"*2. Then we have
AH=APH' +% grad(x?)+2 tr Ap.g + |h|2H' —na’x

Where o= l Hl, tr AD'H' =Z:.= 1 AD:e‘H'ei .
The following' results are known.

THEOREM A ([3]). Let M be a compact submanifold of R™. Then M is of finite
type if and only if there exists a non-trivial polynomial P such that P(A)H=0 (or
P(AXx—xo)=0), where H is the mean curvature vector.

THEOREM B ([3]). Let M be a finite type submanifold of R™. Denote by P,(!) a
monic polynomial of least degree with P,(A)H=0. Then we have

(a) the polymonial P,(t) is unique,

(b) if Q is a polynomial with Q(A)H =0, then P,(t) is a factor of Q, and
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(c) M is of k-type if and only if deg P, =k.

THEOREM C ([3]). Let M be a compact, mass-symmetric and 2-type hypersurface
of S"*Y(r), where r is the radius. Then
(1) the mean curvature o of M in R"*? is given by

S +,1)—<i)21 2
n P q n prq *

(2) the scalar curvature t of M is given by
t=(m—1YA,+4)—r?A,4,, and
(3) the length of the second fundamental form h of M in R"*? is given by
A2 =2,+4,.
The following theorems are proved.

THEOREM D ([4]). Let M be a compact hypersurface of S*** such that M is not
a small hypersphere of S"*!. Then M is mass-symmetric and of 2-type if and only if M
has nonzero constant mean curvature and constant scalar curvature.

We also need the following.

TueoreM E ([3] and [S]). If M is a compact 2-type hypersurface of a unit
hypersphere S"*1(1) in R"*2, then we have

Ap<n<i,.

§3. Proof of Theorem 1.

Let M be a hypersurface of a unit hypersphere S"*(1) in R"*2. Then, from
Theorems A and B, we have

AH=bH+ c(x—x,), b=A4,+4,, c='1’/1".
n
By using H=H'—x, we get
3.1 AH=bH'+(c—b)x—cx, .
On the other hand, from Lemma A, we have
(3.2) AH=APH' + % grad o +2 tr Ay + | Al 2H —no?x .

We put H'=a’S. Then, by a direct computation, we get
APV H' =(Aa’)E .
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Hence, from (3.1) and (3.2), we have

(3.3) Aa’ +([|A))* = b)x’ = —c<xo, &)
(3.9 c{xp, x)=na’+c—b,

from which, for any vector field X tangent to M, we éet
(3.5 cX{xq, Xy =c{xq9, XD =nX(a?).
We use (3.1) and (3.5) to obtain

(3.6) (AH, Xy = —c{x, X)=—nX(a?).

Therefore, from (3.2) and (3.6), we have

3
tr Apog = —Tn grad a? .

By a direct computation, we get
tr AD'H' =A¢ gl'ad al .
These, together with a?=a’?+ 1, yield

3.7 A grad o' = —%na’ grad a’ .

Let E,, - -+, E, be orthonormal principal directions of 4, with principal curvatures

Uy, ° 5 U, TESPECtively.
Then (3.7) gives

(3.8) (2u;+3na)Efa')=0, i=1,--,n.
We give the following general lemma on 2-type hypersurfaces of S**1(1).

LEMMA 1. Let M be a compact 2-type hypersurface of S**'(1) in R**2. Then we
have

(3.9) I (1)1 = B)o2dV + f | grad o’ |2dV + c| x4 |2 vol M=0 .
M M

PROOF. Let M be a 2-type hypersurface of S"*1(1). By a direct computation, we
get

Aa'?=2a'Aa’—2|grad o’ |?,

which, together with Hopf’s lemma, yields

3.10 j a’Aa’dV=j | grad o’ |2dV .
M M
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On the other hand, we have
(3.11) f {xq, x)dV=J~ (X Xo+X,+x,0dV=|x0|*vOol M ,
M M
which implies
(3.12) I {xo, H)dV=J {xo, H' YAV —| x4 |*vol M .
M M

By combining Ax= —nH with Hopf’s lemma, we obtain

. . .
(3.13) f (Xo, HYdV = —mj {Xg, Ax>dV=0.
M nJm
It follows from (3.12) and (3.13) that
(3.14) f {xo, H'YdV =|x4|*vol M . '
M

From (3.3), (3.10) and (3.14), we find (3.9).

Now, we assume that M is not mass-symmetric. Then by using (3.4), M has
non-constant mean curvature. Furthermore, we have the following Lemma (See [2].).

LEMMA B. Let M be a 2-type hypersurface of S"* (1) in R**2. Then either M has
constant mean curvature or U={ue M | grad «®>0 at u} is dense in M.

Consequently, the open subset U is dense in M. Then, from (3.7), we know that
grad o’ is a principal direction with principal curvature —3na’ on U. We put

VE'E":Z(D';(EI)E".’ i j9 k= 1, R ( 2
k

Then, from Codazzi’s equation, we see that
(3.15) (1 — w)OE) = Efw) , i#j.

By using (3.8) and (3.15), we may find that the multiplicity of u, = —3na’ is one (For
further details, refer to [2].). Therefore, we get

9 n
IAI?—n=3 pt=—n*a>+ 3 uf.
i 4 i=2
‘On the other hand, we have

n n 2
-3 u?Z(Z u.-)
i=2 =2

i

25
=(na’—p,)2=—n?a'?.

4
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Thus we obtain

25
+ nza'2=9n+16n2a'2 ,
4n—1) 4n—1)

(3.16) |Ih||2—n2%n2a’2

from which it follows

' 9 1
(3.17) f (VA2 — by 2dy =216 2 f a"*dV +(n—b) J «2dv .
M 4n—1) M M
From (3.4), (3.11) and a?=a'2+1, we get
(3.18) c| xo |2 vol M=nj a’2dV+n+c—b)vol M .
M

Expanding the left-hand-side of {na'>+(n+c—»5)}2>0 and integrating it on M with
use of (3.18), we get

(3.19) nzf a"de(b—n——c){ZnJ a’2dV+(n+c—b)vol M}
M M

=(b—n—c){2c|x0|1*+(b—n—c)} vol M .
From (3.17), (3.18) and (3.19), we see that

2)2 m+16 ) 1
n

(3.20) J‘ ()12 = b)a'2dV >
M

4n—1) (3n+2)?
1
+Z;t 16)(b—n-c)c| Xo|2vol M .

Theorem E gives

1
(3.21) b—n—c=—(Mn—A)i,—n)>0.

n
By combining (3.20) and (3.21) with the hypothesis of Theorem 1, we may find

f (IAll2 —=b)a'2dV >0,
M

which is a contradiction in consideration of Lemma 1.

§4. Proof of Theorem 2.

We use the same notation as in §3. If pe M is an umbilic point, then we have

4.1 na'?=||h|*>—n, at p.
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Since M is a compact, mass-symmetric and 2-type hypersurface of S"* (1), Theo-
rem C gives

4.2 nu'?=b—n—c, Whl|2=b.
Comparing (4.1) with (4.2), we get
| c=0.

This is a contradiction in consideration of ¢>0. Theorem 2 is thereby proved.

§5. Proof of Theorem 3.

Let M be a hypersurface of a hypersphere $"**(1) in R"*? which is of 3-type and
has constant mean curvature a’. Then, Lemma A gives

(5.1) AH=|h||*H’ —no?x .
By a direct computation, (5.1) yields
(5.2) A?H=(4||h|* + | hl|* —n|h|> + n*e®)H’

—(no'2||h||* + n?a?)x + 20’ A, grad ||h]|% .

On the other hand, from Theorems A and B, there exist nonzero constants c¢;, ¢, and
c; such that

(5.3) A2H=c,AH+c,H+ c3(x—x,) .

Substituting (5.1) and H=H’'—x in (5.3), we have

(5.9 A2H=(c,||h||?>+co)H +(—c no* —c,+c3)x—c3Xg -
From (5.2) and (5.4), we find

(5.5 | o« (AllAl12 + [1A* —nllAl? +n2a®) =a'(c; | Al + c2) — c3{x0, &) »
(5.6) no'?||\h||%> +n2a?=cna’ +c,—c3+c3{xq, X) .

Applying the Laplacian to (5.6), we get
5.7 a2A||h||? = —c3a'{xg, E) +c3{X0, XD .
By using (5.5) and (5.7), we have
o' *(|all* —nllAl? +n*a)=a'>(c, | A]|* + c2) — c3{xo, X> ,
which, together with (5.6), implies
a'2||h)|* —c,a'?||h]|? + not —cina? —c,a? +c3 =0 .

Since M is of 3-type, a’2 is non-zero and Hence, we conclude that 4 has constant length.
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By the Gauss equation, M has constant scalar curvature. Therefore, by applying Theo-
rem D, we obtain a contradiction.
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