On the \wp-Zero Value Function and the \wp-Zero Division Value Functions

Hiroshi OHTA

Gakushuin University
(Communicated by K. Katase)

Introduction.

Let \mathscr{H} be the upper half-plane $\{\tau \in C \mid \operatorname{Im} \tau>0\}$ and $\tau \in \mathscr{H}$. Let $\wp(u, \tau)$ denote the Weierstrass \wp-function with fundamental periods $(\tau, 1$), (in more usual notation, it should be written $\wp(u ; \tau, 1)$ or $\wp\left(u,\binom{\tau}{1}\right)$). As is well known, $\wp(u, \tau)$ is a holomorphic function of two complex variables u, τ in a suitable region $\subset C \times \mathscr{H}$, and the theorem of implicit function shows that, given a suitable region $D \subset \mathscr{H}$, there exists a holomorphic function $u_{D}(\tau)$ of $\tau \in D$ such that $\wp\left(u_{D}(\tau), \tau\right)=0$ on D. This $u_{D}(\tau)$ is not uniquely determined by D. We shall show in this paper that there exists a unique analytic function u in \mathscr{H}, called " \wp-zero value function", such that every $u_{D}(\tau)$ are its branch on D (Theorem 1). This function u is a "many-valued modular form" in a sense to be indicated below. We shall show also in this paper the existence of another function \mathfrak{p}_{N} of the same kind for an integer N greater than 1 , which will be called " $N^{\text {th }} \wp-$ zero division value function" (Theorem 2), and which is expected to have interesting arithmetical applications.

Acknowledgement. The author wishes to thank Professors T. Mitsui and S. Iyanaga for their warm guidance and encouragement. He also wishes to thank Dr. K. Okutsu for his kind advice.

Notations and Terminologies. In this paper, the symbol ": =" means that the expression on the right is the definition of that on the left. We put

$$
\Gamma:=S L_{2}(Z), \quad U:=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad T:=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \quad I:=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Furthermore, for $z \in C, S=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \Gamma$, we set

$$
S z:=\frac{a z+b}{c z+d}, \quad S: z:=c z+d
$$

[^0]For an integer $k, S \in \Gamma$ and a function f defined in a neighborhood of $\tau_{0} \in \mathscr{H}$, we define $\left.f\right|_{k} S$ as the function defined in the neighborhood of $S^{-1} \tau_{0}$ as follows:

$$
\left(\left.f\right|_{k} S\right)(\tau):=(S: \tau)^{-k} f(S \tau)
$$

A function element is a pair (f, D) such that D is a region in C and f is a holomorphic function in D. An analytic function on \mathscr{H} means a set of function elements (f, D), called branches of the analytic function, such that $D \subset \mathscr{H}$ and for any two function elements $\left(f_{1}, D_{1}\right),\left(f_{2}, D_{2}\right)$ in the set there exists a curve γ in \mathscr{H} such that (f_{2}, D_{2}) is an analytic continuation of (f_{1}, D_{1}) along γ, the union of all D 's in the set coinciding with \mathscr{H} except for a discrete set, and that this set is maximal in the sense that every function element satisfying the above condition belongs to the set.

§ 1. Definition of the $\boldsymbol{N}^{\text {th }} \wp$-zero division value functions.

In this section, we assume that $\omega_{1}, \omega_{2} \in \boldsymbol{C}, \omega_{1} / \omega_{2}, \tau \in \mathscr{H}$ and N is a positive integer. We define as usual, for $z \in C$,

$$
\begin{aligned}
& \wp\left(z,\binom{\omega_{1}}{\omega_{2}}\right):=\frac{1}{z^{2}}+\sum_{\substack{\omega \in \mathbb{Z} \boldsymbol{a}_{1_{1}+}+z_{\omega_{2}} \neq 0}}\left\{\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right\}, \\
& \sigma\left(z,\binom{\omega_{1}}{\omega_{2}}\right):=z \prod_{\substack{\omega \in \mathbf{Z} \omega_{1}+\mathbf{z} \omega_{2} \\
\omega \neq 0}}\left(1-\frac{z}{\omega}\right) \exp \left(\frac{z}{\omega}+\frac{z^{2}}{2 \omega^{2}}\right) .
\end{aligned}
$$

We write simply $\wp(z, \tau), \sigma(z, \tau)$ instead of $\wp\left(z,\binom{\tau}{1}\right), \sigma\left(z,\binom{\tau}{1}\right)$ respectively. We set $\wp^{\prime}(z, \tau):=(\partial / \partial z) \wp(z, \tau) .(\wp(z, \tau)$ is the same expression that was already given in the Introduction.)

Definition. We define two functions on $C \times \mathscr{H}$ as follows:

$$
\begin{aligned}
& \Lambda_{N}(z, \tau):=\sigma(N z, \tau)^{2} / \sigma(z, \tau)^{2 N^{2}}, \\
& \Phi_{N}(z, \tau):=\wp(N z, \tau) \Lambda_{N}(z, \tau)
\end{aligned}
$$

We know that $\Lambda_{N}(z, \tau), \Phi_{N}(z, \tau) \in Z\left[15 G_{4}(\tau), 35 G_{6}(\tau)\right][\wp(z, \tau)]$, where

$$
G_{4}(\tau):=\sum_{\substack{\omega \in \mathcal{Z}+\geq \\ \omega \neq 0}} \frac{1}{\omega^{4}}, \quad G_{6}(\tau):=\sum_{\substack{\omega \in Z \tau+z \\ \omega \neq 0}} \frac{1}{\omega^{6}} .
$$

Let $\lambda_{N}(X, \tau), \phi_{N}(X, \tau) \in Z\left[15 G_{4}(\tau), 35 G_{6}(\tau)\right][X]$ such that

$$
\lambda_{N}(\wp(z, \tau), \tau)=\Lambda_{N}(z, \tau), \quad \phi_{N}(\wp(z, \tau), \tau)=\Phi_{N}(z, \tau) .
$$

λ_{N}, ϕ_{N} have the degrees $N^{2}-1, N^{2}$ in X, respectively. Moreover, we know that $N^{2}-1$ roots of λ_{N} are

$$
\left\{\left.\wp\left(\frac{1}{N}(a, b)\binom{\tau}{1}, \tau\right) \right\rvert\, a, b \in Z, 0 \leqq a, b<N,(a, b) \neq(0,0)\right\}
$$

(cf. Cassels [1]).
The following two lemmas follow easily from the well known properties of \wp-function and σ-function.

Lemma 1. We fix $\tau \in \mathscr{H}$. Let $\Delta_{\tau}:=\left\{\mu_{1} \tau+\mu_{2} \mid 0 \leqq \mu_{1}, \mu_{2}<1\right\}$. Then the function $z \mapsto \Phi_{N}(z, \tau)$ is an elliptic function of order $2 N^{2}$ with fundamental periods ($\left.\tau, 1\right)$ and

$$
\left\{\frac{1}{N}(\alpha+a, \beta+b)\binom{\tau}{1}, \frac{1}{N}\left(\alpha^{\prime}+a^{\prime}, \beta^{\prime}+b^{\prime}\right)\binom{\tau}{1} \left\lvert\, \begin{array}{c}
a, b, a^{\prime}, b^{\prime} \in \boldsymbol{Z} \\
0 \leqq a, b, a^{\prime}, b^{\prime}<N
\end{array}\right.\right\}
$$

is the set of all zeros of Φ_{N} in Δ_{τ} where $\alpha \tau+\beta, \alpha^{\prime} \tau+\beta^{\prime}$ are two zeros of $\wp(z, \tau)$ in Δ_{τ} $\left(0 \leqq \alpha, \beta, \alpha^{\prime}, \beta^{\prime}<1\right)$.

Lemma 2. We fix $\tau \in \mathscr{H}$. Let $\alpha, \beta \in \boldsymbol{R}$ such that $\wp(\alpha \tau+\beta, \tau)=0$. Then the following N^{2} elements are all roots of the polynomial $\phi_{N}(X, \tau)$ in X :

$$
\wp\left(\frac{1}{N}(\alpha+a, \beta+b)\binom{\tau}{1}, \tau\right), \quad a, b \in Z, \quad 0 \leqq a, b<N
$$

Hereafter, we assume $N>1$.
Let $D\left(\phi_{N}\right)(\tau)$ be the discriminant of the polynomial $\phi_{N}(X, \tau)$ in X. Take $\tau_{0} \in \mathscr{H}$ and choose $\alpha, \beta \in \boldsymbol{R}$ such that $\wp\left(\alpha \tau_{0}+\beta, \tau_{0}\right)=0$. It is easy to see that $D\left(\phi_{N}\right)\left(\tau_{0}\right)=0$ is equivalent to $2 \alpha, 2 \beta \in Z$. On the other hand, we have $\lambda_{2}\left(X, \tau_{0}\right)=4 X^{3}-60 G_{4}\left(\tau_{0}\right) X-140 G_{6}\left(\tau_{0}\right)$, and so we find $\tau_{0} \in \Gamma \sqrt{-1}$ if and only if $2 \alpha, 2 \beta \in Z$ since $\tau_{0} \in \Gamma \sqrt{-1}$ if and only if $G_{6}\left(\tau_{0}\right)=0$. Therefore $\tau_{0} \in \Gamma \sqrt{-1}$ is equivalent to $D\left(\phi_{N}\right)\left(\tau_{0}\right)=0$. Hence, from the implicit function theorem, there exists an analytic function on \mathscr{H} such that $\phi_{N}(g(\tau), \tau)=0$ on D for a branch (g, D) of it. Moreover, by above arguments, we can express $\phi_{N}(X, \tau)$ at $\tau_{0} \in \Gamma \sqrt{-1}$ as

$$
\phi_{N}\left(X, \tau_{0}\right)= \begin{cases}X^{\prod_{i=1}^{\left(N^{2}-1\right) / 2}\left(X-\alpha_{\tau_{0}, i}^{(N)}\right)^{2}} & (\text { for odd } N) \\ \prod_{i=1}^{N^{2} / 2}\left(X-\alpha_{\tau_{0}, i}^{(N)}\right)^{2} & (\text { for even } N) \\ \left(\alpha_{\tau_{0}, i}^{(N)} \neq 0, \quad \alpha_{\tau_{0}, i}^{(N)} \neq \alpha_{\tau_{0}, j}^{(N)} \quad \text { for } i \neq j\right)\end{cases}
$$

Now, for $(a, b) \in \boldsymbol{Z}^{2}$ and $(a, b) \not \equiv(0,0) \bmod N$, the function

$$
\wp_{N,(a, b)}(\tau):=\wp\left(\frac{1}{N}(a, b)\binom{\tau}{1}, \tau\right)
$$

is an entire modular form of weight 2 for $\Gamma[N]$, where

$$
\Gamma[N]:=\{S \in \Gamma \mid S \equiv I \bmod N \text { or } S \equiv-I \bmod N\}
$$

$\wp_{N,(a, b)}$ is called the $N^{\text {th }} \wp$-division value. It is a value of $\wp(z, \tau)$ for $z=$ an " N-division point of a pole of $\wp(z, \tau)$ ". In analogy, we shall consider " $N^{\text {th }} \wp$-zero division value function" defined as follows:

Definition. We call an analytic function on \mathscr{H} such that $\phi_{N}(g(\tau), \tau)=0$ on D for a branch (g, D) of it as $N^{\text {th }} \wp$-zero division value function, and denote it by p_{N}.

We notice that at present it is not clear that \mathfrak{p}_{N} is uniquely determined: we shall show later that it is. Lemma 2 shows that it is appropriate to call \mathfrak{p}_{N} as $N^{\text {th }} \wp$-zero division value function.

§ 2. The zeros of the Weierstrass \wp-function.

Since $\tau_{0} \in \Gamma \sqrt{-1}$ is equivalent to $D\left(\phi_{N}\right)\left(\tau_{0}\right)=0$, the set of all ramification points of \mathfrak{p}_{N} is contained in $\Gamma \sqrt{-1}$. Moreover, noticing (\#), we obtain the following lemma:

Lemma 3. The degree of ramification of \mathfrak{p}_{N} at $\tau_{0} \in \Gamma \sqrt{-1}$ is at most 1.
Now we consider the case $N=2$. Let $\tau_{0} \in \Gamma \sqrt{-1}$ and D be a neighborhood of τ_{0}. By the above lemma, we can develop an "algebraic element" g of \mathfrak{p}_{2} around τ_{0} in fractional power series as follows in D :

$$
\begin{aligned}
& g(\tau)=c_{0}+c_{1}\left(\tau-\tau_{0}\right)^{d_{1}}+\cdots+c_{n}\left(\tau-\tau_{0}\right)^{d_{n}}+\cdots \\
& \left(2 d_{n} \in Z, \quad d_{n}>0, \quad d_{n}<d_{m} \text { for } n<m, \quad c_{0} \neq 0\right) .
\end{aligned}
$$

Since $\phi_{2}(g(\tau), \tau)=0$ on D, substituting the development of g and

$$
\begin{array}{ll}
G_{4}(\tau)=a_{0}+a_{1}\left(\tau-\tau_{0}\right)+\cdots & \left(a_{0} \neq 0\right), \\
G_{6}(\tau)=\quad b_{1}\left(\tau-\tau_{0}\right)+\cdots & \left(b_{1} \neq 0\right)
\end{array}
$$

in

$$
\phi_{2}(X, \tau)=\left(X^{2}+15 G_{4}(\tau)\right)^{2}+280 G_{6}(\tau) X,
$$

we have $d_{1}=1 / 2$. Thus we obtain the following lemma:
Lemma 4. For any $\tau_{0} \in \Gamma \sqrt{-1}$ and any branch g of \mathfrak{p}_{N}, g ramifies at τ_{0}.
Let $z_{0} \in C, \tau_{0} \in \mathscr{H}$ and $\wp\left(z_{0}, \tau_{0}\right)=0$. Since $\wp^{\prime}(z, \tau)^{2}=\Lambda_{2}(z, \tau), \wp^{\prime}\left(z_{0}, \tau_{0}\right)=0$ is equivalent to $\tau_{0} \in \Gamma \sqrt{-1}$. Therefore any function element (u_{D}, D) such that $D \subset \mathscr{H}$ and $\wp\left(u_{\boldsymbol{D}}(\tau), \tau\right)=0$ on D can be continued analytically along a curve $\subset \mathscr{H}-\Gamma \sqrt{-1}$ with an initial point in D. Hence there exists an analytic function u on \mathscr{H} such that $\wp\left(u_{1}(\tau), \tau\right)=0$ on D_{1} for any branch (u_{1}, D_{1}) of u. We fix such a function u.

The following proposition gives a precision of an argument found in Eichler, Zagier [2].

Proposition 5. (1) The set of all ramification points of u is $\Gamma \sqrt{-1}$. Particularly, any branch of u ramifies at $\tau_{0} \in \Gamma \sqrt{-1}$.
(2) Let $\tau_{0} \in \Gamma \sqrt{-1}$ and $\left(u_{1}, D_{1}\right)$ be a branch of u such that $D_{1} \cap \Gamma \sqrt{-1}=\varnothing$ and $\tau_{0} \in \overline{D_{1}}$ where $\overline{D_{1}}$ is the closure of D_{1} in \mathscr{H}. And let $l_{1}, l_{2} \in \boldsymbol{R}$ such that

$$
\lim _{\substack{\tau \rightarrow \tau_{0} \\ \tau \in D_{1}}} u_{1}(\tau)=\frac{l_{1}}{2} \tau_{0}+\frac{l_{2}}{2}
$$

(Hereafter we write simply $u_{1}\left(\tau_{0}\right)$ instead of $\lim _{\substack{\tau \rightarrow \tau_{0} \\ \tau \in D_{1}}} u_{1}(\tau)$). Then $\tau_{0} \in \Gamma[2] \sqrt{-1}$ if and only if l_{1}, l_{2} are odd integers, $\tau_{0} \in \Gamma[2](\sqrt{-1}+1)$ if and only if l_{1} is odd and l_{2} is even, and $\tau_{0} \in \Gamma[2](\sqrt{-1}-1) / 2$ if and only if l_{1} is even and l_{2} is odd. Moreover let $\tau_{1} \in D_{1}$ sufficiently close to τ_{0}, and γ be the circle of center τ_{0} through τ_{1}. Then, considering γ as a simple closed curve with the initial point τ_{1}, the branch $\left(u_{1}(\tau), D_{1}\right)$ is continued analytically to the function element $\left(-u_{1}(\tau)+l_{1} \tau+l_{2}, D_{1}\right)$ along γ, and τ_{0} is an algebraic singularity of u with the degree of ramification 1 .

Proof. It is clear that $\Gamma \sqrt{-1}$ contains all ramification points of u. Suppose that u does not ramify at some $\tau_{0} \in \Gamma \sqrt{-1}$. By assumption, there exists a branch (u_{2}, D_{2}) of u such that $\tau_{0} \in D_{2}$. Then

$$
\begin{aligned}
\phi_{2}(X, \tau)= & \left(X-\wp\left(\frac{u_{2}(\tau)}{2}, \tau\right)\right)\left(X-\wp\left(\frac{u_{2}(\tau)+\tau}{2}, \tau\right)\right) \\
& \times\left(X-\wp\left(\frac{u_{2}(\tau)+1}{2}, \tau\right)\right)\left(X-\wp\left(\frac{u_{2}(\tau)+\tau+1}{2}, \tau\right)\right)
\end{aligned}
$$

on D_{2} by Lemma 2. Therefore \mathfrak{p}_{2} does not ramify at τ_{0}. This contradicts Lemma 4. Hence (1) holds.

Next, we shall prove (2). Let $\tau \in \mathscr{H}, A \in \Gamma$. If we choose $\alpha, \beta, \alpha^{\prime}, \beta^{\prime} \in \boldsymbol{R}$ satisfying $\wp(\alpha \tau+\beta, \tau)=0$ and

$$
\left(\alpha^{\prime}, \beta^{\prime}\right) \equiv(\alpha, \beta) A^{-1} \text { or }-(\alpha, \beta) A^{-1} \bmod Z,
$$

then

$$
\wp\left(\alpha^{\prime} A \tau+\beta^{\prime}, A \tau\right)=(\dot{A}: \tau)^{2} \wp(\alpha \tau+\beta, \tau),
$$

therefore $\wp\left(\alpha^{\prime} A \tau+\beta^{\prime}, A \tau\right)=0$. Consequently, noticing that the constant term of $\lambda_{2}(X, \tau)$ as a polynomial in X is $-140 G_{6}(\tau), G_{6}(\sqrt{-1})=0$ and that \wp is an elliptic function of order 2 , we get $\wp((1 / 2) \sqrt{-1}+1 / 2, \sqrt{-1})=0$. Moreover $\sqrt{-1}+1=U \sqrt{-1}$ and $(1 / 2,1 / 2) U^{-1}=(1 / 2,0)$, therefore $\wp((1 / 2)(\sqrt{-1}+1), \sqrt{-1}+1)=0$. Similarly, since $(\sqrt{-1}-1) / 2=T U \sqrt{-1}$ and $(1 / 2,1 / 2)(T U)^{-1}=(0,1 / 2)$, we obtain $\wp(1 / 2,(\sqrt{-1}-1) / 2)=$ 0 . Moreover

$$
\begin{aligned}
& \left(\frac{1}{2}, \frac{1}{2}\right) S^{-1} \equiv\left(\frac{1}{2}, \frac{1}{2}\right) \quad \bmod Z \\
& \left(\frac{1}{2}, 0\right) S^{-1} \equiv\left(\frac{1}{2}, 0\right) \quad \bmod Z \\
& \left(0, \frac{1}{2}\right) S^{-1} \equiv\left(0, \frac{1}{2}\right) \quad \bmod Z
\end{aligned}
$$

for $S \in \Gamma[2]$. Hence the first part of (2) is proved.
Let N be odd. In virtue of (\#), there exist $a, b \in Z$ such that

$$
\wp\left(\frac{1}{N}\left(u_{1}\left(\tau_{0}\right)+a \tau_{0}+b\right), \tau_{0}\right)=0
$$

Since $u_{1}\left(\tau_{0}\right)=\left(l_{1} / 2\right) \tau_{0}+l_{2} / 2$ and

$$
\frac{1}{N}\left(u_{1}\left(\tau_{0}\right)+a \tau_{0}+b\right) \equiv u_{1}\left(\tau_{0}\right) \text { or }-u_{1}\left(\tau_{0}\right) \quad \bmod Z \tau_{0}+Z
$$

we obtain

$$
(a, b) \equiv\left(\frac{l_{1}}{2}(N-1), \frac{l_{2}}{2}(N-1)\right) \quad \bmod N
$$

Hence

$$
g(\tau):=\wp\left(\frac{1}{N}\left(u_{1}(\tau)+\frac{l_{1}}{2}(N-1) \tau+\frac{l_{2}}{2}(N-1)\right), \tau\right)
$$

does not ramify at τ_{0} for $g\left(\tau_{0}\right)$ is a simple root of $\phi_{N}\left(X, \tau_{0}\right)$. Now let $\left(u_{2}, D_{1}\right)$ be a function element such that (u_{1}, D_{1}) is continued analytically to (u_{2}, D_{1}) along γ as above, and let $\alpha_{1}(\tau), \beta_{1}(\tau), \alpha_{2}(\tau), \beta_{2}(\tau)$ be real valued functions defined in D_{1} such that $u_{1}(\tau)=\alpha_{1}(\tau) \tau+\beta_{1}(\tau), u_{2}(\tau)=\alpha_{2}(\tau) \tau+\beta_{2}(\tau)$ on D_{1}. Since g does not ramify at τ_{0}, we obtain

$$
\begin{aligned}
& \left(\alpha_{1}(\tau)+\frac{l_{1}}{2}(N-1), \beta_{1}(\tau)+\frac{l_{2}}{2}(N-1)\right) \\
& \quad \equiv\left(\alpha_{2}(\tau)+\frac{l_{1}}{2}(N-1), \beta_{2}(\tau)+\frac{l_{2}}{2}(N-1)\right) \\
& \quad \text { or }-\left(\alpha_{2}(\tau)+\frac{l_{1}}{2}(N-1), \beta_{2}(\tau)+\frac{l_{2}}{2}(N-1)\right) \bmod N
\end{aligned}
$$

for any $\tau \in D_{1}$. Assume that there exists $\tau_{2} \in D_{1}$ such that the set of all odd numbers N satisfying

$$
\begin{aligned}
& \left(\alpha_{1}\left(\tau_{2}\right)+\frac{l_{1}}{2}(N-1), \beta_{1}\left(\tau_{2}\right)+\frac{l_{2}}{2}(N-1)\right) \\
& \quad \equiv-\left(\alpha_{2}\left(\tau_{2}\right)+\frac{l_{1}}{2}(N-1), \beta_{2}\left(\tau_{2}\right)+\frac{l_{2}}{2}(N-1)\right) \quad \bmod N
\end{aligned}
$$

is finite. Then, for this τ_{2}, the set of all odd numbers satisfying

$$
\left(\alpha_{1}\left(\tau_{2}\right), \beta_{1}\left(\tau_{2}\right)\right) \equiv\left(\alpha_{2}\left(\tau_{2}\right), \beta_{2}\left(\tau_{2}\right)\right) \quad \bmod N
$$

is infinite. Therefore $\left(\alpha_{1}\left(\tau_{2}\right), \beta_{1}\left(\tau_{2}\right)\right)=\left(\alpha_{2}\left(\tau_{2}\right), \beta_{2}\left(\tau_{2}\right)\right)$, and hence $u_{1}\left(\tau_{2}\right)=u_{2}\left(\tau_{2}\right)$. Moreover $\wp^{\prime}\left(u_{1}\left(\tau_{2}\right), \tau_{2}\right) \neq 0$ because $u_{1}\left(\tau_{2}\right)$ is not a 2 -division point of τ_{2} for $\tau_{2} \notin \Gamma \sqrt{-1}$. Consequently, from uniqueness part of the implicit function theorem, $u_{1}(\tau)=u_{2}(\tau)$ on D_{1}. This contradicts the fact that u_{1} ramifies at τ_{0}. Thus, for any $\tau \in D_{1}$ the set of all odd numbers N satisfying

$$
\begin{aligned}
\left(\alpha_{1}(\tau)\right. & \left.+\frac{l_{1}}{2}(N-1), \beta_{1}(\tau)+\frac{l_{2}}{2}(N-1)\right) \\
& \equiv-\left(\alpha_{2}(\tau)+\frac{l_{1}}{2}(N-1), \beta_{2}(\tau)+\frac{l_{2}}{2}(N-1)\right) \quad \bmod N
\end{aligned}
$$

is infinite. By a similar argument, we obtain

$$
\left(\alpha_{2}(\tau), \beta_{2}(\tau)\right)=\left(-\alpha_{1}(\tau)+l_{1},-\beta_{1}(\tau)+l_{2}\right)
$$

on D_{1}. Hence $u_{2}(\tau)=-u_{1}(\tau)+l_{1} \tau+l_{2}$ on D_{1}.

§ 3. The main theorem on the zeros of \wp-function.

Our main theorem on the zeros of \wp-function states as follows:
Theorem 1. Let D_{1}, D_{2} be two regions in \mathscr{H} and $\left(u_{1}, D_{1}\right),\left(u_{2}, D_{2}\right)$ be function elements such that $\wp\left(u_{1}(\tau), \tau\right)=0$ on D_{1} and $\wp\left(u_{2}(\tau), \tau\right)=0$ on D_{2}. Then $\left(u_{1}, D_{1}\right)$ can be continued analytically to $\left(u_{2}, D_{2}\right)$ in \mathscr{H}. And, for any $S \in \Gamma,\left(\left.u_{1}\right|_{-1} S, S^{-1} D_{1}\right)$ is another function element which can be continued analytically to $\left(u_{1}, D_{1}\right)$ in \mathscr{H}.

Notice that since $\wp\left(\left(\left.u_{1}\right|_{-1} S\right)(\tau), \tau\right)=(S: \tau)^{-2} \wp(u(S \tau), S \tau)$ for all $\tau \in S^{-1} D_{1}$, $\left(\left.u_{1}\right|_{-1} S, S^{-1} D_{1}\right)$ is a function element such that $\wp\left(\left(\left.u_{1}\right|_{-1} S\right)(\tau), \tau\right)=0$ on $S^{-1} D_{1}$, and hence the latter part of Theorem 1 follows from the first part.

In order to prove Theorem 1, we show the following 4 lemmas.
Lemma 6. Let D_{1}, D_{2} be two regions in \mathscr{H} and $\left(u_{1}, D_{1}\right),\left(u_{2}, D_{2}\right)$ be function elements such that $\wp\left(u_{1}(\tau), \tau\right)=0$ on D_{1} and $\wp\left(u_{2}(\tau), \tau\right)=0$ on D_{2}. Then the following propositions hold:
(1) If $D_{1} \cap D_{2} \neq \varnothing$, then there exist uniquely $\varepsilon \in\{ \pm 1\}$, $m, n \in \boldsymbol{Z}$ such that
$u_{1}(\tau)=\varepsilon u_{2}(\tau)+m \tau+n$ for all $\tau \in D_{1} \cap D_{2}$.
(2) Let γ be a curve with an initial point in D_{1} and a terminal point in D_{2}, and $\gamma \subset \mathscr{H}-\Gamma \sqrt{-1}$. Then there exist uniquely $\varepsilon \in\{ \pm 1\}$, m, $n \in Z$ such that $\left(u_{1}(\tau), D_{1}\right)$ is continued analytically to $\left(\varepsilon u_{2}(\tau)+m \tau+n, D_{2}\right)$ along γ.

Proof. (1) Since $D_{1} \cap \Gamma \sqrt{-1}=\varnothing$ and $D_{2} \cap \Gamma \sqrt{-1}=\varnothing$ by Proposition 5 (1), $\wp^{\prime}\left(u_{1}(\tau), \tau\right) \neq 0$ for all $\tau \in D_{1}$ and $\wp^{\prime}\left(u_{2}(\tau), \tau\right) \neq 0$ for all $\tau \in D_{2}$. Therefore we can easily see (1) from the properties of \wp-function and uniqueness part of the implicit function theorem.
(2) Let $\left(u_{3}, D_{3}\right)$ be a function element such that D_{3} contains the terminal point of γ and $\left(u_{1}, D_{1}\right)$ is continued analytically to $\left(u_{3}, D_{3}\right)$ along γ. Since $\gamma \subset \mathscr{H}-\Gamma \sqrt{-1}$, $\wp\left(u_{3}(\tau), \tau\right)=0$ on D_{3} by the theorem of invariance of analytic relations. Therefore from (1), we have (2).

We put $\mathscr{H}_{1}:=\{\tau \in \mathscr{H} \mid \operatorname{Im} \tau>1\}$ and $\overline{\mathscr{H}_{1}}:=\{\tau \in \mathscr{H} \mid \operatorname{Im} \tau \geqq 1\}$.
The following lemma is due to Professor D. Zagier [4].
Lemma 7. There exists a unique function u_{0} satisfying the following conditions:

$$
\begin{equation*}
u_{0} \text { is continuous on } \overline{\mathscr{H}_{1}} \text { and holomorphic on } \mathscr{H}_{1} \tag{7.1}
\end{equation*}
$$ $\wp\left(u_{0}(\tau), \tau\right)=0 \quad$ for all $\tau \in \overline{\mathscr{H}_{1}}$, $u_{0}(\tau+1)=u_{0}(\tau) \quad$ for all $\quad \tau \in \overline{\mathscr{H}_{1}}$, $u_{0}(\sqrt{-1})=\frac{1}{2} \sqrt{-1}+\frac{1}{2}$.

Proof. Let

$$
\begin{aligned}
\Delta(\tau) & :=\exp (2 \pi \sqrt{-1} \tau) \prod_{n=1}^{\infty}(1-\exp (2 n \pi \sqrt{-1} \tau))^{24} \\
E_{6}(\tau) & :=\frac{945}{2 \pi^{6}} G_{6}(\tau)
\end{aligned}
$$

and put

$$
u_{0}(\tau):=\frac{1}{2}+\left(\frac{\log (5+2 \sqrt{6})}{2 \pi}-144 \pi \sqrt{6} \int_{\tau}^{i \infty}(t-\tau) \frac{\Delta(t)}{E_{6}(t)^{3 / 2}} d t\right) \sqrt{-1} \quad(\tau \in \mathscr{H})
$$

where the integral is to be taken over the vertical line $t=\tau+\sqrt{-1} \boldsymbol{R}_{+}$in \mathscr{H} ($\boldsymbol{R}_{+}:=\{\beta \in \boldsymbol{R} \mid \beta>0\}$). The following theorem is given by Eichler, Zagier [2].
"The zeros of $\wp(z, \tau)(\tau \in \mathscr{H}, z \in C)$ are given by $z= \pm u_{0}(\tau)+m \tau+n(m, n \in Z)$ "
Thus it is clear that u_{0} satisfies the condition (7.2) and it is easy to see that u_{0} satisfies the condition (7.1), (7.3), therefore we have only to show $u_{0}(\sqrt{-1})=(1 / 2) \sqrt{-1}+1 / 2$.

Let $z(s):=u_{0}(\sqrt{-1} s)$ and

$$
\beta(s):=\frac{\log (5+2 \sqrt{6})}{2 \pi}+144 \pi \sqrt{6} \int_{s}^{\infty}(t-s) \frac{\Delta(\sqrt{-1} t)}{E_{6}(\sqrt{-1} t)^{3 / 2}} d t
$$

Then $z(s)=(1 / 2)+\beta(s) \sqrt{-1}$ on $\{s \in R \mid s>0\}$, and $\beta(s)$ is a real, positive, monotone decreasing and continuous function on $\{s \in \boldsymbol{R} \mid s \geqq 1\}$. Here, notice that " $\wp\left(z_{0}, \tau\right)=0$ implies $\tau \in \Gamma \sqrt{-1}$ " if and only if $z_{0} \in(\tau / 2) Z+(1 / 2) Z$. As $\wp(z(1), \sqrt{-1})=0$, there is a positive integer N_{0} such that $\beta(1)=N_{0} / 2$. Assume $N_{0}>1$. Since $\beta(s) / s$ is continuous on $\{s \in \boldsymbol{R} \mid s \geqq 1\}, \quad \lim _{s \rightarrow \infty} \beta(s) / s=0$ and $\beta(1) / 1=N_{0} / 2$, there exists $s_{0}>1$ such that $\beta\left(s_{0}\right) / s_{0}=1 / 2$. For this s_{0}, we have $\wp\left(s_{0} \sqrt{-1} / 2+1 / 2, s_{0} \sqrt{-1}\right)=0$. Therefore $s_{0} \sqrt{-1} \in \Gamma \sqrt{-1}$. This contradicts $s_{0}>1$. Hence $N_{0}=1$ and we obtain $u_{0}(\sqrt{-1})=z(1)=$ $(1 / 2) \sqrt{-1}+1 / 2$.

We fix now τ_{1} sufficiently close to $\sqrt{-1}$ such that $\operatorname{Im} \tau_{1}>1$ and $\operatorname{Re} \tau_{1}>0$, and put $\tau_{2}=T \tau_{1}$. Let δ, θ be closed curves with initial points τ_{1}, τ_{2} respectively as shown in the figures:

Let u_{0}. be the function of Lemma 7.
Lemma 8. $u_{0}(\tau)$ is continued analytically to $u_{0}(\tau)+1$ along δ.
Proof. We split δ into 4 curves $\delta_{1}, \delta_{2}, \delta_{3}, \delta_{4}$ as shown in the figure:

First we consider the curve δ_{1}. Since $u_{0}(\sqrt{-1})=(1 / 2) \sqrt{-1}+1 / 2, u_{0}(\tau)$ is continued analytically to $-u_{0}(\tau)+\tau+1$ along δ_{1} by Proposition 5 (2). Next since $u_{0}(\tau)$ is holomorphic on $\mathscr{H}_{1},-u_{0}(\tau)+\tau+1$ is continued analytically to $-u_{0}(\tau)+\tau+1$ along δ_{2}. Furthermore since $u_{0}(\tau+1)=u_{0}(\tau)$ for all $\tau \in \overline{\mathscr{H}_{1}}, u_{0}(\sqrt{-1}+1)=(1 / 2)(\sqrt{-1}+1)+0 / 2$, and hence, again by Proposition 5 (2), $-u_{0}(\tau)+\tau+1$ is continued analytically to $u_{0}(\tau)+1$
along δ_{3}. Finally, by the same reason as for $\delta_{2}, u_{0}(\tau)+1$ is continued analytically to $u_{0}(\tau)+1$ along δ_{4}. This completes the proof of the lemma.

Lemma 9. There exists a closed curve χ in \mathscr{H} with the initial point τ_{1} such that $u_{0}(\tau)$ is continued analytically to $u_{0}(\tau)+\tau$ along χ.

Proof. Let $u_{4}(\tau):=\left(\left.u_{0}\right|_{-1} T\right)(\tau)$. Then $\left(u_{4}, T \mathscr{H}_{1}\right)$ is the function element satisfying $\wp\left(u_{4}(\tau), \tau\right)=0$ on $T \mathscr{H}_{1}$. Since $u_{4}(\sqrt{-1})=(1 / 2) \sqrt{-1}-1 / 2$ and $u_{4}((\sqrt{-1}-1) / 2)=$ $(0 / 2)((\sqrt{-1}-1) / 2)-1 / 2$, we see, in a similar way as in the proof of Lemma 8, that $u_{4}(\tau)$ is continued analytically to $u_{4}(\tau)+\tau$ along θ. Now, let θ_{1} be a curve with the initial point τ_{1} and the terminal point τ_{2}, and $\theta_{1} \subset \mathscr{H}-\Gamma \sqrt{-1}$. Then, by Lemma 6 (2), there exist uniquely $\varepsilon \in\{ \pm 1\}, m, n \in Z$ such that $u_{0}(\tau)$ is continued analytically to $\varepsilon u_{4}(\tau)+m \tau+n$ along θ_{1}. Thus, putting $\chi:=\theta_{1}+\theta+\left(-\theta_{1}\right), u_{0}(\tau)$ is continued analytically to $u_{0}(\tau)+\tau$ along χ. This χ satisfies the conditions of the lemma.

Proof of Theorem 1. Let γ_{1} be a curve with an initial point in D_{1} and the terminal point τ_{1}, and let γ_{2} be a curve with an initial point in D_{2} and the terminal point τ_{1}. Let χ be a curve satisfying the conditions of Lemma 9. By Lemma 6 (2), there exist uniquely $\varepsilon_{1}, \varepsilon_{2} \in\{ \pm 1\}, m_{1}, m_{2}, n_{1}, n_{2} \in Z$ such that $u_{1}(\tau)$ is continued analytically to $\varepsilon_{1} u_{0}(\tau)+m_{1} \tau+n_{1}$ along γ_{1} and $u_{2}(\tau)$ is continued analytically to $\varepsilon_{2} u_{0}(\tau)+m_{2} \tau+n_{2}$ along γ_{2}. Let δ_{1} be the closed curve in the proof of Lemma 8. Replacing γ_{1} by $\gamma_{1}+\delta_{1}$ if necessary, we may assume $\varepsilon_{1}=1$ by Proposition 5 (2), and we may assume $\varepsilon_{2}=1$ by the same reason. Thus, putting $\gamma:=\gamma_{1}+\left(n_{2}-n_{1}\right) \delta+\left(m_{2}-m_{1}\right) \chi+\left(-\gamma_{2}\right), u_{1}(\tau)$ is continued analytically to $u_{2}(\tau)$ along γ.

Corollary 10. There exists a unique analytic function u on \mathscr{H} such that $\wp\left(u_{1}(\tau), \tau\right)=0$ on D_{1} for a branch $\left(u_{1}, D_{1}\right)$ of u.

This analytic function u will be called "the §-zero value function", it is many-valued with countably infinitely many values. The latter part of Theorem 1 shows its "modular invariance". In this sense it is called a "many-valued modular form".

§4. The main theorem on the \wp-zero division value functions.

Let $\left(u_{1}, D_{1}\right)$ be a branch of our \wp-zero value function u. For a positive integer N and integers a, b, we put

$$
g_{N,(a, b)}(\tau):=\wp\left(\frac{1}{N}\left(u_{1}(\tau)+(a, b)\binom{\tau}{1}\right), \tau\right)
$$

Then, for any $(a, b),\left(a^{\prime}, b^{\prime}\right) \in Z^{2},\left(u_{1}(\tau), D_{1}\right)$ can be continued analytically to $\left(u_{1}(\tau)+\right.$ $\left.\left(a^{\prime}-a, b^{\prime}-b\right)\binom{\tau}{1}, D_{1}\right)$ in \mathscr{H} by Theorem 1 , therefore the function element $\left(g_{N,(a, b)}, D_{1}\right)$
can be also continued analytically to $\left(g_{N,\left(a^{\prime}, b^{\prime}\right)}, D_{1}\right)$ in \mathscr{H}. And we have $\phi_{N}\left(g_{N,(a, b)}(\tau), \tau\right)=0$ for all $\tau \in D_{1}$ by Lemma 2. Moreover, for $S \in \Gamma$, since

$$
\begin{align*}
\left(\left.g_{N,(a, b)}\right|_{2} S\right)(\tau) & =(S: \tau)^{-2} \wp\left(\frac{1}{N}\left(u_{1}(S \tau)+(a, b)\binom{S \tau}{1}\right), S \tau\right) \\
& =\wp\left(\frac{1}{N}\left(\left(\left.u_{1}\right|_{-1} S\right)(\tau)+(a, b) S\binom{\tau}{1}\right), \tau\right)
\end{align*}
$$

for all $\tau \in S^{-1} D_{1}$ and $\wp\left(\left(\left.u_{1}\right|_{-1} S\right)(\tau), \tau\right)=0$ on $S^{-1} D_{1}$, the function element $\left(\left.g_{N,(a, b)}\right|_{2} S, S^{-1} D_{1}\right)$ can be continued analytically to $\left(g_{N,(a, b) S}, D_{1}\right)$ in \mathscr{H}.

Therefore we obtain the following theorem.
Theorem 2. Let N be an integer greater than 1 . Then an $N^{\text {th }} \wp-z e r o$ division value function \mathfrak{p}_{N} is uniquely determined and it is an N^{2}-valued analytic function of \mathscr{H}. Moreover, for a branch (g, D) of \mathfrak{p}_{N} and $S \in \Gamma$, another function element $\left(\left.g\right|_{2} S, S^{-1} D\right)$ is also a branch of \mathfrak{p}_{N}.

This theorem shows that \mathfrak{p}_{N} is another "many-valued modular form" like u.
Corollary 11. Let N be an integer greater than 1. Then $\phi_{N}(X, \tau)$ is an irreducible polynomial in $Z\left[15 G_{4}(\tau), 35 G_{6}(\tau)\right][X]$.

Proof. Since any root of $\phi_{N}(X, \tau)$ is expressed by a branch of \mathfrak{p}_{N}, this follows from Theorem 2.

Corollary 12. Let p be a prime number, and $\left(g_{1}, D\right), \cdots,\left(g_{p^{2}}, D\right)$ be p^{2} branches of \mathfrak{p}_{p}. Let $\alpha_{1}, \cdots, \alpha_{p^{2}} \in C$. Then

$$
\alpha_{1} g_{1}+\cdots+\alpha_{p^{2}} g_{p^{2}}=0 \quad \text { on } D
$$

if and only if $\alpha_{1}=\cdots=\alpha_{p^{2}}$. Therefore $p^{2}-1$ distinct branches of \mathfrak{p}_{p} with the same region are linearly independent over C.

Proof. Since the second term of the polynomial $\phi_{N}(X, \tau)$ in X vanishes (cf. Cassels [1]), we get $\alpha_{1} g_{1}+\cdots+\alpha_{p^{2}} g_{p^{2}}=0$ if $\alpha_{1}=\cdots=\alpha_{p^{2}}$.

As shown in the first part of this section,

$$
\left\{g_{(a, b)} \mid 0 \leqq a, b<p, a, b \in Z\right\} \quad\left(g_{(a, b)}:=g_{p,(a, b)}\right)
$$

is the set of all branches of \mathfrak{p}_{p} on D_{1}. Therefore it suffices to show that $\alpha_{1} g_{(0,0)}+\alpha_{2} g_{(0,1)}+\cdots+\alpha_{p^{2}} g_{(p-1, p-1)}=0$ on D_{1} implies $\alpha_{1}=\cdots=\alpha_{p^{2}}$. We set $\boldsymbol{F}:=\boldsymbol{Z} / p \boldsymbol{Z}$ and $\hat{G}:=S L_{2}(F) . \hat{G}$ acts on $F^{2}-\{(\overline{0}, \overline{0})\}$ by $(\bar{S},(\bar{a}, \bar{b})) \mapsto(\bar{a}, \bar{b}) \bar{S}$ where $\bar{a}:=a \bmod p$, and this action is transitive. We know that \hat{G} consists of $p\left(p^{2}-1\right)$ elements. Let G be a subset of Γ such that

$$
\hat{G}=\left\{\left.\left(\begin{array}{ll}
\bar{a} & b \\
\bar{c} & \bar{d}
\end{array}\right) \right\rvert\,\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in G\right\}
$$

and G consists of $p\left(p^{2}-1\right)$ elements. Assume that $\left(p^{2}-1\right) \alpha_{j} \neq \sum_{i=1, i \neq j}^{p^{2}} \alpha_{i}$ for some j ($1 \leqq j \leqq p^{2}$). By Theorem 2, we may assume $j=1$, i.e. $\left(p^{2}-1\right) \alpha_{1} \neq \sum_{i=2}^{p^{2}} \alpha_{i}$. For any $S \in G$, we have that

$$
\left.\alpha_{1} g_{(0,0)}\right|_{2} S+\left.\alpha_{2} g_{(0,1)}\right|_{2} S+\cdots+\left.\alpha_{p^{2}} g_{(p-1, p-1)}\right|_{2} S=0
$$

on $S^{-1} D_{1}$. By Theorem 1, there exists a curve γ_{S} such that $\left(\left.u_{1}\right|_{-1} S, S^{-1} D_{1}\right)$ is continued analytically to (u_{1}, D_{1}) along γ_{s}. Then, by (\#\#), for all integers $a, b,\left(\left.g_{(a, b)}\right|_{2} S, S^{-1} D_{1}\right)$ is continued analytically to $\left(g_{(a, b) S}, D_{1}\right)$ along γ_{s}, and hence

$$
\alpha_{1} g_{(0,0) S}+\alpha_{2} g_{(0,1) S}+\cdots+\alpha_{p^{2}} g_{(p-1, p-1) S}=0
$$

on D_{1}. Therefore we obtain

$$
\alpha_{1} \sum_{S \in G} g_{(0,0) S}+\alpha_{2} \sum_{S \in G} g_{(0,1) S}+\cdots+\alpha_{p^{2}} \sum_{S \in G} g_{(p-1, p-1) S}=0
$$

on D_{1}. We can easily see that the stabilizer of $(\overline{0}, \overline{1})$ consists of p elements and for $(a, b),\left(a^{\prime}, b^{\prime}\right) \in Z^{2}$ if $(a, b) \equiv\left(a^{\prime}, b^{\prime}\right) \bmod p$, then $g_{(a, b)}=g_{\left(a^{\prime}, b^{\prime}\right)}$ on D_{1}. Thus, by $g_{(0,0)}+$ $g_{(0,1)}+\cdots+g_{(p-1, p-1)}=0$ on D_{1},

$$
\begin{aligned}
\sum_{S \in G} g_{(a, b) S} & =p\left(g_{(0,1)}+\cdots+g_{(p-1, p-1)}\right) \\
& =(-p) g_{(0,0)}
\end{aligned}
$$

on D_{1} for $(a, b) \neq(0,0) \bmod p$. Hence, by (\#\#\#),

$$
0=\left(\alpha_{1} p\left(p^{2}-1\right)-\sum_{i=2}^{p^{2}} \alpha_{i} p\right) g_{(0,0)}
$$

on D_{1} noticing that $\sum_{s \in G} g_{(0,0) S}=p\left(p^{2}-1\right) g_{(0,0)}$ on D_{1}. Thus $g_{(0,0)}=0$ on D_{1}. This contradicts the fact that $\left(g_{(0,0)}, D_{1}\right)$ is a branch of the p^{2}-valued analytic function \mathfrak{p}_{p}. Therefore $\left(p^{2}-1\right) \alpha_{j}=\sum_{i=1, i \neq j}^{p^{2}} \alpha_{i}$ for any $j\left(1 \leqq \mathrm{j} \leqq p^{2}\right)$. This leads to $\alpha_{1}=\cdots=\alpha_{p^{2}}$.

References

[1] J. W. S. Cassels, A note on division values of $\wp($ (u), Proc. Cambridge Philos. Soc., 45(1949), 167-172.
[2] M. Eichler and D. ZAGier, On the zeros of the Weierstrass \wp-function, Math. Ann., 258 (1982), 399-407.
[3] B. Schoeneberg, Elliptic Modular Functions, Springer, 1974.
[4] D. Zagier, A letter, April 3, 1987.

Present Address:

Department of Mathematics, Faculty of Science, Gakushuin University
Mejiro, Toshima-ku, Tokyo 171, Japan

[^0]: Received March 27, 1990

