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0. Introduction.

Dekking showed in [3] and [4] that some endomorphisms 0 on a free group of
rank 2 provide us with fractal curves which induce several space tilings on R2.

In fact, let G{a, b) be a free group with generators a and b, a map f : G<{a, b>—
Z?*cR? be a homomorphism, and L, be a linear representation of the endomor-
phism 6, that is, f and L, satisfies the commutative relation:

Gla, b5 —2» Ga,b>

7 /

R?2 _L_". R2.

Let K: G{a, b)— R? be a map which assigns to each element of G{a, b a polygonal
curve in the plane as follows: for W=w,w, - - -w,e G{a, b), K[W] is a polygon joining
the points f(w;)+ - - - + f(w;) (1 <j<k) in order (exact definitions will be found in §1).
In this situation, the following result is obtained.

THEOREM ([3], [4]). Let 0 be an endomorphism of G{a, b) satisfying the following
conditions: - )
_ (1) 6 has short range cancellations, that is, for any reduced word stu
(s, t, ue {a* ', b*1}), cancellation does not erase all letters of any of the subwords 0(s), 6(f)
and 0(u) in O(stu),

(2) Ly is expansive, that is, the absolute values of both eigenvalues of L, are greater
than 1,

(3) K[6(aba='b~1)] is double point free.

Then there exists a limit set K, of Ly "K[0™(aba~'b~")] as a curve and the set F,
enclosed by Ky is a space tiling set of R*:

U (Fo+o)=R2,

acZ2
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int(Fy+a) N int(Fp+a') = & if a#a’ and o, o’ € Z>

and satisfies seIf-sirhilarity: that is,

" JdetLe|
LoFy= 'U1 (Fo+ay),
=
where a, - -+, a;€ Z* are chosen as follows: Let U be the unit square, F[6(aba™'b~1)]
be the closed set enclosed by K[0(aba™'b™')]. Then there exist a;e Z* (1<j<|det Ly])
such that F[8(aba='6~")]= )& (U+ay).

j=1

This is the assertion by Dekking. Our purpose of this paper is to reconstruct the
result more precisely, because the treatment of the case in which the endomorphism

“has cancellations is not clear in his works. But we have many interesting examples

which have short range cancellations. Essential idea in this paper is to construct an
endomorphism @ of free group of rank 3 which has no cancellations, starting from an
endomorphism of G{a, b) which has cancellations. Using this idea, we prove Dekking’s
assertion precisely, and if L, is isomorphic to a rotation followed by a scalar
multiplication 4,, we are able to calculate the Hausdorff dimension of K, as

logig

dimyK,=———"
B log | Ag |

where Ag is a maximum solution of a cubic equation (see §6).

1. Definitions and notations.

Let G=G<{a, b) be a free group with two generators a and b. We consider G as
the quotient set of the free semigroup S* generated by S:={a,b,a™',b7 !} by the
equivalence relation ~, where we denote W~ V if W and V determine the same element
after cancellation and we call elements of G reduced words.

Let f: G—Z?*< R? be the canonical homomorphism, i.e., f is determined by

1 0
f(a)=<0), f(b)=(1>
and the relations

fWwWhH=—fwy, fWM=f+fWw) for V,WeG,

where VW means the reduced word of the concatenation of ¥V and W.
We define a map K, which assigns polygonal curves in the plane to reduced words, by

K[s]={af(s) : 0<a<1} for seS,

and for any reduced word W=s, - - 's,, (s;€S), by
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KTW1= U (KEsd /s si-0)

where we denote 4+z={a+z:ae A} for AcR? and ze R*>. We call a reduced word
W closed if f(W)=0. In this case, we modify the definition of K[ W] slightly: for any
closed word W,

K[W]:=f(4A)+K[W],

where A is the longest word satisfying the decomposition W=AW’'A~! (reduced).
We further consider an endomorphism 6 of G, i.e., 6 is determined by 6(a), 0(b)
and the relations

oW H=0W)~t, VW)=6(V)o(W) for V,WeG.

Let L, be a linear representation of 6 on R?, i.e., Ly is a linear mapping which satisfies
the commutative relation:

/| /|

r: M, Rz

Let M, be a matrix representation of L,, then M,=(m;;) is given by

(m“>=f(9(a)) and (’"“)=f(e(b» :
mjy mjy,
We say that an endomorphism 0 has short range cancellations if for any reduced word
stu (s, t,ueS), cancellation does not erase all letters of any of the subwords 6(s), 6(¢)
and O(w) in O(stu)e S*.

We mention here the assumption made for the endomorphisms in this paper.

ASSUMPTION 1. We assume the endomorphism 6 of G satisfies the following
conditions: _ .

(1) the polygonal curve K[@(aba™'b~')] is double point free,

(2) the linear representation map L, is expansive, i.e., the absolute values of the
eigenvalues A,, i=1, 2, of M, are greater than 1, -

(3) 6 has short range cancellations.

- We say Assumption 1’ is satisfied if L, is isomorphic to a rotation followed by a
scalar multiplication 4, instead of Assumption 1 (2). Under Assumption 1, for each
endomorphism 6 we will see the existence of a “fractal” curve K, as a limit set of
Ly "K[0™aba~'b~1)] and that the set F, which is enclosed by K, has a space tiling
property.
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ProposITION 1.1 (Retiling Principle). Let F, be the closed bounded set enclosed by
K[6™aba™'b™1)]. Then K[0"(aba™'b~')] and F, have the following properties: for each n,

(1) the curve K[0"(aba™ b~ ')] is double point free,

(2) (n-step space tiling)

U (Fn+a)=R2 s
acL(Z2)

int(F,+a) nint(F,+a')=F , if a#a’'el)Z?)),
(3) (n-step self-similarity)
Fooi= U (Fo+ L)

a;e.‘B

where a subset 9 of the lattice Z* is chosen so that F,=\),_,(Fo+«) and therefore, the
cardinality of @ is equal to |det L,|.

ProoF. From the fact that F, is the unit square we know ( J,_,.(Fo+®)=R? and
int(Fy + a) N int(Fy+a’)= & (a#0o’ € Z?). Therefore, we know also that the set Lo(Fy)
has a space tiling property, that is, | ), ;.z2(Le(Fo)+®)=R? and int(Ly(Fo)+a) N
int(Ly(Fo)+a')=F (a#a’ € Ly(Z?)). This space tiling is divided by the net

U LeK[aba='b"']+a),
aeLo(Z?)

we call it a tiling net, and this is constructed by lines LyK[s], s€ {a, b}. Now replace the
lines Ly,K[s] with the polygonal curves K[0(s)], s€{a, b}. Then, by Assumption 1 (1),
we have

U (Fl +a)=R2 >
acLeo(Z2)

int(F; +o) nint(Fy +a)=&  (a7#a’ € Ly(Z?)

and

Fi={) (Fo+9),

ac?

that is, F; has first step space tiling and self-similar properties in Proposition 1.1-and
its tiling net is given by

U (K[6(@ba= b~ Y)]+a)
ae Lg(Z2)
which is constructed from K[s], se {a, b}. Let us consider again a space tiling given by
U, L3z»(Le(F1)+ ). Then the tiling net is constructed by the lines L,K[s], se {a, b}.
Therefore, replace the lines /tK[s] with the polygonal curves K[6(s)], s€ {a, b}. Then
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we have again a second step space tiling whose net is constructed by K[0%(aba™ 167 1)],
and also we see second step self-similarity:

Fo=J (F,+ L) .

ae?

We are able to continue this procedure and obtain the results.

We call this procedure Retiling Principle.

2. First reduction.

Let 0 be an endomorphism of G satisfying Assumption 1. For any We G we define
the adjoint 0y, with respect to W of the endomorphism 6 by

O (V)=Wo(V)W~1 forany VeG.
Then from the definition of L, we see easily the following lemma.

LeMMA 2.1. For any W-eG the linear representation L, of the adjoint By, coincides
with L. '

LEMMA 2.2. For any WeG, the closed curve K[0%(aba™'b~1)] is congruent to
K[0™aba™*b~1')]; more explicitly,
n—1
K[0%(aba b~ )]= >, f(O*W)+K[0"aba~'b~')]  forall neN.
k=0
ProOOF. From the definition of 0y, we see Oy{aba™ b~ )= W6(aba™ b~ YW1
Therefore, for any n,
rlaba= b~ Y)= W, 0"aba= b~ YW 1,
where W,=WO(W)---0"" }(W). Thus, from the definition of the map K, we see

K[B','V(aba‘lb‘l)]=nil (0¥ W)+ K[0™aba~ b~ 1)].
k=0

We are interested in the shape of the limit set of L, "K[8"(aba” b~ 1!)]. By Lemmas
2.1 and 2.2, we know L, "K[0%(aba~1b~1)] given by the adjoint 6y is congruent to
Ly "K[0™aba~'b~")] for any WeG. Therefore, for the investigation of the shape of
the limit set, it is enough to discuss the shape given by 60y

LemMma 2.3. Supppose we represent 6(a) and 0(b) as follows:
0(a)=vAx, 6(b)=yBz (x,y,z,veS),

then we see that
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0(b~16(a) has cancellations iff v=y ,
0(a)0(b) has cancellations iff x=y~ "',
0(b)a~ ') has cancellations iff z=x, and
&a~1)0(b~*) has cancellations iff z=v~? .

The proof is easy.
Let us consider the set of four pairs P,

Po={(6()6(2)) : (s, )=(b"", a), (a,b), (b, a™ "), (@™ ", b7 1)},

the pairs of which constitute the pieces of the closed word @(aba™ b~ '). By Lemma 2.3,
we have easily

LeEMMA 2.4. If any three pairs of P, have cancellations, then all four pairs of P,
have cancellations.

LeEmMMA 2.5. If all pairs of Py have cancellations, then there exists a word WeG
such that the adjoint Oy, does not have cancellations for at least two pairs of P,,,.

Proor. If all pairs of P, have cancellations, then by Lemma 2.3, there exists an
x €S such that

Oa)=x"'A4x, 0(b)=x"'Bx .
Let W be the longest word satisfying the decomposition
Na)=W™ 1AW, 6(b)y=w"1BW,
and let us consider the adjoint 8y with respect to W of the endomorphism 6. Then the
adjoint 0y is given by
Owl(a)=A4, 0w(b)=B.

If the adjoint 8y, has cancellations for some three pairs in P,,,, then by Lemma 2.4 the
adjoint 0, has cancellations for all pairs. This contradicts the choice of W.

LEMMA 2.6. If an endomorphism 0 has cancellations for at most 2 pairs of P,, then
there exists a word W such that the adjoint 8y, has cancellations for only one pair of P,,,,.

ProOOF. We will give a proof only for the following case: (1) 8(b~1)0(a) and (a)d(b)
does not have cancellations and (2) 6(b)8(a™') and O(b)8(a) have cancellations. The
conclusions for other cases are obtained in the same manner. By (1), 0 is denoted as
follows: for some x, y, z€ S,

6(a)=xAz, 0(b)=yB

and
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xX#Yy, z#y L.

On the other hand, from (2) we have: for some xe S,
Ba)=xAx"1, 0(b)=B'x"1.

Therefore, the endomorphism is denoted as follows: for some x, y (x#y€S)
a)=xAx"1, 0(b)y=yBx~1!.

Let W be the longest word satisfying the form: 8(a)= WA"W~! and 6(b)=yB"W™",

and let us consider the adjoint 8y, of 6 with respect to W. Then 8y is denoted by
Opla)=A", Ow(b)=W~1yB".

The adjoint 8, has no cancellation at 0y(a)0y(b) nor at 0,(b~*)0y(a) and also cannot
have cancellations at both 0y(b)0y(a™') and 04(b)0y(a) simultaneously. In fact, if both
of GW(b)HW(a' 1) and 6,(b)0y(a) have cancellations, then this contradicts the choice of W.

LEMMA 2.7. (1) If an endomorphism 0 has cancellations only at 0(b~ 1)0(a), then
there exists a word W e G such that the adjoint 0y, has cancellations only at 0y/(b)0y(a™").

(2) If an endomorphism 0 has cancellations only at 8(a)0(b), then there exists a word
We G such that the adjoint 0y has a cancellation only at Oy(a™)0y(b™1).

ProOOF. From the assumption of (1), there exists x, y, z€ S such that
O(a)=yAx, 0(b)=yBz
and

-1

, x#z, x#y ', z#y l.
Let W be the longest word satisfying
Haj=W 'Ax, 6(b)=W Bz
Take the adjoint 0y with respect to W given by
Ow(a)=AxW™1, Ow(b)=BzW™1.

Then we see that 6y has cancellations only at 0,(b)0y(a” ). Statement (2) is obtained
in the same manner.

THEOREM 2.1 (First Reduction Theorem). Let 6 be an endomorphism satisfying
Assumption 1, and 0 has cancellations. Then we can choose a word W such that the adjoint
0w satisfies one of the following conditions:

(1) Oy has a cancellation only at 0y(b)0y(a™") in four pairs

{0w(s)Bw(?) = (s, )=(a, b), (b,a™ "), (@™, 67, (b7 ", @)},
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(2) 0w has a cancellation only at Oy(a™")0y(b" 1) in four pairs
{Ow()0w(2) : (s, )=(a, b), (b,a™ "), (a1, b7Y), (b1, @)},
(3) 0w has no cancellations.

Let # be an automorphism on G defined by
a-b~1
T {b —a.
Then the invérse n~! and the matrix representation L, are given by

_1. ja—b d L=( 0 ])
1 ‘{b—m—l wme ==\l o)

LEMMA 2.8. If the endomorphism 0 has a cancellation only at a0~ 1), then
the endomorphism 0’ :=n0n"" has a cancellation only at 0'(b)8'(a™1).

PROOF. We see from the definition of 5 that (@~ 1)8(b~ 1) has a cancellatlon iff
0(71" '®)0(n~ (@~ ")) has a cancellation and iff #0n~ (byn6n~Y(a~ 1) has a cancellation.
Therefore, the case that 6 has a cancellation at (@~ 1)0(5~*) can be reduced to the case
that 0’ has a cancellation at 8'(b)8’(a™ ).

Concerning the reduction of Lemma 2.8, we see in the following way that the shape
of K[0™aba™'b~")] and K[0™(aba™'b~')] are essentially the same.

LEMMA 2.9. Let 0'=n0n~', then L;"K[0"(aba~'b~')] is congruent to
Lg"K[0™(aba™1b~1')]. More explicitly, we have

Ly "K[0™aba™'b~Y)]=L; "(Ly"K[0™aba™ b~ V)] + f(b™1)).
PrROOF. From the definition of # and the map K, we have
K[6™aba™'b~ ) ]=K[n"16"(b~*aba~1)]
=K[n"'0"™b 1aba= b~ 1b)]
=K[n~'6"(aba" b~ )]+ f(n~10"(b"Y)).
Therefore, from Ly '=L, 'Ly 'L,, we get »
Ly "K[0™aba= b~ 1)] =L;'Ly"L,K[n~'0™(aba™ b~ "]+ Ly 'Lg"£(0"(57Y)) .
From the relation
LK[n '(W)]=K[W] for WeG,
we have

Ly"K[0"(aba™'b~Y]=L; 'Ly"K[6™(aba'b~ )]+ L, f(b~Y).
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THEOREM 2.2 (First Reduction Theorem). Let 0 be an endomorphism satisfying
Assumption 1. Then considering an adjoint Oy and taking nOwn 1, if necessary, we can
reduce 6 to an endomorphism 0’ satisfying one of the following:

(1) 0’ has a cancellation only at 6(b)0(a™?'), or

(2) 0’ has no cancellations.

3. Lifting endomorphisms.

In this section, we induce an endomorphism, which is called a lifting endomorphism,
on a free group of rank 3. By First Reduction Theorem and Lemmas 2.8 and 2.9, we
assume that the endomorphism 6 has a cancellation only at 0(b)0(a~ ') from now on.
Then 6(a) and 6(b) are uniquely decomposed by some words A4, B, Ce G as follows:

0(a)=AB, 0(b)=CB (3-1)
where
not only AB, CB but also BC, BA, C"*4 and CA~! have no cancellations . (3-2)

This is possible because 8(a)0(b), O(a™*)B(b~*) and 6(b~ ')6(a) have no cancellations. For
any W=ss," - -s,€G, (W) is represented as a product of 4, B,C, A”!, B and C™*
according to (3-1). Moreover from the property (3-2) we have the following proposition.

PROPOSITION 3.1. Let 9 be a directed graph which is constructed from 2 terminals,
named p, and p,, and 3 arcs, named A, B and C, as follows:

A

N

P1°<____op,
\_B/\
C
and for any we G let us write O(w) as a sequence of A*', B*', C*! according to (3-1) as
follows:
0(W)=A1A2' * .Ak .
Then the sequence A, A, - - A, is %-admissible, that is, the sequence constitutes a path

of the directed graph 4.

We call §(w)=A,A," - - A, the block representation of 8(w). We see that cancellations
of 0(s)8(¢) causes block cancellations. We introduce a free group G=G{A, B, C) of rank
3 where the words 4, B and C are regarded as generators. Let i: G—-G be a
homomorphism sending the generators A, B, C of G to the words 4, B, C of G, and

“define an endomorphism @ of G, which is called a lifting endomorphism of 0, as follows:
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for We (7<A, B, C>
O(W):=the block representation of 8(i(W)) . (3-3)
Then we have the following proposition by using the relation '
i(ABCA™'B~'C~Y)=6(aba='b"1).

PROPOSITION 3.2. The following diagram commutes:

)

(2}
—_

Q ——

Q

6
—_—
and in particular,

i(@" (ABCA=1B~'C~1))=0%aba~1b").

4. Second reduction.

Starting from an endomorphism 6 which has short range cancellations, we have ob-
tained a reduced endomorphism 6’ and its lifting @ on G, and we noted that the inves-
tigation of 6"(aba™'b~ ') and 0™(aba™'b~ ') is equivalent to that of @(4BCA~'B~1C™ 1)
in §3. In this section, we construct a second reduced endomorphism & which has no
cancellations. By Theorem 2.1, Lemma 2.8 and Lemma 2.9, we can assume that the
endomorphism 6 has a cancellation only at 8(b)f(a ). Then 6(a) and 6(b) are decomposed
asin (3-1) and the words 4, B, Csatisfy (3-2). Let us decorppose A, Band C as follows:

A=vA’'t, B=yB'x, C=wC'u (vt y,x,w,ueS, 4, B, C'eG). 4-1)
Then from (3-2) we have the following relations:
yEALT 1,1
t#u
x#v~ L w1
vEW. 4-2)

LEMMA ‘4.1.  Under the assumption that 0 has a cancellation only at 0(b)0(a™ ), we
see that

(1) 6(A)O(B) has cancellations iff
t.u,y)e{(@,a™,67Y),(a, b~ b7 "), (b, b~ ,a" 1), (b,a ", a" 1)},
(2) 6(C))A~?') has cancellations iff
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(¢, u, y)e{(b, a, a), (b, a, b), (a, b, a), (a, b, b)} ,
(3) OB~ HYO(C™1) has cancellations iff
t,u,y)e{(a,a,b™Y),(b Y ab ) (a,ba™ )b b a M)},
(4) O(B)O(C) has cancellations iff
(x,v,wye{(a,a,b™"),(a,b,b~ 1), (b,a,a™ '), (b, b,a” ")},
(5) 6(4"YH9(B~ 1) has cancellations iff
(x,v,we{(a, b, a),(a b 1 b),(b,a ta),ba b},
(6) 6(C~Y)6(A) has cancellations iff
c,o,we{l@ta L,b )b La b Y, (@ Lb ,a )b b a )},
Proor. In case (1), 6(4)6(B) has a cancellation iff 6(¢)0(y) has a cancellation, that
is, (¢, y)=(a, b~1) or (b, a~'). On the other hand, from (4-2), we know that u##¢,y~*
and y#t¢~ !, u~!. Therefore
tu,ye{@a b~ ), (@b b 1), (b,b Y a "), (b,at,a l)}.

Other cases are obtained in the same manner.

LEMMA 42 Under the same assumpiton as in Lemma 4.1, we have
(1) (1) The possibilities for 6(A)0(B), 6(C)NA™") or 6(B~1)B(C™') to have
cancellations are mutually exclusive.
(1) Let us denote
0(A)=A1A2"'As »
6(B)=B,B," - B, 4-3)
C)=C,C,---C,,
where A;, B;, C,e{A,B,C,A™', B~!, C™'}. Then we have
(B, B~ 1, not B) if 6(A)0(B) has cancellations.
(4,, B, C))=1 (B,not B~ ', B) if O0(C)0(A™ 1Y) has cancellations.
(not B, B~ 1, B) if 0(B~Y)8(C~?) has cancellations .
(2) (i) The possibilities for (B)O(C), 0(A~1)O(B~*) or H(C~1)0(A) to have can-
cellations are mutually exclusive.
(ii) Let 0(A), 6(B) and 6(C) be as in (4-3). Then we have
(not B~',B,B™Y)  if O(B)O(C) has cancellations.
(4,, B,, C,)=1{ (B, B, not B) if 0(A~Y8(B~ ') has cancellations.
(B™', not B, B™%) if 6(C~Y)0(A) has cancellations.
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PrROOF. The statements (1-i) and (2-i) are obtained from Lemma 4.1. The
statements (1-ii) and (2-ii) are obtained in the following manner: Assume that 9(A4)0(B)
has cancellations, then 6(z)8(y) has a cancellation and (B~ ')#(C~!) has no cancellations
by (1-i). Therefore we know from (3-1), (4-1) and the fact that (¢, y)=(a, b~ ) or (b, a~ 1)
that

A;=B and B,=B"!

and from the fact that (B~ 1)0(C~ ') has no cancellations, B; *C; ! has no cancellations,
that.is,

C,=not B.
Statement (2-ii) is obtained in the same manner.

We now define the second reduced endomorphism & of @ using Lemma 4.2:
Case (1): if 6(4)0(B), 6(C)(A~') or (B~ ')&(C~ ') has cancellations, and 6(B)6(C),
6(A~1)6(B~ ') and 6(C~1)06(A4) have no cancellations, then set

6(4)=6(4)B~!
O(B)= BO(B) (4-9)
6(C)=6O(C)B 1.

Case (2): if 8(B)(C), 04~ 1)(B~ ') or 6(C~')0(4) has cancellations and 6(4)6(B),
#C)8(A~ 1) and 6(B~')0(C~') have no cancellations, then set

6(4)=B6O(A)
6(B)=6(B)B~* 4-5)
6(C)=BO(C).

Case (3): if 6(4)0(B), 6(C)O(4~1') or O(B~1)6(C~') has cancellations, and 6(B)I(C),
0(A~1)8(B~ ') or B(C~1)6(A) have no cancellations, then set

6(A)=BO(A)B~!
&(B)=BO&(B)B~! (4-6)
6(C)=BO(C)B~".

Then we see

THEOREM 4.1 (Second Reduction Theorem). The endomorphism @ of G has no
cancellations on any %-admissible words.

PRrROOF. We give a proof for the case (1) above. Let .«¢ be the set of all ¥-admissi-
ble words of length 2, that is, " :={4B, BC,CA™!,A"'B~!,B"'C™!,C" !4} and
A=A VA, where & " ={T"'S™'|STe/*}. Note that 6(S)T) has cancella-
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tions iff @(S)O(T) has cancellations. In (1) we assume that the endomorphism &
has cancellations only at ©(4)@(B), O(C)O(4~ ') or O(B~1)O(C~ ') and has no cancel-
lations at @(B)O(C), O(4~H)O(B™ ') and O(C~')O(A). Let us assume that O(4)O(B)
has a cancellation. Then we know by Lemma 4.2 with notation (4-3) that (4,, B,, C,)=
(B,B™!, not B) and B,A,,C;'4, and B,C; have no cancellations. Therefore, the
reduced endomorphism &:

é(A)=A1A2' Ay
6(B)=B," - B,
é(C)=C,---C,B

has no cancellations at @(S)&(T) for STe 7, that is, © has no cancellations on any
%-admissible words. Other cases also are proved in the same manner.

At the end of this section, we discuss the relation between the endomorphisms @
and ©. Let G be the subgroup of G of all ¥-admissible words with even length. We

remark that elements of G correspond exactly to closed paths of the graph 4. Let
G={WeG| fi(W)=0} .

We call words of G circle words. We define two circle words V=4, --A4,, and
W=B, - B,, to be equivalent if there exists some j such that

Bij+1' By B, 'Bj—1 =A, Ay
and denote it ¥'= W (circle). Then we have the following proposition.

PROPOSITION 4.1. Let O be the lifting of 6 and O be the second reduction of ©.
Then we have that

(1) the subgroup ﬂ(A}c:G' is invariant under both @ and @,
(2) for any WeGgG, '

O(W)=O(W) (circle) .

In particular,
(3) 6MABCA 'B~'C Y)=O"ABCA~'B~'C™) (circle).

PrOOF. The statement (1) is trivial from the definitions of &, ® and (3-1). Let us
assume O is reduced as in case (1). For any W=A14; - Aye€ G, if the starting terminal
of 4, is p,, then

O(Azj_1A42)=6(4,;-1)6(4,))
=6O(4,;-1)B"1BO(4,))
=@(A2j—1)@(A2j)
= O(Ay;_1A,)
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and so
@(A1 o 'Azk)=@(A1 A,
and if the starting terminal of 4, is p,, then
6(A,j_1A;)=BO(A,;_,A,)B*
and so
O(A, - Ay)=BO(A, - -A)B~'.

This is the conclusion (2). Other cases are obtained in the same way.

S. Polygonal curve associated with the reduced endomorphism 6 -

In this section, we discuss the relation between polygonal curves Ly"
K[6"aba~'b~')] and Lg"* ' K[O"(ABCA~'B~'C~Y)]. ,

Let a rhap f: G =G(A, B, C>->Z*<R?3 be a canonical homomorphism, i.e. £ is
given by f(4)='(1, 0, 0), f(B)="%0, 1, 0) and F(C)=%0, 0, 1) and L, be the linear repre-
sentation of the endomorphism @. Then the following diagram commutes:

¢ 2. ¢
7| 7| 1)
R L. R,

The matrix representation My of Ly is given as follows: put

(m"):=f(A), (""):=f(B) and ““):=f(C).
m,, n, %

Then from (3-1) M, and M, are given by

M9=<ma+na o,,+n,,) (5-2)
my+n, o0,+n,

and
ma na oa
Mg=| m,+m, n,+n, o,+o0,\. (5-3)
my, n, Op
And Mg is given by
Mg=Mg+Ty, N=1,2o0r3, (5-4)

where
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00 O .
T,=| —1 1 —1 in case (1), that is, @ is reduced by (4-4) .
00 O
0 00
T,=| 1 —1 1 in case (2), that is, @ is reduced by (4-5) .
~\0 00
T;=T,+T,=0 in case (3), that is, @ is reduced by (4-6) .

LEMMA 5.1. Let us denote the characteristic polynomials of the matrices My, M g
and M g by @y, P g and P, respectively. Then we have

(A—1)D44) in case (1)
DPs(A)=1 (A+1)DgA) in case (2)
ADy(1) (= Dg(A)) in case (3) .

The proof is easy.

LEMMA 5.2. Putv,=f(A)+ f(B)='(1, 1, 0), v,=F(C)+ F(B)=0, 1, 1) and denote
by £(v,, v,) the plane spanned by v, and v,. Then we have

(1) ZL(vy,v,) is invariant under both Lg and Lg.

(2) The matrix representations of Lg| g, v, and L 6| #w,.0,) With respect to the base
(v1, v,) coincide with M,.

The proof is easy.
LEMMA 5.3. ‘Let W be a word of G. Then we have

FfW)e Loy, v,) .
PrOOF. It is easy to see that for any STe & as in the proof of Theorem 4.1,

f(ST)e,S”(vl, vy) .
Therefore f(W) belongs to #(v,, v,) for any We G.

Let a map n be a homomorphism from #£(v,, v,) to R?,i.e.,amap n: ZL(vy, v,)-R?

satisfies
1r(v1)=( (1) ) and n(vz)=( (1) ) .



-

292 SHUNIJI ITO AND MAKOTO OHTSUKI

PROPOSITION 5.1. The following commutative relations hold:

R
7| 7| 7| 7|

Li,0) > L(01,0) Lo, 0) — Z(1,07)
R* — R?, R>* —» R?.

ProOOF. We already knew that the commutative relation (5-1) holds. We know
also by Lemma 5.2 that £(v,, v,) is Lg and Lg-invariant, and we know by Proposition
4.1 (1) that G is @ and &-invariant. We know also by Lemma 5.3 that

F(W)e L(v,, vy) for any WeG .

Therefore, the following diagrams commute:

¢ 2. ¢ ¢ 2. ¢
7| e g 7|
L1, 03) 2+ Loy, 0,) P, 0;) 8 L(vy,0)) .

Using the relation of Lemma 5.2 (2), we obtain the conclusion.

LEMMA 5.4. For any WeG
| a(f(W) =Ly *(fEUW)) .
Proor. It is sufficient to see that for any ST e .o/
w(F(ST)=Li "(f((ST)) .
We know that
i(AB)=6(a), i(AC ')=6(ab™ 1),
i(CB)=6(b), (H(CA™Y)=6(ba™")
and
f(4B)=F(B4), F(CB)=f(BC).

Therefore
Ly f(i(AB)=Ly ' f(&a)= fla)= ( (1) ) =n(f(AB)).

Similarly we have
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0

Ly'f (i(CB))=( )

) =n(f(CB))

and

1

Ly ' f(i(AC™ 1))=( 1)=7r(f‘(AC'1)) :

Combining Lemma 5.4 and Proposition 5.1, we have the proposition:

PROPOSITION 5.2. The following diagrams commute:

e))
G s P(v,, v,)
/ /
) i L
G / —P(v,, b,) ’ n
- 1 L'y
| /G / R
n
G : Rz/La
Ly'f
)
G f — f(”l’ UZ)
/ /
. il Ly
G f L(vy, v3) §
! LS
G —, R?
i V T
/ Lo
G R2

Ly'f

Let us define a map K: G— R? as follows:

RI[W]:=Ly'K[i(W)] for WedG.
LEMMA 5.5. For any WeG,

293

(1) end points of the curve K[W7] coincide. with end points of the polygon

Ly 'R[e(w)],

(2) end points of the curve K[W] coincide with end points of the 'polygon

Ly 'R[O6(W)].
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Proor. It is sufficient to see that the statements are valid for any We /. From

the definition of K, the end points of K[ W] are given by (g) and L, ! f(i(W)). On the

other hand the end points of L, ! K[@(W)] are given by (g) and L, 'L, ! f(i(O(W))).
From Proposition 5.2 (1), we see

Ly 'Ly ' f@W))=Lg ' LeLg * f(i(W)=Lg ' f(i(W)) .
This is nothing but the statement (1). The statement (2) is obtained in the same manner.

PROPOSITION 5.3. Let A be the set of compact subsets of R? and d be the Hausdorff
metric on X°. Then there exists a limit set K¢ such that

Kg=lim Ly"R[O"(ABCA~'B~'C" 1)]

n— o
where the limit is taken in the Hausdorff metric.

PROOF. We already knew that ©"[ABCA~*B~'C~'] is ¥-admissible and 6 has
no cancellations on %-admissible words. Put @"(ABCA™ !B~ 1C™Y)=APAY- - - AS).
Then

R[6"UBCA™*B 1 C™ )] =R[APAPT U (Ly ' fL(AP AD)+ K[APAP]) L
U (Lg AP AGL )+ RLAR -1 450)) -

On the other hand, from the fact that the endomorphism 6 has no cancellations and
that L, ! fi(@(W))= f(i(W)) as shown in Proposition 5.2, we have

Ly '[R(O"*Y(ABCA~'B'C™ )]
=L; ' [R(OUPAD) - O(45) -1 A5))]
=Ly 'RIOAPAP)] U Ly  f{(APAP) + Lg  R[O(APAY])
O (Lg (AP - - AD )+ Ly ' RIO(AR -, ASD]) -
Put d,=maxy . 4d(R[W], Ly 1K[6(W)]). Then from Lemma 5.5 we have
d(R[6(ABCA™'B~'C™Y)], Ly lk[é"+1(ABCA4lB-lc-l)])—_—do
and for any n
d(Ly"R[OMABCA™*B~'C™ )], Ly" 'K[O"*(ABCA™'B™'C™ )D)=do| 4",

where | 45| is the maximum of absolute values of eigenvalues 1,, 4, of M,. Therefore,
from the completeness of the metric space (o, d), there exists a limit set K¢ for
Ly"R(6"(ABCA~'B~'C™Y)).

We already knew in Proposition 3.2 that
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i(@"(ABCA™'B~1C Y)=6""Yaba" b~ 1),
and, from the definition of K,
Ly"R[@YABCA~'B~1C~Y)]=Ly "*VK[0"* Y(aba~ b Y)] . (5-5)
Therefore we have the theorem.

THEOREM S5.1. There exists a set K, as a limit of Ly"K[0™aba~'b~1)] and K, is
congruent to Kg.

PrROOF. By Proposition 4.1, we know
O"(ABCA™'B~'C Y)=@"(ABCA™'B~1C™Y) (circle),
that is, if we denote @ (ABCA 1B~ 1C )= A{- - - AJ), then there exists j=j(n) such that
@"(ABCA_lB_1C"1)=A3~")A3~"+)1' e ADAD - .Ag_n_)1
Therefore, we have
R[O"(ABCA™'B~1C™ )] =Ly 'K[i(4P- - - A )]
=Ly ' f(AP - - AGD) + Ly ' KTiAP- - AD]
=Ly f(H(AD- - A7)+ K[O@YABCA~'B~1C™1)].

Put f,=Lg®*Vfi(AP- - - A¢))e R*. Then from the boundedness of Ly "R[O"ABC
A™'B7IC™Y)], the set {f,:n=1,2, ---} is bounded. Therefore there exists a sub-
sequence f, such that f, —f. Thus from (5-5) and Proposition 5.3, the limit
Ky of Ly ®*VR[6" Y(aba~'b~1)] also exists, and satisfies the relation:

K@=K9+f.

6. Fractal curves and Hausdorfl dimension.

In this section we prove that the limit set K, is a curve when @ is irreducible and
aperiodic.
Let X be a set of (one-sided) infinite ¥-admissible sequence, i.e.,

X={A,A, - | A;e{A*, B*1, C*1}, 4,4, - A, is Y-admissible for any n}

and let Ng=(n;;) be its structure matrix with respect to the endomorphism 6, that is,
puttlng A;=A, A;=B, A3;=C and n;;=the number of occurrence of A4; or A4; '
in 6(4 )

In addition to Assumption 1 or 1’, we make the following assumption:

ASSUMPTION 2. Ny is irreducible and aperiodic, that is, there exists an » such that
all the elements of N% are positive.
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Then by Assumption 2, there exists uniquely a maximum eigenvalue 1¢g (>1) of
Ng and its eigen row vector (x4, xp, Xc) With x4, x5, xc>0 and x,+xp+xc=1
(Frobenius’ theorem). Let us denote

é(S)=A1"'Aj(s) fOl‘ SG{Ail, Bil, Cil}.

Then we define the partition {7, :1<i<j(S)} of an interval J associated
with ©(S) as follows:

(i) J= 1,, (disjoint union),

(ii) The ratios of length of intervals satisfy
|IA1 I . IIA2|: Tt :llAj(s)|=xA1 :xA2: e :xAj(s) ’

(iii) The order of intervals of (i) is the same as the order of corresponding letters
in 6(S).

We consider partitions &, (meN) of I=[0,1] associated with é™ (ABCA™!
B~1C™1). Put @"(ABCA~*B~1C Y)=A{- - - A),. Then the partition &, ={Im: 1<
i<j(m)} of the interval I=[0, 1] associated with &™(ABCA~'B~'C™') is defined as
follows: ‘

(i) For m=0, let

éo={IA,IB,IC,IA—l,IB—l,Ic—l} and |Is|=|Is—1|=%xS, SE{A,B,C},
(i) starting from the partition &,,_ ,, the partition £, is constructed by gathering

the partitions of the interval I ~-v in &, _, associated with O(A™~ V) defined above.
We denote these partitions

Em={Lyg : G™(ABCA™'B™1C )= A - A} .

Then from the fact that (x,, xz, Xc) is an eigenvector corresponding to the eigenvalue
A6 (>1), we obtain the following lemma.

LEMMA 6.1. For the partition &, (m=>1),

(i) ¢, is a refinement of &,,_,.
(i) The length of intervals of &, is estimated uniformly by | Ly |~1/| ¢ |™.

Let ¢,,: I-»R? (m=0) be a polygonal map given by
j=1 5
@I ggw)=Lg ™" ”( > fGEAM)+K [A§-""]) for each I meé,, .
k=1

Then from the proof of Proposition 5.3 and Lemma 6.1, we have

PropoSITION 6.1. (1) ¢, (I)=L; "K[®™ABCA~'B~'C™1)].
(2) Let ¢ : I->R? be a map defined by

e(0)= lim ¢,(Lw)
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where I 4m is chosen by the condition tel aym. Then ¢ is continuous and
o()=Kp .
LEMMA 6.2. Under Assumption 2, the following inequality holds:

ProOF. Denote the number of segments K(4), K(B) and K(C) constituting oF
by the vector *(2, 2, 2), where F is defined in Proposition 1.1. Then the number of
segments of OF, is represented by Ng'(2, 2, 2). On the other hand, the area of polygon
F, is given by |det L,| and the curve 0F, is double point free. Therefore, we have the
following inequality:

2 2
ldetL,|| 2 |>Ngl 2 |,
2 2

where (x,, x,, x3)>'(yy, y,, ¥3) means that x;>y; for all i and x;> y; for some i. From
Assumption 2, there exists an eigen row vector x=(x,, x,, x3) of Ng with respect to
‘A6 such that x;>0 for all i. Therefore, we see

2 2
‘x(|det Lo| — Ao)| 2 |="x(|det Ls|E;—Ng)| 2 |>0
2 2

(£ denotes the identity matrix of size 3).
Now we can estimate the Hausdorff dimension of K, or K.

PROPOSITION 6.2. An estimate for dim K, from above is given by

log e —log| 4, |<2
log| 4, |

dimK,<1+

where 1 <| A, |<|A,| are the moduli of the eigenvalues of L,.

PrROOF. The length of 6*(aba™'b~1) is of the same order as A% by Proposition 3.2
and Proposition 4.1 (3). Therefore, we have the first inequality (see [1], [2]). The second
inequality is obtained by Lemma 6.2.

Finally we estimate the value of Hausdorff dimension of curve K, under Assump-
tion 1’, that is,

L, is isomorphic to a rotation followed by a scalar multiplication by 4, (>1).

LEMMA 6.2. Let u be a measure on Kg which is induced from Lebesgue measure
A on I by the map @. Put ro=Ilog|Ag|/log| A, |. Then the measure u satisfies the follow-
ing property: there exists a constant ¢ such that u(B)<c| B|"™ for any ball B, where | B|



298 SHUNIJI ITO AND MAKOTO OHTSUKI

means the radius of B.

PROOF. Let B, be a ball with radius r. Then u(B,)=Y ¥ w(q(I ) N B,) for all m

where ©@™(ABCA™ 1B 'C~)=A{"--- A, From Lemma 6.1, there exists a constant
¢ such that

WB)<cAdg™#{j: o(Lgm) " B,#}  forall m.
We choose m so that |1,| ™"V <r<|4,|™™ Then we have
H(B,) < c'riosi 2elosldelg j - (I gm) N B, # &} .

We note that the cardinality of {j: ¢(I,4m) N B,# } is smaller than the cardinality of
{J : L§(@( 4)) N B, # J}. We know that the mesh U yez2 (K6 + @) of R? is constructed
by

Kg(S)=lim L;"K[6O%S)] for Se{4*!, B*1, C*'}

and from the definition of ¢,, and ¢ we see
Ly(p(Lgm)=Ke(4]™) .
Therefore the cardinality of {j: Lg(@(lm)) N By # & } is bounded.
Therefore, by Frostman’s lemma [1], we have the following estimate from below:

THEOREM 6.1. (1) If the endomorphism 0 satisfies Assumption 1 and Assumption
2, then the Hausdorff dimension of K, satisfies

logig—log| 4, |<2

dim <l+
ake log| 2, |

(2) If the endomorphism 0 satisfies Assumption 1' and Assumption 2, then the
Hausdorff dimension of K, is given by

_logie

dim,K,= )
70 log) 4|

Now we state our main goal:

THEOREM 6.2. Let 0 be an endomorphism satisfying the Assumption 1 and
Assumption 2. Then there exists a limit set Ky of Ly "K[0"(aba™'b~')] as a Jordan curve,
and the curve K, satisfies the following properties:

Let F, be the closed set enclosed by K,, that is, 0Fy=K,, and 9 be a subset of Z*
defined in Proposition 1.1 (3). Then we have

(1) (Space tiling)

U (Fo+a)=R?

acZ?
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and
int(Fpy+a) Nint(Fy+a')= & if a#a’, and o, 0’ € Z* .
(2) (Self-similarity)

L9F9= U (Fg'f‘aj) .
ajeD
ProOF. From Property 1.1, Theorem 5.1 and Proposition 6.1, we obtain the result.
From the theorem, we obtain a corollary on ergodic theory.

COROLLARY [2]. Let M=(m;;) be a 2 x 2 nonsingular matrix with integral elements
m;; and expansive. Let Ty : T?>— T? be a group endomorphism associated with M, that is,

Ty(x)=Mx (modZ?)

and p be the Lebesgue measure on T?. Then we obtain a Bernoulli partition of the dynamical
system (T?, Ty, 1) constructively.

Proor. For any M satisfying the above assumption, choose an endomorphism
0 satisfying Assumption 1 and M,= M. For the endomorphism 6, we know the existence
of F, satisfying Theorem 6.2. The set F, is a fundamental domain for Z? acting on R2.
Therefore F, is isomorphic to T2. Let {¢={4;:1<j<|det M|} be a partition of F,
(= T?) such that

Aj=Lé“1(F9+aj), ijeg.

Then ¢ is a Bernoulli partition of the group endomorphism (72, Ty, ).

7. Generalization and examples.

In this paper, we have been assuming that the endomorphism has only short range
cancellations. We know many examples which have ‘“long” range cancellations.
Therefore we give a weaker condition for the cancellation of 8. We say that the
endomorphism 6 has short range cancellation in a wide sense if 0 satisfies the following
conditions:

there exist endomorphisms 7 and 6’, both of which have only
short range cancellations and satisfy the relation
0t=10" and O(aba b~ Y)=t(aba"'b"1). -1

REMARK. We also say 6 has short range cancellations in a wide sense if there
exists a word W e G such that the adjoint endomorphism 6y of 0 satisfies the condition
above.

LEMMA 7.1. Assume that the endomorphism 6 has short range cancellations in a
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wide sense. Then the limit set of Ly "K[0"* Y(aba™'b~')] coincides with the limit set of
L.L;"K[6"™(aba™ b 1)].

ProOOF. From the assumption, we see 6"t(aba” ‘b~ ')=10"(aba”'b~'), and
f(Ot(s))= L. f(0'(s)) for se S. By the condition of short range cancellation for t, we know

d(K[0"t(aba™ b~ 1)), L.K[0™(aba™ b~ Y] <c,
for all n, where ¢, =max, s d(K[(s)], L. K[s]). Therefore, using the relation
Li'Lgt=Lg'L!
and the assumption O(aba~'b~')=t(aba"'b~!), we see that the limit set of
Ly "K[0"* Yaba™'b~1)] coincides with the limit set of L,L,"K[0™(aba™*b1)].
By Lemma 2.2, Lemma 2.7 and Theorem 6.2, we can state the following:

THEOREM 7.1. Let 0 be an endomorphism satisfying the conditions (1) and (2) in
Assumption 1, and suppose that 0 has short range cancellations in a wide sense. Then
there exists a limit set K, of Ly "K[0™aba~'b~1)] which coincides with L K,.

ExaMPLE 1 (Twindragon boundary [5], [6]). Let 6 be given by

0_{ a—aaba " 'a 'a~!
b—ab 'a 'a !.

Then we see that 6 has “long” range cancellations. Take W:=a 'a~!. Then the

adjoint 0y:
0. — a—->ba=!
7 lbsa bt

has a short range cancellation only at 6(a~')8(b~!). By taking # as in Lemma 2.8, and
defining the endomorphism 0’ as 8’ =nfn~ ', we see that

, {a—ba~?!
0 =
b-b~ a1

has cancellation at 6'(b)0'(a™"). Putting 4:=b, B:=a"! and C:=b""!, we obtain by
(3-3) a lifting endomorphism ©:

&(4)=CB
O(B)=B~14"1
O(C)=B"!C .

This lifting ® belongs to the case (1) in §4, (4-4). Therefore we obtain a reduced
endomorphism &
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64)=C
OB)=A4"1
6&(C)=B~'C B 1.

The structure matrix Ng is given by
010
Neg={0 0 2
1 01

and satisfies irreducibility and aperiodicity. We know that its characteristic polynomial
is 1> — A% —2. Therefore by Theorem 6.2, we have the following result: Let K, be a curve
given by lim L;K[0"(aba™ b~ 1)] and F, be the closed set enclosed by K,. Then we know
that F, satisfies the space tiling property and self-similarity such that

L3F9=F9 U(Fg+ 1)
and

logie

dlmHKo = _lgé—l_ Y
(‘]

where A is \/ 2 (L, is isomorphic to the scalar multiplication by /2 e**/%) and ¢ is
the maximum solution of 4> —12—2=0.

ExaMpPLE 2 (Complex radix expansion). As a generalization of Example 1, let us
consider the following endomorphisms:
For positive integers m, n, let

a—a
0=0,,,:
( s {b_)(anb—l)na—N

Npg~(N+m

where N=m+n?, and a™ means consecutive m-times occurrences of a. Take W:=a",
then the adjoint 8 is given by

0. - a—ba™"
w- b—)(l_(N_n)b-l(a”b—l)n—l ,

has a “long” cancellation. These 0 or their adjoint 8’ have no short range cancellations.
Therefore, take an isomorphism

T.

{a—»ba'"

—N+ng—1
{ b—a "p—t

and consider
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0,={a—»ba"2"“

b—*a—N+2"_1b—1

Then 7 and 6’ satisfy the condition of Theorem 7.1 for 6. 6’ has a cancellation at
0'(a~1)0’(b~ 1), and so take n as in Lemma 2.8, and define 0" =90’y 1. Then

9” a_’bN—2n+1a—1
- b—bh-2n+1,-1

and it has a cancellation at 0”(b)0”(a”!). Putting A:=b""2"*! B:=g ! and
C:=b"2"*1 we obtain by (3-3) a lifting endomorphism ©:

O(A)=(CB)N—2n*1
OB)=B"'471
O(C)=(CB)~2"*1.
This lifting endomorphisrp belongs to the case (1) in §4, (4-4). Therefore we obtain a
reduced endomorphism @©:
6(A4)=(CB*~*"C
OB)=A""1
6(C)=(CB)~?"*1B~1,
The structure matrix Ng is given by
0 1 0
Ne=\ N-2n 0 2n
N—-2n+1 0 2n—1
and the characteristic polynomial is
AB—2n—1)A2—(N—2nA—N=0.
For each m, n>1, let us consider the following integers in the complex quadratic

field Q(/ mi):

a=4niﬁi (n=1,2, ) if —m=2,3 (mod4)
a=—2n+12i\/ mi (n=1,2,3, ) if —m=1 (mod 4)
<a=—2n+{2i\/ 3i (n=2, 3’ .. -) if —m=3>
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Instead of the canonical homomorphism f: G{a, b)—Z?, let us consider a canonical
homomorphism f,: G<{a, b)—2Z(,/ mi)= C" associated with the above o’s as follows:

fo: {“"1 if —m=2,3 (mod 4)
bo+t/mi
{e! |
- , V4 Smi if —m=1 (mod4).
2

Let T,: Z(/mi)»Z(/mi) be an endomorphism of Z(/mi) defined by the
multiplication by a, that is, T, is defined by T,(z)=az. Then we have the following
commutative diagram: for each m, n>1

Ga, b> 2™ Ga, b>
fal I

Z(/mi) s 2(/mi).

Therefore, we see that 6, , satisfies Assumption 1’. Thus we obtain the following theo-
rem by a slight modification of previous arguments ([4], [5] and [6]):

THEOREM 7.2. For each of the above o a curve K, (= K,, ) satisfying the following

property is constructed on the complex plane: let X, be the bounded closed domain enclosed
by K,. Then
(1) (space tiling)

U &X,+2=C"

ze Z(Vmi)
and

int(X,+2) nint(X,+2z)=@  if z#z € Z(\/mi),
(2) (self-similarity)

-1
an= U (Xa+j) s

N
j=0

(3) (complex radix exf)ansion)

0
Xa={ Y a0k
k=1

(4) The Hausdorff dimension of the curves K, is equal to 2logA,, ,/log N, where
Am.n IS the maximum solution of

akE{O’ 1!2’ .."N—l}}’
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3 —@2n—1A2—(N—2mA—N=0.
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