# Finite Type Hypersurfaces of a Sphere 

Yasuyuki NAGATOMO<br>Tokyo Metropolitan University<br>(Communicated by M. Ishida)

## § 1. Introduction.

Let $M$ be an $n$-dimensional compact submanifold of an $m$-dimensional Euclidean space $R^{m}$ and $\Delta$ the Laplacian of $M$ (with respect to the induced metric) acting on smooth functions on $M$. We denote by $x$ the position vector of $M$ in $\boldsymbol{R}^{m}$. Then we have the following spectral decomposition of $x$;

$$
\begin{equation*}
x=x_{0}+\sum_{t \geq 1} x_{t} \quad \Delta x_{t}=\lambda_{t} x_{t} \quad \text { (in } L^{2} \text {-sense) } \tag{1.1}
\end{equation*}
$$

If there are exactly $k$ nonzero $x_{t}^{\prime}$ 's ( $t \geq 1$ ) in the decomposition (1.1), then the submanifold $M$ is said to be of $k$-type. Here $x_{0}$ in (1.1) is exactly the center of mass in $\boldsymbol{R}^{m}$. A submanifold $M$ of a hypersphere $S^{\boldsymbol{m - 1}}$ of $\boldsymbol{R}^{\boldsymbol{m}}$ is said to be mass-symmetric in $S^{\boldsymbol{m - 1}}$ if the center of mass of $M$ in $\boldsymbol{R}^{m}$ is the center of the hypersphere $S^{m-1}$ in $R^{m}$.

In terms of these notions, a well-known result of Takahashi (cf. [6]) says that a submanifold $M$ in $\boldsymbol{R}^{m}$ is of 1-type if and only if $M$ is a minimal submanifold of a hypersphere $S^{\boldsymbol{m - 1}}$ of $\boldsymbol{R}^{\boldsymbol{m}}$. Furthermore, a minimal submanifold of a hypersphere $\boldsymbol{S}^{\boldsymbol{m - 1}}$ in $\boldsymbol{R}^{m}$ is mass-symmetric in $S^{m-1}$. On the other hand, in [3], mass-symmetric, 2-type hypersurfaces of $S^{m-1}$ are characterized. In [1], it is proved that a compact 2-type surface in $S^{\mathbf{3}}$ is mass-symmetric.

In this paper, we will show that many 2-type hypersurfaces of a hypersphere $S^{n+1}$ are mass-symmetric and that mass-symmetric, 2-type hypersurfaces of $S^{n+1}$ have no umbilic point. More precisely, we will prove the following.

Theorem 1. Let $x: M \rightarrow S^{n+1}$ be a compact hypersurface of a hypersphere $S^{n+1}$ in $R^{n+2}$. If $M$ is of 2-type (i.e., $x=x_{0}+x_{p}+x_{q}$ ) and

$$
\left(\lambda_{p}+\lambda_{q}\right)-\frac{9 n+16}{(3 n+2)^{2}} \lambda_{p} \lambda_{q} \geq n^{\prime}
$$

then $M$ is mass-symmetric (i.e., $x_{0}=0$ ).

Theorem 2. Let $M$ be a compact and mass-symmetric hypersurface of a hypersphere $S^{n+1}$ in $R^{n+2}$. If $M$ is of 2-type, then $M$ has no umbilic point.

In [2], it is proved that a compact 2-type hypersurface of $S^{n+1}$ is mass-symmetric if and only if it has constant mean curvature. Therefore, Theorem 1 implies that many compact 2-type hypersurfaces of $S^{n+1}$ have constant mean curvatures. But this does not occur when we consider 3-type hypersurfaces of $S^{n+1}$. More exactly, we will obtain the following.

THEOREM 3. There is no compact hypersurface of constant mean curvature in $S^{n+1}$ which is of 3-type.

The author wishes to thank professors K. Ogiue and Y. Ohnita for many valuable comments and suggestions.

## § 2. Preliminaries.

Let $M$ be an $n$-dimensional compact hypersurface of the unit hypersphere $S^{n+1}(1)$ of $\boldsymbol{R}^{\boldsymbol{n + 2}}$ centered at the origin. Denote by $\nabla, D$ and $D^{\prime}$ the Riemannian connection of $M$, the normal connection of $M$ in $R^{n+2}$ and the normal connection of $M$ in $S^{n+1}(1)$, respectively. Let $h, A$ and $H$ (respectively, $h^{\prime}, A^{\prime}$ and $H^{\prime}$ ) denote the second fundamental form, the Weingarten map, and the mean curvature vector of $M$ in $\boldsymbol{R}^{\boldsymbol{n + 2}}$ (respectively, those quantities of $M$ in $S^{n+1}(1)$ ).

Let $e_{1}, \cdots, e_{n}, \xi$ be an orthonormal local frame field such that $e_{1}, \cdots, e_{n}$ are tangent to $M$ and $\xi$ is normal to $M$ in $S^{n+1}(1)$. Let $\Delta^{D^{\prime}}$ denote the Laplacian associated with $D^{\prime}$.

Then we have the following useful formula.
Lemma A ([4]). Let $M$ be a hypersurface of $S^{n+1}(1)$ in $R^{n+2}$. Then we have

$$
\Delta H=\Delta^{D^{\prime}} H^{\prime}+\frac{n}{2} \operatorname{grad}\left(\alpha^{2}\right)+2 \operatorname{tr} A_{D^{\prime} H^{\prime}}+\|h\|^{2} H^{\prime}-n \alpha^{2} x,
$$

where $\alpha=|H|, \operatorname{tr} A_{D^{\prime} H^{\prime}}=\sum_{i=1}^{n} \boldsymbol{A}_{D^{\prime} e_{i} H^{\prime}} \boldsymbol{e}_{\boldsymbol{i}}$.
The following results are known.
Theorem A ([3]). Let $M$ be a compact submanifold of $\boldsymbol{R}^{m}$. Then $M$ is of finite type if and only if there exists a non-trivial polynomial $P$ such that $P(\Delta) H=0$ (or $\left.P(\Delta)\left(x-x_{0}\right)=0\right)$, where $H$ is the mean curvature vector.

Theorem B ([3]). Let $M$ be a finite type submanifold of $\boldsymbol{R}^{m}$. Denote by $\boldsymbol{P}_{m}(t) a$ monic polynomial of least degree with $P_{m}(\Delta) H=0$. Then we have
(a) the polymonial $P_{m}(t)$ is unique,
(b) if $Q$ is a polynomial with $Q(\Delta) H=0$, then $P_{m}(t)$ is a factor of $Q$, and
(c) $M$ is of $k$-type if and only if $\operatorname{deg} P_{m}=k$.

Theorem C ([3]). Let M be a compact, mass-symmetric and 2-type hypersurface of $S^{n+1}(r)$, where $r$ is the radius. Then
(1) the mean curvature $\alpha$ of $M$ in $R^{n+2}$ is given by

$$
\alpha^{2}=\frac{1}{n}\left(\lambda_{p}+\lambda_{q}\right)-\left(\frac{r}{n}\right)^{2} \lambda_{p} \lambda_{q},
$$

(2) the scalar curvature $\tau$ of $M$ is given by

$$
\tau=(n-1)\left(\lambda_{p}+\lambda_{q}\right)-r^{2} \lambda_{p} \lambda_{q}, \quad \text { and }
$$

(3) the length of the second fundamental form $h$ of $M$ in $R^{n+2}$ is given by

$$
\|h\|^{2}=\lambda_{p}+\lambda_{q} .
$$

The following theorems are proved.
Theorem D ([4]). Let $M$ be a compact hypersurface of $S^{n+1}$ such that $M$ is not a small hypersphere of $S^{n+1}$. Then $M$ is mass-symmetric and of 2-type if and only if $M$ has nonzero constant mean curvature and constant scalar curvature.

We also need the following.
Theorem E ([3] and [5]). If $M$ is a compact 2-type hypersurface of a unit hypersphere $S^{n+1}(1)$ in $R^{n+2}$, then we have

$$
\lambda_{p}<n<\lambda_{q} .
$$

## §3. Proof of Theorem 1.

Let $M$ be a hypersurface of a unit hypersphere $S^{n+1}(1)$ in $R^{n+2}$. Then, from Theorems A and B, we have

$$
\Delta H=b H+c\left(x-x_{0}\right), \quad b=\lambda_{p}+\lambda_{q}, \quad c=\frac{\lambda_{p} \lambda_{q}}{n} .
$$

By using $H=H^{\prime}-x$, we get

$$
\begin{equation*}
\Delta H=b H^{\prime}+(c-b) x-c x_{0} . \tag{3.1}
\end{equation*}
$$

On the other hand, from Lemma $A$, we have

$$
\begin{equation*}
\Delta H=\Delta^{D^{\prime}} H^{\prime}+\frac{n}{2} \operatorname{grad} \alpha^{2}+2 \operatorname{tr} A_{D^{\prime} H^{\prime}}+\|h\|^{2} H^{\prime}-n \alpha^{2} x \tag{3.2}
\end{equation*}
$$

We put $H^{\prime}=\alpha^{\prime} \xi$. Then, by a direct computation, we get

$$
\Delta^{D^{\prime}} H^{\prime}=\left(\Delta \alpha^{\prime}\right) \xi
$$

Hence, from (3.1) and (3.2), we have

$$
\begin{gather*}
\Delta \alpha^{\prime}+\left(\|h\|^{2}-b\right) \alpha^{\prime}=-c\left\langle x_{0}, \xi\right\rangle,  \tag{3.3}\\
c\left\langle x_{0}, x\right\rangle=n \alpha^{2}+c-b, \tag{3.4}
\end{gather*}
$$

from which, for any vector field $X$ tangent to $M$, we get

$$
\begin{equation*}
c X\left\langle x_{0}, x\right\rangle=c\left\langle x_{0}, X\right\rangle=n X\left(\alpha^{2}\right) . \tag{3.5}
\end{equation*}
$$

We use (3.1) and (3.5) to obtain

$$
\begin{equation*}
\langle\Delta H, X\rangle=-c\left\langle x_{0}, X\right\rangle=-n X\left(\alpha^{2}\right) . \tag{3.6}
\end{equation*}
$$

Therefore, from (3.2) and (3.6), we have

$$
\operatorname{tr} A_{D^{\prime} H^{\prime}}=-\frac{3 n}{4} \operatorname{grad} \alpha^{2} .
$$

By a direct computation, we get

$$
\operatorname{tr} A_{D^{\prime} H^{\prime}}=A_{\xi} \operatorname{grad} \alpha^{\prime}
$$

These, together with $\alpha^{2}=\alpha^{\prime 2}+1$, yield

$$
\begin{equation*}
A_{\xi} \operatorname{grad} \alpha^{\prime}=-\frac{3}{2} n \alpha^{\prime} \operatorname{grad} \alpha^{\prime} \tag{3.7}
\end{equation*}
$$

Let $E_{1}, \cdots, E_{n}$ be orthonormal principal directions of $A_{\xi}$ with principal curvatures $\mu_{1}, \cdots, \mu_{n}$, respectively.

Then (3.7) gives

$$
\begin{equation*}
\left(2 \mu_{i}+3 n \alpha^{\prime}\right) E_{i}\left(\alpha^{\prime}\right)=0, \quad i=1, \cdots, n \tag{3.8}
\end{equation*}
$$

We give the following general lemma on 2-type hypersurfaces of $S^{\boldsymbol{n + 1}}(1)$.
Lemma 1. Let $M$ be a compact 2-type hypersurface of $S^{n+1}(1)$ in $\boldsymbol{R}^{\boldsymbol{n + 2}}$. Then we have

$$
\begin{equation*}
\int_{M}\left(\|h\|^{2}-b\right) \alpha^{\prime 2} d V+\int_{M}\left|\operatorname{grad} \alpha^{\prime}\right|^{2} d V+c\left|x_{0}\right|^{2} \operatorname{vol} M=0 \tag{3.9}
\end{equation*}
$$

Proof. Let $M$ be a 2-type hypersurface of $S^{n+1}(1)$. By a direct computation, we get

$$
\Delta \alpha^{\prime 2}=2 \alpha^{\prime} \Delta \alpha^{\prime}-2\left|\operatorname{grad} \alpha^{\prime}\right|^{2},
$$

which, together with Hopf's lemma, yields

$$
\begin{equation*}
\int_{M} \alpha^{\prime} \Delta \alpha^{\prime} d V=\int_{M}\left|\operatorname{grad} \alpha^{\prime}\right|^{2} d V \tag{3.10}
\end{equation*}
$$

On the other hand, we have

$$
\begin{equation*}
\int_{M}\left\langle x_{0}, x\right\rangle d V=\int_{M}\left\langle x_{0}, x_{0}+x_{p}+x_{q}\right\rangle d V=\left|x_{0}\right|^{2} \mathrm{vol} M, \tag{3.11}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\int_{M}\left\langle x_{0}, H\right\rangle d V=\int_{M}\left\langle x_{0}, H^{\prime}\right\rangle d V-\left|x_{0}\right|^{2} \operatorname{vol} M . \tag{3.12}
\end{equation*}
$$

By combining $\Delta x=-n H$ with Hopf's lemma, we obtain

$$
\begin{equation*}
\int_{M}\left\langle x_{0}, H\right\rangle d V=-\frac{1}{n} \int_{M}\left\langle x_{0}, \Delta x\right\rangle d V=0 . \tag{3.13}
\end{equation*}
$$

It follows from (3.12) and (3.13) that

$$
\begin{equation*}
\int_{M}\left\langle x_{0}, H^{\prime}\right\rangle d V=\left|x_{0}\right|^{2} \operatorname{vol} M \tag{3.14}
\end{equation*}
$$

From (3.3), (3.10) and (3.14), we find (3.9).
Now, we assume that $M$ is not mass-symmetric. Then by using (3.4), $M$ has non-constant mean curvature. Furthermore, we have the following Lemma (See [2].).

Lemma B. Let $M$ be a 2-type hypersurface of $S^{n+1}(1)$ in $R^{n+2}$. Then either $M$ has constant mean curvature or $U=\left\{u \in M \mid \operatorname{grad} \alpha^{2} \neq 0\right.$ at $\left.u\right\}$ is dense in $M$.

Consequently, the open subset $U$ is dense in $M$. Then, from (3.7), we know that $\operatorname{grad} \alpha^{\prime}$ is a principal direction with principal curvature $-\frac{3}{2} n \alpha^{\prime}$ on $U$. We put

$$
\nabla_{E_{i}} E_{j}=\sum_{k} \omega_{j}^{k}\left(E_{i}\right) E_{k}, \quad i, j, k=1, \cdots, n
$$

Then, from Codazzi's equation, we see that

$$
\begin{equation*}
\left(\mu_{i}-\mu_{j}\right) \omega_{i}^{j}\left(E_{i}\right)=E_{j}\left(\mu_{i}\right), \quad i \neq j \tag{3.15}
\end{equation*}
$$

By using (3.8) and (3.15), we may find that the multiplicity of $\mu_{1}=-\frac{3}{2} n \alpha^{\prime}$ is one (For further details, refer to [2].). Therefore, we get

$$
\|h\|^{2}-n=\sum_{i} \mu_{i}^{2}=\frac{9}{4} n^{2} \alpha^{\prime 2}+\sum_{i=2}^{n} \mu_{i}^{2} .
$$

On the other hand, we have

$$
\begin{aligned}
(n-1) \sum_{i=2}^{n} \mu_{i}^{2} & \geq\left(\sum_{i=2}^{n} \mu_{i}\right)^{2} \\
& =\left(n \alpha^{\prime}-\mu_{1}\right)^{2}=\frac{25}{4} n^{2} \alpha^{\prime 2} .
\end{aligned}
$$

Thus we obtain

$$
\begin{equation*}
\|h\|^{2}-n \geq \frac{9}{4} n^{2} \alpha^{\prime 2}+\frac{25}{4(n-1)} n^{2} \alpha^{\prime 2}=\frac{9 n+16}{4(n-1)} n^{2} \alpha^{\prime 2} \tag{3.16}
\end{equation*}
$$

from which it follows

$$
\begin{equation*}
\int_{M}\left(\|h\|^{2}-b\right) \alpha^{\prime 2} d V \geq \frac{9 n+16}{4(n-1)} n^{2} \int_{M} \alpha^{\prime 4} d V+(n-b) \int_{M} \alpha^{\prime 2} d V \tag{3.17}
\end{equation*}
$$

From (3.4), (3.11) and $\alpha^{2}=\alpha^{2}+1$, we get

$$
\begin{equation*}
c\left|x_{0}\right|^{2} \operatorname{vol} M=n \int_{M} \alpha^{\prime 2} d V+(n+c-b) \operatorname{vol} M \tag{3.18}
\end{equation*}
$$

Expanding the left-hand-side of $\left\{n \alpha^{\prime 2}+(n+c-b)\right\}^{2} \geq 0$ and integrating it on $M$ with use of (3.18), we get

$$
\begin{align*}
n^{2} \int_{M} \alpha^{\prime 4} d V & \geq(b-n-c)\left\{2 n \int_{M} \alpha^{\prime 2} d V+(n+c-b) \operatorname{vol} M\right\}  \tag{3.19}\\
= & (b-n-c)\left\{2 c\left|x_{0}\right|^{2}+(b-n-c)\right\} \operatorname{vol} M .
\end{align*}
$$

From (3.17), (3.18) and (3.19), we see that

$$
\begin{align*}
\int_{M}\left(\|h\|^{2}-b\right) \alpha^{\prime 2} d V \geq & \frac{(3 n+2)^{2}}{4(n-1)}\left\{b-n-\frac{9 n+16}{(3 n+2)^{2}} n c\right\} \frac{1}{n}\left(c\left|x_{0}\right|^{2}+b-n-c\right) \operatorname{vol} M  \tag{3.20}\\
& +\frac{9 n+16}{4(n-1)}(b-n-c) c\left|x_{0}\right|^{2} \operatorname{vol} M
\end{align*}
$$

Theorem E gives

$$
\begin{equation*}
b-n-c=\frac{1}{n}\left(n-\lambda_{p}\right)\left(\lambda_{q}-n\right)>0 . \tag{3.21}
\end{equation*}
$$

By combining (3.20) and (3.21) with the hypothesis of Theorem 1, we may find

$$
\int_{M}\left(\|h\|^{2}-b\right) \alpha^{\prime 2} d V>0
$$

which is a contradiction in consideration of Lemma 1.

## §4. Proof of Theorem 2.

We use the same notation as in §3. If $p \in M$ is an umbilic point, then we have

$$
\begin{equation*}
n \alpha^{\prime 2}=\|h\|^{2}-n, \quad \text { at } \quad p . \tag{4.1}
\end{equation*}
$$

Since $M$ is a compact, mass-symmetric and 2-type hypersurface of $S^{n+1}(1)$, Theorem C gives

$$
\begin{equation*}
n \alpha^{\prime 2}=b-n-c, \quad\|h\|^{2}=b \tag{4.2}
\end{equation*}
$$

Comparing (4.1) with (4.2), we get

$$
c=0 .
$$

This is a contradiction in consideration of $c>0$. Theorem 2 is thereby proved.

## § 5. Proof of Theorem 3.

Let $M$ be a hypersurface of a hypersphere $S^{n+1}(1)$ in $R^{n+2}$ which is of 3-type and has constant mean curvature $\alpha^{\prime}$. Then, Lemma A gives

$$
\begin{equation*}
\Delta H=\|h\|^{2} H^{\prime}-n \alpha^{2} x . \tag{5.1}
\end{equation*}
$$

By a direct computation, (5.1) yields

$$
\begin{align*}
\Delta^{2} H= & \left(\Delta\|h\|^{2}+\|h\|^{4}-n\|h\|^{2}+n^{2} \alpha^{2}\right) H^{\prime}  \tag{5.2}\\
& -\left(n \alpha^{\prime 2}\|h\|^{2}+n^{2} \alpha^{2}\right) x+2 \alpha^{\prime} A_{\xi} \operatorname{grad}\|h\|^{2} .
\end{align*}
$$

On the other hand, from Theorems $A$ and $B$, there exist nonzero constants $c_{1}, c_{2}$ and $c_{3}$ such that

$$
\begin{equation*}
\Delta^{2} H=c_{1} \Delta H+c_{2} H+c_{3}\left(x-x_{0}\right) \tag{5.3}
\end{equation*}
$$

Substituting (5.1) and $H=H^{\prime}-x$ in (5.3), we have

$$
\begin{equation*}
\Delta^{2} H=\left(c_{1}\|h\|^{2}+c_{2}\right) H^{\prime}+\left(-c_{1} n \alpha^{2}-c_{2}+c_{3}\right) x-c_{3} x_{0} \tag{5.4}
\end{equation*}
$$

From (5.2) and (5.4), we find

$$
\begin{gather*}
\alpha^{\prime}\left(\Delta\|h\|^{2}+\|h\|^{4}-n\|h\|^{2}+n^{2} \alpha^{2}\right)=\alpha^{\prime}\left(c_{1}\|h\|^{2}+c_{2}\right)-c_{3}\left\langle x_{0}, \xi\right\rangle,  \tag{5.5}\\
n \alpha^{\prime 2}\|h\|^{2}+n^{2} \alpha^{2}=c_{1} n \alpha^{2}+c_{2}-c_{3}+c_{3}\left\langle x_{0}, x\right\rangle \tag{5.6}
\end{gather*}
$$

Applying the Laplacian to (5.6), we get

$$
\begin{equation*}
\alpha^{\prime 2} \Delta\|h\|^{2}=-c_{3} \alpha^{\prime}\left\langle x_{0}, \xi\right\rangle+c_{3}\left\langle x_{0}, x\right\rangle . \tag{5.7}
\end{equation*}
$$

By using (5.5) and (5.7), we have

$$
\alpha^{\prime 2}\left(\|h\|^{4}-n\|h\|^{2}+n^{2} \alpha^{2}\right)=\alpha^{\prime 2}\left(c_{1}\|h\|^{2}+c_{2}\right)-c_{3}\left\langle x_{0}, x\right\rangle,
$$

which, together with (5.6), implies

$$
\alpha^{\prime 2}\|h\|^{4}-c_{1} \alpha^{\prime 2}\|h\|^{2}+n \alpha^{4}-c_{1} n \alpha^{2}-c_{2} \alpha^{2}+c_{3}=0 .
$$

Since $M$ is of 3-type, $\alpha^{\prime 2}$ is non-zero and hence, we conclude that $h$ has constant length.

By the Gauss equation, $M$ has constant scalar curvature. Therefore, by applying Theorem D , we obtain a contradiction.

## References

[1] M. Barros and O. J. Garay, 2-type surfaces in $S^{\mathbf{3}}$, Geometriae Dedicata, 24 (1987), 329-336.
[ 2 ] M. Barros, B. Y. Chen and O. J. Garay, Spherical finite type hypersurfaces, Algebras Groups Geom., 4 (1987), 58-72.
[ 3] B. Y. ChEN, Total mean curvature and submanifolds of finite type, World Scientific, 1984.
[ 4 ] B. Y. Chen, 2-type submanifolds and their applications, Chinese J. Math., 14 (1986), 1-14.
[5] B. Y. Chen, Mean curvature of 2-type spherical submanifolds, Chinese J. Math. (to appear).
[6] T. Takahashi, Minimal immersions of Riemannian manifolds, J. Math. Soc. Japan, 18 (1966), 380-385.

Present Address:<br>Department of Mathematics, Tokyo Metropolitan University<br>Minami-Ohsawa, Hachioji-shi, Tokyo 192-03, Japan

