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On Some Class Properties of Statistical Experiments
under Weak Blackwell Equivalence
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In this paper, the author studies permanence properties of statistical experiments
under weak Blackwell equivalence. It turns out that majorization and pivotality are
class properties. We give some remarks on LeCam equivalence.

\S 1. Preliminaries.

Let $I$ denote a nonempty index set. A statistical experiment for the parameter set
$I$ is a triplet $\underline{E}=(\underline{X},$ $\underline{A},$ PJ, where $(\underline{X}, \underline{A})$ is a measurable space and $\underline{P}=\{P_{i}|i\in I\}$ is a
family of probability measures.

Throughout this paper, we consider two experiments $\underline{E}=LX,\underline{A},PA$ and $\underline{F}=\llcorner Y,$ $\underline{B},$ $\underline{Q}$)

with the same parameter set $I$.
A weak kernel from $\underline{E}=(\underline{X},$ $\underline{A},$ PJ to $(\underline{Y}, \underline{B})$ is a mapping $N$ from $\underline{X}\times\underline{B}$ to $R$ with

the following properties:

(w-1) $0\leqq N(\cdot , B)$ $[a.e.P_{i}]$ for all $i\in I$ and $B\in\underline{B}$ .

(w-2) $N(\cdot , B)$ is 4-measurable for all Be $\underline{B}$ .

(w-3) $N(\cdot , \underline{Y})=1$ $[a.e.P_{i}]$ for all $t\in I$ .

(w-4) For every sequence $\{B_{n} : n=1,2, \cdots\}$ of pairwise disjoint $\cdot$ sets $B_{n}\in\underline{B}$ we
have

$N(\cdot, \bigcup_{n\geqq 1}B_{n})=\sum_{n\geqq 1}N(\cdot , B_{n})$ $[a.e.P_{i}]$ for all $i\in I$ .
The set of weak kemels from $\underline{E}=(\underline{X},$ $\underline{A},PA$ to $(\underline{Y}, \underline{B})$ will be abbreviated by

Weak$(\llcorner X, \underline{A}, \underline{P}),$ $(\underline{Y}, \underline{B}))$ .
$\underline{E}$ is called more informative than $\underline{F}$ in the weak sense of Blackwell, in symbols

$\underline{E}>\underline{F}$ (w.B), if there exists $N\in Weak((\underline{X}, \underline{A}, \underline{P}), (\underline{Y}, \underline{B}))$ with $N(P_{i})=Q_{i}$ for all $i\in I$.
Here $N(P_{i})$ is a measure such that $N(P_{i}XB)=\int N(x, B)dP_{i}(x)$ . $\underline{E}$ and $\underline{F}$ are called weak-
ly Blackwell equivalent if $\underline{E}>\underline{F}$ (w.B) and $\underline{F}>\underline{E}$ (w.B) and we write $\underline{E}\sim\underline{F}$ (w.B).
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By $ca(AJ$ , we denote the space of all bounded signed measures on $\underline{A}$ . The band
$L(\ovalbox{\tt\small REJECT}$ generated by $\underline{P}$ in $ca\cup A$ is called the L-space of the experiment $\underline{E}$. A linear,
positive and positively isometric mapping from $\prod\ovalbox{\tt\small REJECT}$ to $L(Q$ is called a transition
from $\underline{E}$ to $\underline{F}$. By $T(\underline{E}, \underline{F})$ , we denote the set of transitions from $\underline{E}$ to $\underline{F}$.
$d(\underline{E}, \underline{F})=\inf\{\sup_{i}\Vert T(P_{i})-Q_{i}\Vert|T\in T(\underline{E}, \underline{F})\}$ is called the deficiency of $\underline{E}$ for $\underline{F}$ ([9]). If
$d(\underline{E}, \underline{F})=0,$ $\underline{E}$ is called more informative than $\underline{F}$ in the sense of LeCam and we write
$\underline{E}>\underline{F}(L)$ . $\underline{E}$ and $\underline{F}$ are called LeCam equivalent $if\underline{E}>\underline{F}(L)$ and $\underline{F}>\underline{E}(L)$ and we write
$\underline{E}\sim\underline{F}(L)$ . Obviously we have $\underline{E}>\underline{F}(w.B)\Rightarrow\underline{E}>\underline{F}(L)$ and $\underline{E}\sim\underline{F}(w.B)\Rightarrow\underline{E}\sim\underline{F}(L)$ .

An experiment $\underline{E}(\underline{X},\underline{A},$ PJ is said to be majorized if there exists a measure $m$ on 4
with respect to which each $P\in\underline{P}$ has an 4-measurable density $dP/dm$ and $m\equiv\underline{P}$ . Such
an $m$ is called a dominating measure or a majorizing measure for $\underline{E}$. A majorizing
measure $m$ for $\underline{E}$ is called a pivotal measure for $\underline{E}$ if the following condition is satisfied:
a $sub-\sigma- field\underline{C}$ of 4 is PSS (pairwise sufficient containing supports) for $\underline{E}$ if and only if
each $P\in\underline{P}$ has a C-measurable $dP/dm$ ([3]).

$N\in Weak((\underline{X}, \underline{A},P\circ , (\underline{Y}, \underline{B}))$ is said to be weakly sufficient for $\underline{E}$ if, to every bounded
4-measurable $f$, there exists $a\underline{B}$-measurable $E^{N}(f^{-})$ with $E_{p}^{N}(\tilde{f})=E^{N}(f)[a.e.N(P)]$ for
all $P\in\underline{P}$, where $E_{P}^{N}(f):=dN(f\cdot P)/dN(P)$ . $N\in Weak((\underline{X}, \underline{A}, \underline{P}),$ $(\underline{Y},BJ)$ is called weakly
Blackwell sufficient if there exists $N^{\prime}\in Weak((\underline{Y}, \underline{B}, N\cup P), (\underline{X}, \underline{A}))$ such that $N^{\prime}N(P_{i})=P_{i}$

for all $i\in I$.
Throughout this paper we denote by $I(A)$ the defining function of a set $A$ .

\S 2. Majorization.

THEOREM 1. Suppose that $\underline{E}\sim\underline{F}(w.B)$ . $If\underline{E}$ is a majorized experiment, then $\underline{F}$ is
also majorized.

$PR\infty F$ . A set $S(P_{i})$ is called $an\underline{E}$-support of $P_{i}$ if (1) $P_{i}(S(P_{i}))=1$ and (2) if $B\subset S(P_{i})$

and $P_{i}(B)=0$ then $P_{j}(B)=0$ for all $j\in I$. Since $\underline{E}$ is majorized, each $P_{i}$ has its support.
By the assumption, there exists $N\in Weak(\llcorner Y, \underline{B}, \underline{Q}),$ $LX,AJ$) such that $P_{i}=N(Q_{i})$ for all
$i\in I$. In order to prove $\underline{F}$ is majorized, it is sufficient to prove each $Q_{i}$ has its support
([1]). $PutD_{i}=\{y|N(y, S(P_{i}))=1\}$ . $WeshallshowD_{i}$ is an $\underline{F}- supportofQ_{i}$ .

Since $1=P_{i}(S(P_{i}))=\int N(y, S(P_{i}))dQ_{i}$ , we have $1=Q_{i}LY$) $=Q_{i}(D_{i})$ . Since $\underline{F}_{i,j}=$

$(\underline{Y}, \underline{B}, \{Q_{i}, Q_{j}\})$ is a dominated experiment for any $j\in I$ and $N$ is weakly Blackwell
sufficient by our assumption, $N$ is weakly sufficient for $\underline{F}_{i,j}$ ([4], [8]). (In [4] Theorem
22.11, it is proved when $N$ is a stochastic kemel. But, if we slightly modify the proof,
we can easily prove the theorem when $N$ is a weak kernel). Hence, if $C\subset D_{i},$ $Q_{i}(C)=0$ ,

we have

$0=\int I(C)N(y, S(P_{i}))dQ_{i}=\int_{S\langle P_{i})}E_{i.j}^{N}(I(C))dN(Q_{\iota})$
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$=\int_{S\langle P_{i})}E_{i,j}^{N}(I(C))dP_{i}$ .

Here $E_{i,j}^{N}(I(C))$ is $E^{N}(I(C))$ common to $P_{i}$ and $P_{j}$ . So we have $ P_{i}(\{E_{i,j}^{N}(I(C))>0\}\cap$

$S(P_{i}))=0$ . Hence we get $P_{j}(\{E_{i,j}^{N}(I(C))>0\}\cap S(P_{i}))=0$ . Consequently

$0=\int_{S\langle P_{i})}E_{i.j}^{N}(I(C))dP_{j}=\int_{S\langle P_{i})}E_{i,j}^{N}(I(C))dN(Q_{j})$

$=\int I(C)N(y, S(P_{i}))dQ_{j}=\int_{c}N(y, S(P_{i}))dQ_{j}$ .

From this equality and since $C\subset D_{i}=\{y|N(y, S(P_{i}))=1\}$ , we have $Q_{j}(C)=0$ . $D_{i}$ is
therefore an $\underline{F}$-support of $Q_{i}$ .

THEOREM 2. Suppose that $\underline{F}>\underline{E}$ (w.B). If there exists Ne Weak$((\underline{Y}, \underline{B}, \underline{Q}),$ $(\underline{X},AJ)$

such that $N$ is weakly sufficient for $\underline{F}$ and $N(Q_{i})=P_{i}$ for all $i\in I$. Then the following two

assertions are equivalent.
(1) $\underline{E}$ is a majorized experiment.
(2) $\underline{F}$ is a majorized experiment.

$PR\infty F$ . By our assumptions, $N$ is weakly Blackwell sufficient ([8]). Hence there

exists $N^{\prime}\in Weak((\underline{X},\underline{A}, N(\underline{Q})),$ $(\underline{Y},BJ)=Weak((\underline{X}, \underline{A}, \underline{P}),$ $(\underline{Y},BJ)$ such that $N^{\prime}(N(Q_{i}))=Q_{i}$

for all $t\in I$. Thus, $N^{\prime}(P_{i})=Q_{i}$ and $\underline{E}\sim\underline{F}$ (w.B). Accordingly, Theorem 1 yields the asser-
tion of this theorem.

The example in the following lemma is given in ([3]). For completeness of our
article we shall state it here.

LEMMA 1. There are an experiment $\underline{E}=(\underline{X},$ $\underline{A},$ PJ andapairwise sufficient $sub-\sigma- field$

$\underline{B}$ of $\underline{A}$ such that $\underline{E}$ is majorized but $\underline{F}=CX,$ $\underline{B},$ $\underline{P}|BJ$ is not majorized.

PROCF. Let $\underline{X}$ be an uncountable set, $\underline{A}$ the $\sigma- field$ consisting of all countable and
co-countable subsets of $\underline{X}$ and $\underline{P}=\{P_{x}|x\in\underline{X}\}$ , where $P_{x}$ is a probability measure on 4
satisfying $P_{x}(\{x\})=1$ . $\underline{E}=(\underline{X},$ $\underline{A},$ PJ is clearly a majorized experiment. For each pair $P_{x}$ ,

$P_{y}$ in $\underline{P}$ and $0\leqq a<1$ , we put $A(P_{x}, P_{y};a)=\{x^{\prime}|0<dP_{x}/d(P_{x}+P_{y})\cdot I(S(P_{x})\cup S(P_{y}))\leqq a\}$ .
Let $\underline{S}$ be the $\sigma$-ring generated by all $A(P_{x}, P_{y};a)$ . For a fixed $z\in\underline{X}$, put $\underline{C}_{z}=\{A\in\underline{A}|A$

is countable and $z\in A^{c}$} $\cup$ { $A\in\underline{A}|$ $A$ is co-countable and $z\in A$ }. $\underline{C}_{z}$ is a $sub-\sigma- field$ of
$\underline{A}$ . Suppose that $\underline{F}=(\underline{X}, C\underline{P}|\underline{C}_{z})$ is majorized. Then an $\underline{F}$-support $S(P_{z}|\underline{C}_{z})(\in\underline{C}_{z})$ must
exist and since it must contain $z$ , it is a co-countable set containing $z$ . Hence there exists
$y\in S(P_{z}|\underline{C}_{z})$ such that $y\neq z$ . We have $\{y\}\in\underline{C}_{z}$ and $P_{z}(\{y\})=0$ but $P_{y}(\{y\})=1$ , which
contradicts our definition of supports. Accordingly $\underline{F}$ is not majorized. Consider
$A,$ $B\in\underline{S}$ satisfying $ A\cap B=\emptyset$ . $A,$ $B$ are countable sets since $\underline{S}$ is the $\sigma$-ring consisting
of all countable sets. If $z\in A(z\in B)$ , we have $B\in\underline{C}_{z}(A\in\underline{C}_{z})$ and $B(A)$ separates Aand
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$B$ . If $z\in(A\cup B)^{c}$ ; we have $ A^{c}\in C-\simeq$ and it separates $A$ and $B$ . Henoe $\underline{C}_{z}$ separates $\underline{S}$ and
$\underline{C}_{z}$ is pairwise sufficient for $\underline{P}$ ([2]).

If we assume $\underline{E}\sim\underline{F}(L)$ instead of $\underline{E}\sim\underline{F}$ (w.B), Theorems 1 and 2 do not hold. By
Lemma 1, there are an experiment $\underline{E}=(\underline{X},$ $\underline{A},$ PJ and a pairwise sufficient $sub-\sigma- field\underline{B}$

of 4 such that $\underline{E}$ is majorized but $\underline{F}=(\underline{X}, \underline{B}, \underline{P}|\underline{B})$ is not majorized. $\underline{E}>\underline{F}(L)$ is obvious.
Since $\underline{B}$ is pairwise sufficient, we have $d(\underline{F},$ $\ovalbox{\tt\small REJECT}=0$ and therefore $\underline{F}>\underline{E}(L)$ ([6]). Hence
$\underline{E}\sim\underline{F}(L)$ and $\underline{E}$ is majorized but $\underline{F}$ is not majorized.

LEMMA 2. Suppose that $\underline{B}$ is a pairwise sufficient $sub-\sigma- fieldof\underline{A}$ and $\underline{F}=(\underline{X},$ $\underline{B},$ $\underline{P}|B\lrcorner$

is majorized. Then $\underline{E}=(\underline{X}, \underline{A}, \underline{P})$ is also majorized.

$PR\infty F$ . Let $S_{i}$ be $an\underline{F}$-support of $P_{i}|\underline{B}$. We shall show that $S_{i}$ is also an $\underline{E}-\sup-$

port of $P_{i}$ . Since $\underline{B}$ is pairwise sufficient, we have $P_{i}(A)=\int E_{t_{J}},\langle I(A)|\underline{B})dP_{i}$ and
$P_{j}(A)=\int E_{i,j}(I(A)|BJdP_{j}$ for all $A\in\underline{A}$, where $E_{i,j}(I(A)|BJ$ is the conditional expectation of
$I(A)$ common to $P_{i}$ and $P_{j}$ . If $A\subset S_{i}$ , we may assume $\{E_{i.j}(I(A)|BJ>0\}\subset S_{j}$ since $S_{i}e$

$\underline{B}$. Hence we have, for $\Lambda\in\underline{A}$ with $A\subset S_{i},$ $ P_{i}(A)=0\Rightarrow P_{i}(\{E_{i,j}(I(A)|B\lrcorner>0\})=0\Rightarrow$

$P_{j}(\{E_{i,j}(I(A)|\underline{B})>0\})=0\Rightarrow P_{j}(A)=0$ . Consequently $S_{i}$ is an $\underline{E}$-support of $P_{i}$ . $\underline{E}$ is there-
fore majorized.

THEOREM 3. Let $\underline{B}$ be a $sub-\sigma\leftrightarrow fieldof\underline{A}$ . $If\underline{F}=(\underline{X},$ $\underline{B},$ $\underline{P}|BJ$ is LeCam equivalent to
$\underline{E}=(\underline{X},$ $\underline{A},$ PJ i.e. $\underline{F}\sim\underline{E}(L)$ and $\iota f\underline{F}$ is majorized, then $\underline{E}$ is also majorized. (It is clear $\underline{E}>\underline{F}$

(L) always holds since $\underline{B}$ is a $sub-\sigma- fieldof\underline{A}$).

$PR\infty F$ . We have $d(\underline{F}, \underline{E})=0$ and therefore $\underline{B}$ is pairwise sufficient ([6]). Hence,
by Lemma 2, $\underline{E}$ is majorized.

At last in this section, we remark that weak domination is not a class property.
We shall give an example. Let $\underline{X}$ be the set of real numbers, $\underline{A}$ the $\sigma- fie1d$ consisting of
all subsets of $\underline{X}$ and $\underline{P}=\{P_{x}|x\in[0, \infty)\}$ , where $P_{0}(\{0\})=1$ and $P_{x}(\{x\})=P_{x}(\{-x\})=1/2$

for all $x>0$ . $\underline{E}=CX,$ $\underline{A},$ $\underline{P}$) is obviously a weakly dominated experiment. Let $\underline{B}=$

$\{A|A\in\underline{A}, A=-A\}$ . If $f$ is a bounded $\underline{A}$-measurable function, then $E(f|JB=(f(x)+$

$f(-x))/2$ is a $\underline{B}$-measurable function satisfying $\int_{B}fdP=\int_{B}E(f|BJdP$ (Be $\underline{B},$ $P\in JP$ .
$\underline{B}$ is sufficient. Let $\underline{B}^{*}=$ {$A|$ there exists $A^{\prime}\in\underline{B}$ such that $A\triangle A^{\prime}$ is. a countable set}.
$\underline{B}^{*}$ is obviously a $\sigma- field$ containing $\underline{B}$ . If we put $N($ . . $A)=E(I(A)|BJ$, we have $ N\in$

$Weak((\underline{X}, \underline{B}^{*}, \underline{P}|\underline{B}^{*}), (\underline{X}, \underline{A}))$ and $P=N(P|\underline{B}^{*})$ for all $P\in\underline{P}.$ So $\underline{E}\sim\underline{F}$ $(: =(\underline{X}, \underline{B}^{*}, \underline{P}|\underline{B}^{*}))$

(w.B). On the other hand, it is easily shown that $\underline{B}^{*}$ is not closed under the formation
of unions of arbitrary many number of sets in it. Hence $\underline{F}$ is not weakly dominated
([5]) though $\underline{E}$ is weakly dominated and $\underline{E}\sim\underline{F}$ (w.B).

\S 3. Pivotality.

Suppose that $\underline{E}\sim\underline{F}$ (w.B) and $\underline{E}$ is majorized. Then, by Theorem 1, $\underline{F}$ is also
majorized. Let $N\in Weak$( $(\underline{X},$ $\underline{A},$ $\underline{P}),$ $\llcorner Y,$ BA) be a kemel satisfying $N(P_{i})=Q_{i}$ for all $i\in I$
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and let $m$ be a majorizing measure for $\underline{E}$. But $N(m)$ is not necessarily a majorizing
measure for $\underline{F}$. It is easily seen from the following example. Let $\underline{X}=\{1,2, \cdots\},$ $4=2^{\underline{X}}$

and $P(\{i\})=1/2^{i}$ . Let $\underline{E}=(\underline{X}, \underline{A}, \{P\})$ and $\underline{F}=(\underline{Y}, \underline{B}, \{Q\})$ be experiments consisting of

one probability measure. If we define $N(x, B)\equiv Q(B)$ and $K(y, A)\equiv P(A)$ , it is easy to
verify $N(P)=Q$ and $K(Q)=P$ . Hence $\underline{E}\sim\underline{F}$ (w.B). Let $m$ be the counting measure on
X. Then $N(m)(B)=0$ or $\infty$ and $dQ/dN(m)$ does not exist. Hence $N(m)$ is not a majorizing
measure for $\underline{F}$.

At last we shall show that, if $m$ is a pivotal measure, $N(m)$ is also a pivotal measure
(hence, of course, a majorizing measure). For this purpose we need some definitions.
By CVLCE), we denote the closed vector sublattice of $ca(AJ$ generated by $\underline{P}$ . An orthogonal
system in $CVL(\underline{E})$ is a subset of $CVL(\underline{E})^{+}-\{0\}$ such that $u\wedge v=0$ for all distinct members
$u$ and $v$ of it.

THEOREM 4. Suppose that $\underline{E}\sim\underline{F}$ (w.B) and $\underline{E}$ is majorized. Let $N$ be a weak kernel
with $N(P_{\ddagger})=Q_{i}$ for all $i\in I$. If $m$ is a pivotal measure for $\underline{E}$, then $N(m)$ is a pivotal measure
for $\underline{F}$.

$PR\infty F$ . According to [7], $m$ is expressed as $m=\sum\{u_{\alpha}|\alpha\in\Lambda\}$ , where $\{u_{\alpha}|\alpha\in\Lambda\}$

$(\subset CVL(\underline{E})^{+}-\{0\})$ is a maximal orthogonal system of CVLC) and $(\sum_{\alpha}u_{\alpha})(A)=$

$\sup$ { $\sum_{\alpha\in W}u_{\alpha}(A)|W\subset\Lambda,$ $W$: finite}. $N$ is an isometric Banach lattice isomorphism from
$CVL(\underline{E})$ onto $CVL(\underline{F})$ ([9], 55.16 Theorem). Hence $\{N(u_{\alpha})|\alpha\in\Lambda\}$ is a maximal
orthogonal system of CVLCF). Since $\underline{F}$ is majorized by Theorem 1, $\sum\{N(u_{\alpha})|\alpha\in\Lambda\}$ is
a pivotal measure for $\underline{F}$. As $N(m)=N(\sum\{u_{\alpha}|\alpha\in\Lambda\})=\sum\{N(u_{\alpha})|\alpha\in\Lambda\},$ $N(m)$ is a pivotal
measure for $\underline{F}$. We remark that, if $N^{\prime}$ satisfies $N^{\prime}(P_{i})=Q_{i}$ for all $i\in I$, we have $N(m)=N^{\prime}(m)$ .
This follows from the fact that $N$ with $N(P_{i})=Q_{i}$ for all $t\in I$ is uniquely determined on
$CVL(\underline{E})$ ([9], 55.16 Theorem) and from the fact which we stated at the beginning of
this proof.

Suppose that $\underline{E}$ and $\underline{F}$ are majorized and $\underline{E}\sim\underline{F}(L)$ . If $T$ is a transition satisfying
$T(P_{i})=Q_{i}$ for all $i\in I$ and $m$ is a pivotal measure for $\underline{E}$, then $T(m)$ is a pivotal measure
for $\underline{F}$. By substituting $T$ for $N$, we can prove this assertion quite similarly to the proof
of the above theorem.

The author wishes to express his gratitude to Professor H. Heyer, Professor H.
Morimoto and Mr. J. Fujii for their many helpful suggestions.
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