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\S 1. Introduction.

Let $M$ be an n-dimensional compact submanifold of an m-dimensional Euclidean
space $R^{m}$ and $\Delta$ the Laplacian of $M$ (with respect to the induced metric) acting on
smooth functions on $M$. We denote by $x$ the position vector of $M$ in $R^{m}$ . Then we have
the following spectral decomposition of $x$;

(1.1) $x=x_{O}+\sum_{t\geq 1}x_{t}$
$\Delta x_{t}=\lambda_{t}x_{t}$ (in $L^{2}$-sense).

If there are exactly $k$ nonzero $x_{t}’ s(t\geq 1)$ in the decomposition (1.1), then the sub-
manifold $M$ is said to be of k-type. Here $x_{0}$ in (1.1) is exactly the center of mass in
$R^{m}$ . A submanifold $M$ of a hypersphere $S^{m-1}$ of $R^{m}$ is said to be mass-symmetric in
$S^{m-1}$ if the center of mass of $M$ in $R^{m}$ is the center of the hypersphere $S^{m-1}$ in $R^{M}$ .

In terms of these notions, a well-known result of Takahashi (cf. [6]) says that a
submanifold $M$ in $R^{m}$ is of l-type if and only if $M$ is a minimal submanifold of a
hypersphere $S^{m-1}$ of $R^{m}$ . Furthermore, a minimal submanifold of a hypersphere $S^{m-1}$

in $R^{m}$ is mass-symmetric in $S^{m-1}$ . On the other hand, in [3], mass-symmetric, 2-type
hypersurfaces of $S^{m-1}$ are characterized. In [1], it is proved that a compact 2-type
surface in $S^{3}$ is mass-symmetric.

In this paper, we will show that many 2-type hypersurfaces of a hypersphere $S^{n+1}$

are mass-symmetric and that mass-symmetric, 2-type hypersurfaces of $S^{n+1}$ have no
umbilic point. More precisely, we will prove the following.

THEOREM 1. Let $x:M\rightarrow S^{n+1}$ be a compact hypersurface $0\dot{f}a$ hypersphere $S‘‘+1$

in $R^{n+2}$ . If $M$ is of 2-type (i.e., $x=x_{O}+x_{p}+x_{q}$). and

$(\lambda_{p}+\lambda_{q})-\frac{9n+16}{(3n+2)^{2}}\lambda_{p}\lambda_{q}\geq n\cdot$ ,

then $M$ is mass-symmetric (i.e., $x_{0}=0$).
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THEOREM 2. Let $M$ be a compact and mass-symmetric hypersurface of a hyper-
sphere $S^{n+1}$ in $R^{n+2}$ . If $M$ is of 2-type, then $M$ has no umbilic point.

In [2], it is proved that a compact 2-type hypersurface of $S‘‘+1$ is mass-symmetric
if and only if it has constant mean curvature. Therefore, Theorem 1 implies that many
compact 2-type hypersurfaces of $S^{n+1}$ have constant mean curvatures. But this does
not occur when we consider 3-type hypersurfaces of $S^{n+1}$ . More exactly, we will obtain
the following.

THEOREM 3. There is no compact hypersurface of constant mean curvature in $S^{n+1}$

which is of 3-type.

The author wishes to thank professors K. Ogiue and Y. Ohnita for many valuable
comments and suggestions.

\S 2. Preliminaries.

Let $M$ be an n-dimensional compact hypersurface of the unit hypersphere $S^{n+1}(1)$

of $R^{n+2}$ centered at the origin. Denote by V, $D$ and $D^{\prime}$ the Riemannian connection
of $M$, the normal connection of $M$ in $R^{n+2}$ and the normal connection of $M$ in $S^{n+1}(1)$ ,
respectively. Let $h,$ $A$ and $H$ (respectively, $h^{\prime},$ $A^{\prime}$ and $H^{\prime}$) denote the second
fundamental form, the Weingarten map, and the mean curvature vector of $M$ in $R^{n+2}$

(respectively, those quantities of $M$ in $S^{n+1}(1)$).
Let $e_{1},$ $\cdots,$ $e_{n},$

$\xi$ be an orthonormal local frame field such that $e_{1},$ $\cdots,$ $e$ are
tangent to $M$ and $\xi$ is normal to $M$ in $S^{n+1}(1)$ . Let $\Delta^{D^{\prime}}$ denote the Laplacian associated
with $D^{\prime}$ .

Then we have the following useful formula.

LEMMA A ([4]). Let $M$ be a hypersurface of $S‘‘+1(1)$ in $R^{n+2}$ . Then we have

$\Delta H=\Delta^{D^{\prime}}H^{\prime}+\frac{n}{2}grad(\alpha^{2})+2$ tr $A_{D^{\prime}H^{\prime}}+\Vert h\Vert^{2}H^{\prime}-n\alpha^{2}x$ ,

where $\alpha=|H|$ , tr $A_{D’ H^{\prime}}=\sum_{i=1}^{n}A_{D^{\prime}e_{1}H^{\prime}}e_{i}$ .
The following $\cdot$ results are known.

THEOREM A ([3]). Let $M$ be a compact submanifold of $R^{m}$ . Then $M$ is offinite
type if and only if there exists a non-trivial polynomial $P$ such that $P(\Delta)H=0$ (or
$\eta\Delta Xx-x_{0})=0)$, where $H$ is the mean curvature vector.

THEOREM $B$ ([3]). Let $M$ be a finite type submanifold of $R^{m}$ . Denote by $P_{m}(t)a$

monic polynomial of least degree with $P_{m}(\Delta)H=0$ . Then we have
(a) the polymonial $P_{m}(t)$ is unique,
(b) if $Q$ is a polynomial with $Q(\Delta)H=0$ , then $P_{m}(t)$ is a factor of $Q$ , and
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(c) $Misofk- typeifandonlyif\deg P_{m}=k$ .

THEOREM $C$ ([3]). Let $M$ be a compact, mass-symmetric and 2-type hypersurface
of $S^{n+1}(r)$ , where $r$ is the radius. Then

(1) the mean curvature $\alpha$ of $M$ in $R^{n+2}$ is given by

$\alpha^{2}=\frac{1}{n}(\lambda_{p}+\lambda_{q})-(\frac{r}{n})^{2}\lambda_{p}\lambda_{q}$ ,

(2) $thescalarcurvature\tau ofMisgivenby$

$\tau=(n-1X\lambda_{p}+\lambda_{q})-r^{2}\lambda_{p}\lambda_{q}$ , and

(3) the length of the secondfundamental form $h$ of $M$ in $R^{n+2}$ is given by

$\Vert h\Vert^{2}=\lambda_{p}+\lambda_{q}$ .
The following theorems are proved.

THEOREM $D$ ([4]). Let $M$ be a compact hypersurface of $S^{n+1}$ such that $M$ is not
a small hypersphere of $S^{n+1}$ . Then $M$ is mass-symmetric and of 2-type if and only if $M$

has nonzero constant mean curvature and constant scalar curvature.

We also need the following.

THEOREM $E$ ([3] and [5]). If $M$ is a compact 2-type hypersurface of a unit
hypersphere $S^{n+1}(1)$ in $R^{n+2}$ , then we have

$\lambda_{p}<n<\lambda_{q}$ .

\S 3. Proof of Theorem 1.

Let $M$ be a hypersurface of a unit hypersphere $S^{n+1}(1)$ in $R^{n+2}$ . Then, from
Theorems A and $B$ , we have

$\Delta H=bH+c(x-x_{0})$ ,

By using $H=H^{\prime}-x$, we get

$b=\lambda_{p}+\lambda_{q}$ , $c=\frac{\lambda_{p}\lambda_{q}}{n}$ .

(3.1) $\Delta H=bH^{\prime}+(c-b)x-cx_{0}$ .
On the other hand, from Lemma $A$ , we have

(3.2) $\Delta H=\Delta^{D^{\prime}}H^{\prime}+\frac{n}{2}grad\alpha^{2}+2$ tr $A_{D’ H’}+\Vert h\Vert^{2}H^{\prime}-n\alpha^{2}x$ .

We put $ H^{\prime}=\alpha^{\prime}\xi$ . Then, by a direct computation, we get

$\Delta^{D^{\prime}}H^{\prime}=(\Delta\alpha^{\prime})\xi$ .
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Hence, from (3.1) and (3.2), we have

(3.3) $\Delta\alpha^{\prime}+(\Vert h\Vert^{2}-b)\alpha^{\prime}=-c\langle x_{0}, \xi\rangle$ ,

(3.4) $c\langle x_{0}, x\rangle=n\alpha^{2}+c-b$ ,

from which, for any vector field $X$ tangent to $M$, we get

(3.5) $cX\langle x_{0}, x\rangle=c\langle x_{0}, X\rangle=nX(\alpha^{2})$ .
We use (3.1) and (3.5) to obtain

(3.6) $\langle\Delta H, X\rangle=-c\langle x_{0}, X\rangle=-nX(\alpha^{2})$ .
Therefore, from (3.2) and (3.6), we have

tr $A_{D’ H’}=-\frac{3n}{4}grad\alpha^{2}$

By a direct computation, we get

tr $A_{D^{\prime}H’}=A_{\xi}grad\alpha^{\prime}$

These, $together\backslash $ with $\alpha^{2}=\alpha^{\prime 2}+1$ , yield

(3.7) $A_{\xi}grad\alpha^{\prime}=-\frac{3}{2}n\alpha^{\prime}grad\alpha^{\prime}$

Let $E_{1},$ $\cdots,$ $E$ be orthonormal principal directions of $A_{\xi}$ with principal curvatures
$\mu_{1},$ $\cdots,$ $\mu$ , respectively.

Then (3.7) gives

(3.8) $(2\mu_{i}+3n\alpha^{\prime})E_{i}(\alpha^{\prime})=0$ , $i=1,$ $\cdots,$ $n$ .
We give the following general lemma on 2-type hypersurfaces of $S‘‘+1(1)$ .
LEMMA 1. Let $M$ be a compact 2-type hypersurface of $S^{n+1}(1)$ in $R^{n+2}$ . Then we

have

(3.9) $\int_{M}(\Vert h\Vert^{2}-b)\alpha^{\prime 2}dV+\int_{M}|grad\alpha^{\prime}|^{2}dV+c|x_{0}|^{2}volM=0$ .

PROOF. Let $M$ be a 2-type hypersurface of $S‘‘+1(1)$ . By a direct computation, we
get

$\Delta\alpha^{\prime 2}=2\alpha^{\prime}\Delta\alpha^{\prime}-2|grad\alpha^{\prime}|^{2}$ ,

which, together with Hopf’s lemma, yields

(3.10) $\int_{M}\alpha^{\prime}\Delta\alpha^{\prime}dV=\int_{M}|grad\alpha^{\prime}|^{2}dV$ .
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On the other hand, we have

(3.11) $\int_{M}\langle x_{0}, x\rangle dV=\int_{M}\langle x_{0}, x_{0}+x_{p}+x_{q}\rangle dV=|x_{0}|^{2}volM$ ,

which implies

(3.12) $\int_{M}\langle x_{0}, H\rangle dV=\int_{M}\langle x_{0}, H^{\prime}\rangle dV-|x_{0}|^{2}volM$ .

By combining $\Delta x=-nH$ with Hopf’s lemma, we obtain

(3.13) $\int_{M}\langle x_{0}, H\rangle dV=-\frac{1}{n}\int_{M}\langle x_{0}, \Delta x\rangle dV=0$ .

It follows from (3.12) and (3.13) that

(3.14) $\int_{M}\langle x_{O}, H^{\prime}\rangle dV=|x_{0}|^{2}volM$ .

From (3.3), (3.10) and (3.14), we find (3.9).

Now, we assume that $M$ is not mass-symmetric. Then by using (3.4), $M$ has
non-constant mean curvature. Furthermore, we have the following Lemma (See [2].).

LEMMA B. Let $M$ be a 2-type hypersurface of $S^{n+1}(1)$ in $R‘‘+2$ . Then either $M$ has
constant mean curvature or $U=$ { $u\in M|grad\alpha^{2}\neq 0$ at $u$} is dense in $M$.

Consequently, the open subset $U$ is dense in $M$. Then, from (3.7), we know that
$grad\alpha^{\prime}$ is a principal direction with principal curvature $-\doteqdot n\alpha^{\prime}$ on $U$. We put

$\nabla_{E_{i}}E_{j}=\sum_{k}\omega_{j}^{k}(E_{i})E_{k}$ , $i,j,$ $k=1,$ $\cdots,$ $n$ .

Then, from Codazzi’s equation, we see that

(3.15) $(\mu_{i}-\mu_{j})\omega_{j}^{j}(E_{i})=E\rho\mu)$ , $t\neq j$ .
By using (3.8) and (3.15), we may find that the multiplicity of $\mu_{1}=-\doteqdot n\alpha^{\prime}$ is one (For
further details, refer to [2].). Therefore, we get

$\Vert h\Vert^{2}-n=\sum_{i}\mu_{i}^{2}=\frac{9}{4}n^{2}\alpha^{\prime 2}+\sum_{i=2}^{n}\mu_{i}^{2}$ .

On the other hand, we have

$(n-1)\sum_{\iota=2}^{n}\mu_{i}^{2}\geq(\sum_{\iota=2}^{n}\mu_{i})^{2}$

$=(n\alpha^{\prime}-\mu_{1})^{2}=\frac{25}{4}n^{2}\alpha^{\prime 2}$



90 YASUYUKI NAGATOMO

Thus we obtain

(3.16) $\Vert h\Vert^{2}-n\geq\frac{9}{4}n^{2}\alpha^{\prime 2}+\frac{25}{4(n-1)}n^{2}\alpha^{\prime 2}=\frac{9n+16}{4(n-1)}n^{2}\alpha^{\prime 2}$ ,

from which it follows

(3.17) $\int_{M}(\Vert h\Vert^{2}-b)\alpha^{\prime 2}dV\geq\frac{9n+16}{4(n-1)}n^{2}\int_{M}\alpha^{\prime 4}dV+(n-b)\int_{M}\alpha^{\prime 2}dV$ .

From (3.4), (3.11) and $\alpha^{2}=\alpha^{\prime 2}+1$ , we get

(3.18) $c|x_{0}|^{2}volM=n\int_{M}\alpha^{\prime 2}dV+(n+c-b)volM$ .

Expanding the left-hand-side of $\{n\alpha^{\prime 2}+(n+c-b)\}^{2}\geq 0$ and integrating it on $M$ with
use of (3.18), we get

(3.19) $n^{2}\int_{M}\alpha^{\prime 4}dV\geq(b-n-c)\{2n\int_{M}\alpha^{\prime 2}dV+(n+c-b)volM\}$

$=(b-n-c)\{2c|x_{0}|^{2}+(b-n-c)\}volM$ .
From (3.17), (3.18) and (3.19), we see that

$(3.20)\int_{M}(\Vert h\Vert^{2}-b)\alpha^{\prime 2}dV\geq\frac{(3n+2)^{2}}{4(n-1)}\{b-n-\frac{9n+16}{(3n+2)^{2}}nc\}\frac{1}{n}(c|x_{0}|^{2}+b-n-c)volM$

$+\frac{9n+16}{4(n-1)}(b-n-c)c|x_{0}|^{2}volM$ .

Theorem $E$ gives

(3.21) $b-n-c=\frac{1}{n}(n-\lambda_{p}X\lambda_{q}-n)>0$ .

By combining (3.20) and (3.21) with the hypothesis of Theorem 1, we may find

$\int_{M}(\Vert h\Vert^{2}-b)\alpha^{\prime 2}dV>0$ ,

which is a contradiction in consideration of Lemma 1.

\S 4. Proof of Theorem 2.

We use the same notation as in \S 3. If $p\in M$ is an umbilic point, then we have

(4.1) $n\alpha^{\prime 2}=\Vert h\Vert^{2}-n$ , at $p$ .
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Since $M$ is a compact, mass-symmetric and 2-type hypersurface of $S^{n+1}(1)$ , Theo-
rem $C$ gives

(4.2) $n\alpha^{\prime 2}=b-n-c$ , $\Vert h\Vert^{2}=b$ .
Comparing (4.1) with (4.2), we get

$c=0$ .
This is a contradiction in consideration of $c>0$ . Theorem 2 is thereby proved.

\S 5. Proof of Theorem 3.

Let $M$ be a hypersurface of a hypersphere $S^{n+1}(1)$ in $R^{n+2}$ which is of 3-type and
has constant mean curvature $\alpha^{\prime}$ . Then, Lemma A gives

(5.1) $\Delta H=\Vert h\Vert^{2}H^{\prime}-n\alpha^{2}x$ .
By a direct computation, (5.1) yields

(5.2) $\Delta^{2}H=(\Delta\Vert h\Vert^{2}+\Vert h\Vert^{4}-n\Vert h\Vert^{2}+n^{2}\alpha^{2})H^{\prime}$

$-(n\alpha^{\prime 2}\Vert h\Vert^{2}+n^{2}\alpha^{2})x+2\alpha^{\prime}A_{\xi}grad\Vert h\Vert^{2}$

On the other hand, from Theorems A and $B$ , there exist nonzero constants $c_{1},$ $c_{2}$ and
$c_{3}$ such that

(5.3) $\Delta^{2}H=c_{1}\Delta H+c_{2}H+c_{3}(x-x_{0})$ .
Substituting (5.1) and $H=H^{\prime}-x$ in (5.3), we have

(5.4) $\Delta^{2}H=(c_{1}\Vert h\Vert^{2}+c_{2})H^{\prime}+(-c_{1}n\alpha^{2}-c_{2}+c_{3})x-c_{3}x_{O}$ .

From (5.2) and (5.4), we find

(5.5) $\alpha^{\prime}(\Delta\Vert h\Vert^{2}+\Vert h\Vert^{4}-n\Vert h\Vert^{2}+n^{2}\alpha^{2})=\alpha^{\prime}(c_{1}\Vert h\Vert^{2}+c_{2})-c_{3}\langle x_{0}, \xi\rangle$ ,

(5.6) $ n\alpha^{\prime 2}\Vert h\Vert^{2}+n^{2}\alpha^{2}=c_{1}n\alpha^{2}+c_{2}-c_{3}+c_{3}\langle x_{0}, x\rangle$ .
Applying the Laplacian to (5.6), we get

(5.7) $\alpha^{\prime 2}\Delta\Vert h\Vert^{2}=-c_{3}\alpha^{\prime}\langle x_{0}, \xi\rangle+c_{3}\langle x_{0}, x\rangle$ .
By using (5.5) and (5.7), we have

$\alpha^{\prime 2}(\Vert h\Vert^{4}-n\Vert h\Vert^{2}+n^{2}\alpha^{2})=\alpha^{\prime 2}(c_{1}\Vert h\Vert^{2}+c_{2})-c_{3}\langle x_{0}, x\rangle$ ,

which, together with (5.6), implies

$\alpha^{\prime 2}\Vert h\Vert^{4}-c_{1}\alpha^{\prime 2}\Vert h\Vert^{2}+n\alpha^{4}-c_{1}n\alpha^{2}-c_{2}\alpha^{2}+c_{3}=0$ .
Since $M$ is of 3-type, $\alpha^{\prime 2}$ is non-zero and hence, we conclude that $h$ has constant length.
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By the Gauss equation, $M$ has constant scalar curvature. Therefore, by applying Theo-
rem $D$ , we obtain a contradiction.
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