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Introduction.

Some homological properties of a Noetherian local ring R can be characterized in
terms of syzygies of the residue field k£ of R. For example, let

F: "'“‘_’Fl tI;'O ‘k ‘0

be a resolution of k consisting of finite R-free modules, Q;=Ker(F;_,—F;_,) an i-th
syzygy of k where F_, =k, F_,=0, and set n=dim R. Then the following facts are
well-known.

R is regular,
<> There exists an integer i>n, such that Q; is R-free,
<> For all i>n, Q; is R-free.

R is a Gorenstein ring,
< There exists an integer i>n, such that Extx(€2;, R)=0,
<> For all i>n, Exty(Q;, R)=0.

(Because Extx(Q;, R)=Extyk" !(k, R).)

In this paper, we consider the case of the Cohen-Macaulay (abbreviated to CM)
property. Our main results are the following.

THEOREM 9. For all i>0, Supp 2,=Spec R and dim Q,=n unless Q,=0.

THEOREM 11. depthQ;= {l (if 0<i<depth R),
depth R (if i>depth R and Q;#0).

COROLLARY 12.
i @, -, Q,_, are not CM.
(i) Ris CM,
<> There exists an integer i>n, such that Q; is CM,
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<> For all i=n, Q; is CM unless Q2,=0.

To prove these theorems, we shall study dim €; in section 1 and depth ; in section
2. Moreover, it is known that Q,’s are Buchsbaum modules in more general situation
than when R is CM. In section 3, we shall consider relationship between I (©2;) and I (R).

ACKNOWLEDGEMENTS. I wish to thank H. Matsumura and Y. Yoshino for
introducing me to these problems and relative papers. I’d also like to thank my friend
K. Yoshida who discussed these problems with me and proved Lemma 3 of this paper.

§1. Dimension of syzygies and betti numbers.

Let R be a Noetherian local ring with maximal ideal m, and let k= R/m. For a
resolution F of an R-module M, always set Q,=Ker(F,_,—F;_,) (i>0) where F_, =M,
F_,=0. The following facts are well-known.

ProrosITION 1 (cf. e.g. [3]). Let M be a finite R-module.

(i) There exists a minimal free resolution F of M (abbreviated to MFR of M), and
F is unique up to isomorphisms of complexes.

(ii)) For any resolution F of M consisting of finite R-free modules (abbreviated to
FR of M), there exist an MFR G of M and an exact complex H consisting of finite R-free
modules, such that F=G ® H.

COROLLARY 2. In the notation of Proposition 1 (ii), put
Q;=Ker(F,_,»F;,_;), Q;=Ker(G,_,—G,_,) (i=0),
then
Q,=Q;® R" (#;=0).
In particular,
dim Q; @if 1,=0)
dim R @ 1,>0),
depth Q; @if 1,=0)
inf(depth Q;, depth R) (if 1,>0).

depth Q;= {

PrROOF. Since finite projective modules of local rings are free,'the exact complex
H of Proposition 1 (ii) is split and

Q:'=Zi+1(1:')'_—Z.'+1(G)@Z;'+1(II)=Q;'@Rti [

By Corollary 2, our problems are reduced to the case of syzygies of an MFR of k.
Next, we consider dimensions of syzygies. Let f; be the i-th betti number of %, i.e.
B;=dim, TorR(k, k)= (rank of i-th module of an MFR of k). The betti numbers §,, B, -
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play important roles below.

Lemma 3 (K. Yoshida). Let F be an MRF of k.
() If R#k, then Y |_,(—1yY""B;=0 for all r>0.
(i) If dim R>1, then for all r >0 the following conditions are equivalent.
@) 2,+,#0anddimQ,,,=dimR,
() Yo (=1)TBi>0.
In this case, Supp 2, . =Spec R.
Proor. (i) If dim R=0, then the exact sequence

0 ‘Qr+1 :Fr > AF‘O ‘k A0

implies that

(— 1y +lengthQ,,, = >, (—1) ‘length F,-=(Z (—1)”73,-) length R .
i=0 0

Since R is not regular, ©,,,#0. Thus Y _,(—1)";=>0.
If dim R>1, for any prime ideal p #m of R we have an exact sequence

0———'(Qr+1)p '(Fr)p V(FO)p ~»0.

Since this sequence is split, (£, ), is R,-free. Thus
rank(, 1), = .Zo(—l)""ﬂl-zo ) (*)

i) If Y7 ,(—1y"'B;>0, then the formula (%) implies peSupp(,,, for all
prime ideal p #m. Thus Supp @, ., =Spec R and dim Q,, ; =dim R.

Conversely, if dim , , , =dim R> 1, then the formula ( *) also implies Y ;_(— 1) 7';>
0. |

ExaMpPLE 4. Let R be a-regular local ring of dimension n>1, and x,, - - -, x, a
minimal basis of the maximal ideal m. Since the Koszul complex F=K(x,, - - -, X,) is

an MFR of k=R/m, we have ﬂ,=<n) where (n
r

>=0 for r>n. By induction on r,
r

. —1
Yio(— 1)'_'/3i=(n . ) By the previous lemma, dim Q,=n for 0<r<n.

But we can also prove this result straightforwardly. Assume R is an integral domain,
or more generally, assume dim R/p=dim R for any p € Ass R. Since every syzygy €, is
a submodule of the R-free module F._,, we get AssQ,cAssF,_; =Ass R, hence
dim Q,=dim R, unless ©,=0.

Conversely, if a local ring R has a prime pe€ Ass R such that dim R/p<dim R,
then there exists a non-zero syzygy of a finite module which has dimension less than
dim R; for example, the second syzygy Homg(R/x, R)=Anng(x) of R/(x) where x is an
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element of p not lying in any minimal prime ideal q with dim R/q=dim R.

Next, we shall calculate lower bounds of §; and of Y.7_ (—1) ‘B, using the
following theorem.

THEOREM 5 [1, T. H. Guliksen and G. Levin]. (i) There exist integers

&os €1, " * * 20 satisfying the following equation of formal power series in t:
. 1 + t2i+ 1\ea;
Z ﬂit‘= H ( 2i+2 ) :
i=0 izo(l—z5T4)p2in

In particular, &;s are uniquely determined by R, and
&0 =dim, m/m? =(embedding dimension of m),
&, =dim, H,(E),

where E is a Koszul complex for a minimal basis of m.
(1) The following conditions are equivalent.
(@) R is a complete intersection ring,
(b) &,=0,
(C) 83 = Oa
(d) &=0, for all i>2.
REMARK (cf. e.g. [2, §21]). In the notation above, it is well-known that
£,=2¢—dimR>0,
€, =0 <= E is exact < R is regular .
ExXAMPLE 6. Let k be a field, and

_k[[Xl, .. .,Xu’ Yla cee Yv]]

R
xi, ---, X0

It is clear that R is a complete intersection ring with &, =u+v, &, =u. We construct an
MFR of residue field kg of R, and calculate the betti numbers directly. Set

S;=k[X]/(X?), Tj=k[Y;], and R’=(Sl@'.'§Su§Tl?'.'®Tv)'
k

Then, R'<R and R'=R, where R’ is (X, -, X,, Y, - -, Y,)R"-adic completion of
R'. Take MFR’s of residue fields of S; and T;

Xl Xi ()]

GO: i — igiz_“" igil*“—' 9 —k——0,

. Y,
FO: 0—Th} —LTh) —k——0,

where g;, h7T are free bases. Then F=(GV®, - - - G HV®, - - @, H™) isan MFR
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of residue field kz of R. In fact, by Kiinneth formula, we have

k (I=0),
H =
{F) {0 (>0).
Moreover, since
Fl= (—B Rgill...gf‘uh.{l. ..h.‘];u,
I=iy+ o +ig+ji+o+jy

S, b
0<j1, s just

the betti numbers ‘ﬂ,- of kg are determined by the following equation:

Y Bti=Q+r+2+- A+
iz0
(1+ 8

=(1+2+t*+ YA+ ) ' =
( )( ) (1_t2)£1

J. Tate has proved in [4] that if R is not regular, then for all >0,

ﬁ,z(er")+(r8_°2>+<r8_°4)+ "

We calculate a slightly improved lower bound of B, and give a condition that {B,} is
bounded above.

ProPOSITION 7. (i) If ¢,=0, then

() «
ﬁr={ r (if r<eo),
0 (f r>¢gp) .-

(ii) If e,=1, then R is a complete intersection ring, e,=dim R+ 1, and

—1
B=[Z:=o(8oi ) (if r<eg),

2001 (if r=eo).

(iii) If e, =2, then ¢4=>2 and

=Y (r—i+1)(8°.'2),
i=0

1

where (80__2)=0f0r i>gp—2.
i

In particular, the sequence {B,} is bounded above (i.e. there exists an integer N such
that for all i>0, B;<N), if and only if ¢, <1. '
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Proofr. (i) Ifey,=0, then R is regular, and then assertion is clear.
(ii) Ife, =1, then Ris not regular, and 1 =¢; >¢,—dim R>0. Thus g¢e=dim R+1,
and R is a complete intersection ring.- By Theorem 5, we have ¢;=0 for all i>2, and

Z ﬁl (1 - t)s0

i20

=1+ A +t+2>+---).

Comparing coefficients in ¢", we have the desired equation.

(iii) Assume ¢, >2, so that R is not regular. We first show ¢,>2. If ¢, =0, then
R would be regular. If ¢, =1, then there exists an element x € R such that m=xR. Since
go>dim R, R is Artinian. Thus there exists >0 such that x'#0 and x**!=0. Take
the Koszul complex

X

E: 0 » R » R »0.

Then H,(E)=Ker(R i»R) =Rx'~k. Thus ¢, =dimH,(E)=1. This contradicts our
assumption. Therefore, g, > 2.
By Theorem 5, we have

(1 + 9

Zoﬂ' 2)2(1+a1t+a2t2+“') (a;=0)
1+ #)°
((1 + 2)2—(1+t+t2+ A4

=(142t4+32+ - Y1402,

where Y 5 obitt>Y >0 c;t' means b; > c; for all i. Comparing coefficients in ¢", we have the
desired inequality. [ |

REMARK. In the notation above, we get

(1+t3)52. ..
(]_t2)e1—2, L.

(1+at+ayt?+--)=

Thus, the equality of the formula of Proposition 7 (iii) holds for any r, if and only if
&, =2 and ¢;=0 for any i>2. This is equivalent to the condition that R is a complete
intersection ring with ¢, =2, by Theorem 5.

Using technique similar to the above, we give a lower bound of Yo (=1 7B

PROPOSITION 8. If R is not regular and e, > 2, then
4 go—2
Y (~1y 7Bz Zo( > ) (r=0).

PrROOF. Since R is not regular, &, > 1. By Theorem 5, we have
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2
> Biti= (;+t) 1+at+a,t?+---) (@;=>0). (%)

iz0 -

Since (1+)%/(1—t*)=(1+2t+2t*+ - - *), it follows that

2 ﬁltl=(1+2t+2t2+ - +2tr)

i20

+a,(t+2t2+---+2t"

+a,t".
Substituting — 1 for ¢ and multiplying both sides by (—1)", we obtain

Y (=)Tpi=1+ai+a+ -+,

i20

Next we calculate lower bound of the right hand of the formula above. By the formula
(*), we have

1+ 21+ 132 -
(l_tZ)el—l(l_t4)83, ..
=(L+0fo 21 +byt+byt2+ 7)) (5;=0)
»>(14+0)*"2.

(1 +ayt+at*+-- )=

Thus,
, ro(eo—2
l+a,t+at>+---+at™ Z (

Substituting 1 for ¢, we get

£ (Eg—2
l+a,+a,+ Z ( ) |

REMARK. The equality of the formula of Proposition 8 holds for any r, if and
only if ¢, =1 and ¢;=0 for any i>2. By Theorem 5, this is equivalent to the condition
that R is a complete intersection ring with &, =1.

THEOREM 9. Let F be an FR of k, and Q, , , =Ker(F,—F,_,), then for all r>0
dim Q,=dim R and Supp£,=SpecR,
unless Q,=0.

PrOOF. By Corollary 2, we may assume that F is an MFR of k. If dim R=0, the
theorem is trivial. If R is regular, the theorem follows from Example 4.
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Assume that dim R>1 and R is not regular. Then £o>dim R>1, and the theorem
follows from Proposition 8 and Lemma 3. [ |

§2. Depth of syzygies.
First of all, we shall study depth of syzygies of finite R-modules.

PROPOSITION 10. Let M be a non-zero finite R-module, and F an FR of M. If
r=depth M <depth R=s, then

= ] <i<s—r
depthQi{ r+i (0<i<s—r) N
=>s  (i=s—r+1). (2)
' Moreover, if proj.dim M = co, then
depthQ,=5 (i>s—r+2) 3)

REMARK. Auslander and Buchsbaum have proved that if proj.dim M < co, then
proj.dim M=s—r in the notation above. In this case, for i >s—r, £, is R-free and
depth ;=35 unless Q,=0.

ProOF. The exact sequence 0—-Q,, ,—F,—Q,—0 implies the following exact
sequences:

0 — Exty '(k, Q) — Extr(k, ;1 1),
0 —— Ext} '(k, 2) — Extj(k, ;. ,) — 0 U<ys).

Using induction on i, we can easily derive the formulas (1) and (2) from these sequences.
To prove the formula (3), we may assume that F is an MFR of k by Corollary 2.
Since depthQ,_, =5 and depthQ,_,,,>s, it is enough to prove the following claim.

CrLamM.  IfdepthQ;_, >s and depth Q,>s, then depth Qir1=5.

If depth Q,> s, then
0 — ExtR(k, Q;, ) — Exti(k, F) —— 0.

The desired equation follows from the sequences above.
Assume depthQ;=s5. In the same way as in the proof of formula (2), we have

depthQ;,, >s. If depthQ;, , >, then

0= Exti(k, @, ;) — Extik, F) — Exti(k, Q)
0=Exty '(k, ;) — Exti(k, ) —2 Exti(k, F;_,) .

The composition gf is induced by the composition F,—, _, —F;_,. Since the map
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F,=Rf>F,_,=RP-1 is expressed by a matrix with entries in m, and Exti(k, F)) is
annihilated by any element of m, we have gf =0. But both f and g are monomorphisms
and Ext}(k, F;)#0. This is a contradiction. ||

THEOREM 11. Let F be an FR of k, Q,=Ker(F;_,—F;_,), and s=depth R, then

depthQ-={i i 0<i<y),
s (if i>s and Q;#0).

ProOF. By Proposition 10, it is enough to prove that, if R is not regular,
depth @, , =s. We may assume that F is an MFR of k.
Assume depth R=s5s=0, then

Homg(k, m)=~ Ann,, m=Anng m=~Homg(k, R)#0 .

Thus depth 2, =depthm=0.
Assume s> 0. By Proposition 10, we have depth @, , >s. If depthQ,,>s, then
we have the following exact sequences:

0 —— Exti(k, F)) —» Extik, @),

0 —— Exts 1k, 2, _ ;) — Exti(k, 2) —» Exti(k, F,—,) .

Since gf =0 and f is a monomorphism,
Ker g o Ext(k, F,)=Exti(k, R)’s .
Moreover, the last exact sequence implies that
Ker g =Ext§ 1(k, Q,_,)=Homyg(k, k)=k .

Since Extx(k, R)#0, comparing dimensions of k-vector spaces above, we have B, <1.
This contradicts the result of Proposition 7, since R is not regular and g, >dim R>
s>0. |

COROLLARY 12. Let R be a local ring with residue field k, n=dim R, F an FR of
k, and Q,=Ker(F;,_,—F;_,).
i Q. ---,Q,-, are not CM.
(ii) The following conditions are equivalent.
(@) Risa CM ring,
(b) There exists an integer i>n, such that Q; is CM,
(¢) For alli=n, Q; is CM unless Q,;#0.
PrROOF. If ©2,#0, then by Theorem 9 and Theorem 11, we have

dim Q;,=dim R i>0),
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= R j
depth &, { depth (i=depth R),
<depth R (i<depth R).

- Moreover always 2, #0. Therefore the assertions are clear. [ |

ExaMPLE 13. When R is not CM, syzygies of finite R-modules can be CM, and
generally do not satisfy Theorem 11. Let k be a field, R=k[ X, Y]/(X?, XY),and x, ye R
represent X, Y, respectively. Then dim R=1. Since xe Anng m=~Homg(k, R), we get
depth R=0. Thus R is not CM. Consider the finite R-module R/(y). We get

dim R/(y)=depth R/(y)=0. But the first syzygy (y) of R{y) is a CM-module with
dimension 1. In fact, since y € R is (y)-regular element, 0 <depth(y) <dim(y)<dim R=1.

§3. Invariant I( ) of syzygies.

Let q be a parameter ideal of R, and I ,(—)=length(- ® rR/q)—ey(-), where‘ ey is
the multiplicity for q. When M is a Buchsbaum module (i.e. I, (M) is independent of
q), we write I(M)=1,(M).

PROPOSITION 14. Let F be an MFR of k. If dim R> 1, then for all r>0,
r—1 r
I(2)= (;o (—1y=" ‘ﬂ.->1q(R)+ 2. (=1~ dim, Torf(k, R/a)

ProoF. The short exact sequence 0—Q,—F,_,—»Q,_,—0 implies that e, (2,)+
eq(2,- 1) =ey(F,_1)=P,-1e4(R). Since e,(2,)=e,(k)=0, by induction on r,

r—1
ed( )= (_ZO (—1y=i- ‘ﬁ.-)eq(R) :
The sequence 0-»Q,—F,_;—Q,_,—0 also implies the following exact sequence.
0 — Tor{(®2,-,, R/q) — Q,®R/q— (R/qfr* — Q,_,®R/q—— 0.
R R

Since each module above has finite length and TorX(®Q,_,, R/q)=TorR(k, R/q), we
have

length (2,® R/q) +length(®, - ; ® R/q)= B, _, length R/q+dim, TorX(k, R/q) .
R R
By induction on r,
r—1 r . .
length(Q,® R/q) =( > (—=1yitt ﬂ,.) length R/q+ Y, (— 1y ~'dim,TorX(k, R/q) .
R i=0 i=0

Thus the desired equation holds. [ |
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COROLLARY 15. Let R be a Buchsbaum ring with dim R>1, and F an FR of k.

(@) @, is a Buchsbaum module if and only if 3 o (= 1)y idim,Tor(k, R/q) is
independent of the parameter ideal q.

(b) @, is a Buchsbaum module for all r>0, if and only if dim, TorX(k, R/q) is
independent of the parameter ideal q for all r>0.

PROOF. We may assume that F is an MFR of k. It is enough to show that, for
any r>0, every parameter ideal of €, is one of R unless Q,=0. But this is clear, since
dim Q,=dim R and

{m}=Supp Q,® R/q=Supp 2, N Supp R/q
R
=Spec R n Supp R/q=Supp R/q. [ ]

J. Stiickrad and W. Vogel have proved the following useful criterion of Buchsbaum
modules.

THEOREM 16 [5, J. Stiickrad and W. Vogel]. (a) Let M be a finite R-module with
r=depth M <dim M =d and H! (M)=0 for all is*r,d. Then M is a Buchsbaum module
if and only if mH,(M)=0. '

(b) Let M be a Buchsbaum module with d=dim M, then

d—1

M)=Y <d:1)length Hi (M).

i=0

We shall apply Proposition 14 and Theorem 16 to the following examples, and
compare results.

ExaMPLE 17. (a) Let R be a Buchsbaum ring with dim R=1, and F an MFR
of k, then every syzygy €, is a Buchsbaum module. In fact, for any parameter ideal
q=(x), the composition of the exact sequence

0——(@0:x)—>R—3R—>Rjg—0
R

and an MFR of (0 I:(x)=(0 I:{m) is an MFR of R/q. Thus

dim, Tor®(k, R/q) = (rank of r-th module of an MFR of R/q)

is independent of q for any r>0. By Corollary 15, every £, is a Buchsbaum module.
Theorem 16 (a) also implies this result, since H9(£2,) is a submodule of HY(F,._)=
HO(R)r-*. Moreover we have
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length H%(Q,)=1(R2,)
r—1 r
=( > (- 1)""".3,-)I(R)+ 2, (—=1y~*dim, Torf(k, R/q) .
i=0 i=0
(b) Let R be a CM ring with dim R=n>1, and F an MFR of k, then any syzygy

—1
Q, of k is a Buchsbaum module with I(2,) = (n ) Indeed, since any parameter ideal q
' r

is generated by an R-regular sequence x=(x,, x,, - * *, X,), @ Koszul complex E=K(x)
is an MFR of R/q and :

dim, Tor®(k, R/q) =rank E,= ( " ) .
r

Q)= (—1)'—i('f)=(”_l).
i=0 ] r

Theorem 16 gives the same result. For, by induction on i, we have

k (fi=r<n)
H';,,(Q,)={0 (if i,r<n and i#7r)
0 (fi<mnand r=n).

By Proposition 14,

ReMARK. K. Yamagishi [6] has shown the Buchsbaum property of syzygies in
more general situation; Let R be an n-dimensional Buchsbaum ring with H%(R)=0 for
p#1, n, and F an FR of the residue field k. Then every syzygy Q, is a Buchsbaum module.
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