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§0. Introduction.

We consider a transformation 7 on

X={(x,y)| 0=x<1,0=y<1—x}—{(0, 1)}

defined by
(((x Y .
P if X, ead ,
<l—x 1_x> ( y) 1
2x—1 .
T(x’y):: ( ’l) if (x’y)EA25
x X
(1—2x’1—x—y) if (x,y)ed,,
{ 1—x 1—x
with |
4,={x,eX | 0<x<1/2,0<y<1-2x},
A,={(x,y)eX | 1/2=x<1,0=y<1—x}
and

A;={(x,y))eX |0=sx<1/2, 1 -2x<y=1-—x}.

This transformation was fiirst introduced, in [1], to consider properties of the

sequence

C(a, )={[na+pl—[(n—Da+pl|n=1,2, -},

(where [-] denotes its integral part).

The purpose of this paper is to study algebraic properties of periodic points under
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the transformation 7. We will show the following theorem:

THEOREM. Let o be a quadratic surd and (a, f)e X. Then B is an element of the
quadratic field ) if and only if (a, P) is a periodic point of the transformation T.
Here, the periodic point means that there exist natural numbers k and n such that

T o, B)=T """, p)  for 1=j<k and IeN.
The fundamental idea used to obtain this theorem comes from the following notion:

DEFINITION. Let o be a quadratic surd and B is in Q(«). Then B is said to be
a-reduced if («, B, &, f)e X x X*, where

X*={(z,w); z20,z<w=0} U{(z,w); z>1,0=Sw<z} .

Here and henceforth, x denotes its algebraic conjugate when x is a quadratic surd, or
x itself when x is a rational number.

With this notion, it is possible to show that if B is a-reduced, then the cardinality
of the set {T™(a, f); n=1, 2, - - -} is finite, and so the point (a, p) is periodic.

A similar approach goes back to Lagrange—Galois’ work: a real number « is
quadratic if and only if the partial quotients of the continued fraction expansion of «
is periodic. Furthermore, it has been taken up later by A. L. Schmidt in his work on
quadratic numbers over Gaussian integers [5] and by K. Schmidt on Pisot-Salem
numbers [6].

§1. Periodicity under some transformations.

In this section, we introduce two one-dimensional transformations S and U, which
correspond to the algorithms related to the mediant convergents (see [1] and [2]).
Theorems, obtained in this section, pave the way for discussions in the subsequent section.

Let S be a transformation of X; =[0, 1) onto itself defined by

‘S1(x)=li if 0=x<1/2, and
S()= *

—1
Sz(x)=2x—x~‘ if 1/2<x<1 (Fig. 1).

We put o5 ,=S™) (n=0) and

_ {1 if 0Zag,<1/2
lS.n+1=

. (n=0).
2 if 12fa5,<1

So we get a sequence (is ,, is 5, - ' *)€{1, 2}" for every a e X,, which we call the name
of a with respect to S. We prove “Lagrange type” theorem, i.e. « is quadratic if and
only if the name of a with respect to S is periodic.
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FIGURE 1

DEerFINITION 1. Let ae X, be a quadratic surd. Then « is said to be S-reduced if
& <0 or a>1, where X denotes the algebraic conjugate of x.

We show two lemmas concerning S-reduced numbers.

LeEMMA 1. For an S-reduced number o, we have
(A) og 4 is also S-reduced.
(B) There exists a unique element o _, in S~ (a), which is S-reduced.

PrOOF. Weput X, =[0, 1) x ((— o0, 0] U (1, o)) and define two partitions of X, by

Dg , = [0, 1/2)x(1, o)
Dg , = [0, 1/2) x(— 0, 0]
Dg ;3 =[1/2,1)x(1, o)
Dg . =1[1/2,1)x(—0,0],

and
Es, =[0,1)x(—o0, —1)
Es, =[0,1)x[—1,0]
Es, =[0,1)x(1,2)
Es, =[0,1)x[2, ).

We consider a transformation S on X, defined by

(8169, Sl(y»=<—1%;, T_y_—y) if 0<x<1/2

S(x, y)=

(S;(), sz(y»=(2"‘ L iyfl) it 125x<l.
X
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We call § a natural extension of S.
(A) For an S-reduced number «, we have («, @) € X,. So there exists some i (i=1, 2, 3
or 4) such that (a, &) € Dy ;, therefore

(5,1, #5,1)=S8(o, D€ Es;  (Fig. 2).
(B) For every («, &€ X,, there exists i such that («, @) € Es ;. If we put

o

if (x,&)eEs,VEs,

14+a

- +

As, -1 =

if (o, @)eE5 ;30 Eg,,
2—a

(s, -1, %5, —1)€Dg ; and ag _, is S-reduced.

LEMMA 2. There are only finite number of S-reduced quadratic surds with a given
discriminant d> 0.

PrOOF. Let a be a root of
ax?*—2bx+c=0 (a,b,ceZ, a>0, d=b*—ac>0)

and S-reduced.
(1) If 0<a<1 and a>1, then, from 0<(b—./d)/a and (b+./d)/a>1, we get
O<a<dand \/d <b<d+./d.
(2) If0<a<1 and &<0, then we get 0<a<dand —,/d <b<./d.
From (1) and (2), the number of such a’s is finite.

ProrosITION 1. If ae X, is a quadratic surd and S-reduced, the name of o with
respect to S is purely periodic, that is, there exists a natyral number k such that is ;=g 4 + ;
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for 1=<j<k and leN.

Notice. In the sequel, we denote such periodicity by

(s, 15 Bs,25 * )=(s,1, "> is,k) .
A ProoF. From Lemma 1 (A), if ais S-reduced, then ag , is S-reduced, and therefore
o, 2, 5,3, - * - are also S-reduced. Moreover it is clear from the definition of S that if
a is a quadratic surd with a discriminant d, then ag ,, o5 5, - - - are quadratic with the

same discriminant. From Lemma 2, there exist i and k such that ag;=ag ;44 From
Lemma 1 (B), we get ag ;_; =ug ;+,—4 and in the same way

Os i—2=0s,i+k—2 >

................

a=a5,k .

Therefore the name of « with respect to S is a purely periodic sequence with the period k.

THEOREM 1. A real number o€ X, is quadratic if and only if the name of o with

respect to S is periodic.
11 2 —1
A = s A =
' (0 1) : (1 0)

which correspond to S; ~!(x)=x/(1 +x) and S, !(x)=1/(2— x), respectively. For every
name {ig q, is 5, ' * -} of a with respect to S, we put

PrROOF. Let

Ts,n Ss,
( n Sn>=A"s"A"s.2"°Ais,,, (nz1).
tS,n us,n
Then it is easy to show that

= tS,n+uS,n.aS.n

, ¢y
s.nt Ss,n"Us,n

and that fg ,/rs , and ug ,/ss , are the convergents of « (see [1]). We denote S™(«, 0) by

(s, n» 0% ), and we see that (xs ,, a¥ )€ X, for all n220. We have (x5, ,, &5, ,) € X, for large

n in the following way. Noting that det 4, =det A, =1 and so rg ,Us ,— 5 aSs,n=1, WE

see that :

* | tS.n—rS,na- Is,n
|aS,n_aS.n|'— —
- uS,n+sS,na —Ug,n

‘ &
— Us, n( —Us,n + SS,n&)
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=| :x -0 as n—oo 2)
' —Us, uSs, n(a — Us, n/SS, n)

(see [1]). Let
X.(e)=[0, 1)x(—e¢, 0] U [0, 1)x (1, 1+¢),

where ¢ is positive but small enough. We consider the following two cases.

(1) Ifforevery N, thereexists n> N such that (as ,, 0¥ ,) € X; — X, (), then (a5, ,, &5 ) € X,
by (2). L

(2) If there exists N such that (a5 ,, ¥ ,) € X,(¢) for every n= N, then {is ,, is 5, "} =
{1,1,---}or{2,2,---}.

From (1) and (2), it follows that the name of « with respect to S is periodic. Conversely,
if {is 1, is 5, - - - } is periodic, that is, there exist N and k with s, N =0g, N+k> then from (1),

o= Is,Nnt+Us N"Os N

rs,N+Ss,N"%s N

_Us, N+t Us N+i" O, N+k

Ts,N+k+Ss N+k"%s, N+k

_Is,N+xtUs N+k" s, N

Ts,N+ktSs,N+k" %5, N
So ag y i1s quadratic, therefore a is quadratic.

REMARK. The converse of Proposition 1 also holds from Theorem 1. In fact if,
the name of a with respect to S is a purely periodic sequence with a period k, then
from (1), a=(ts , + ugs ,*®)/(rs,x + Ss,x* @), and so « is quadratic.

From Theorem 1, there exists N such that as y is S-reduced. Since ag ,’s, n= N, are
S-reduced and a=uag ,, for every /20, we see that « is S-reduced from Lemma 1 (A).

Now we define the second transformation U from [0, 1) to [0, 1) as follows. We

see properties analogous to those of S. We only state the definitions and the properties

without any proofs.
We define the transformation U on X, =[0, 1) by
x .
Ui(x)=—— if 0=x<1/2
—X

1__
Uz(x)=_x—x if 12<x<1 (Fig. 3).

U(x)=

The name of a with respect to U is given by oy ,=U"(a) (n=0) and
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) 1 if 0<Zay,<1/2
lU,n+1={ X =%, / (n=0).

3 if 12=<ay,<1
DEFINITION 1*. A quadratic number a € X, is called U-reduced if
(o, §)e X, =[0, 1) x(— 00, 0] .

The associated matrices with respect to U are given by

11 11
A= b3 A= b
‘(o 1) 3(1 0)

which give the following relation;

a_’u,:."‘"u,n'“u,n

@)

ry,ntSu,n"%u,n
where
rU,n SU,n

( =AiU, 1Aiv,2 ) Aiv,n (nz' 1) :
tU,n uU,n

Then we have

LEMMA 1*. For an U-reduced number o, we have
(A) oy, is also U-reduced.
(B) There exists a unique element oy _, in U™ '(a), which is U-reduced.

The proof is obtained by introducing a natural extension U (Fig. 4):
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(Uy(x), Ul(y))=< *x ¥ ) if 0<x<1/2

O(x, y)= 1—x 1_—_y
(Uz(x), Uz(y))=<1—;—x, ly;y) if 12<x<1.

LEMMA 2*. There are only finite number of U-reduced quadratic numbers with a
given discriminant d>0.

The proof is obtained by the analogy with the proof of Lemma 2. We will also
have the following:

PROPOSITION 1*. If a€X, is a quadratic surd and U-reduced, the name of o with
respect to U is purely periodic.

THEOREM 1*. The number a€ X, is quadratic if and only if the name of a with
respect to U is periodic.

§2. Periodicity under the transformation 7.

We consider the transformation T defined in §0. We note that {4,, 4,, 45} is a
partition of X (Fig. 5) and that

T(4)=X, T(4))=X, and T(4)=X—{(x,y)eX|y=1—x}.

Putting X=X x X*, we define a transformation T from X to X as follows:
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FIGURE 5
'(1ix’1ix’liz’lfz) i (xyed,

s lf (x’ y)eAZ
X X z Z

_ 2x—1 2z—1
T(x’y,z, W)= ( X ,_y_, 2 1)

(1——2x l—x—y 1—-2z 1—z—w

b

) if (x,y)ed;.

1—x 1_—x 1—z" 11—z

The transformation T is a natural extension of T. Putting (a,, 8,)= T™(a, f) (»=0) and
in+ 1 =iif (a,, B,) € 4;, we get a sequence (iy, i,, i3, - * *), which we call the name of (o, ).

LEMMA 3. Let o be a quadratic surd and Be (o) be a-reduced. Then we have
(A) B, is ay-reduced.
(B) There exists a unique point (o._, B_,) in T~ (o, B) so that B_, is a_,-reduced.

ProOOF. We define a partition {4%, 4%, 4%} of X* by
A¥={(z, weX* | 250, z<w=0}
A43={(z, weX* | z>1,0<w<1}
43={z,weX*|z>1,1sw<z}.
(A) For an a-reduced number f, there exists i (i=1, 2 or 3) with
(o, B, @, Ped; x X*.

Then we get («,, B, &, B;)=T(a, B, &, Bf)e X x A¥* (Fig. 6). Therefore B, is «,-reduced.
(B) For an a-reduced number B, there exists i (i=1, 2 or 3) with

(aa ﬁs a_a B)EXXA?‘ .
If we put
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K x ﬁ) if (@ Bea*

1+’ 1+a

@1y Br)= ( ! —f—) if (@ Beds

2—a' 2—u

l—a 1—-58 . _

— — if (&, f)ed%,
_(2—a 2—oz) @ Peas

we have (x_,, f_,)e 4, x X*. Therefore B_, is a_,-reduced.

LEMMA 4. Let aeX be quadratic and Be o) be a-reduced. Then the cardinality
of the set {0y, ay, &y, - -} is finite.

Proor. By Proposition 1, the sequence of « with respect to S is purely periodic.
We denote its period by k. We denote the sequence (o5 o, %5 1, * - *) by (&, @3, * - -). For
every quadratic surd « and a-reduced fe Q(a), we have ae{og o, -, 05, } because
a is also S-reduced. For any i =0, if (o;, B;)€ 4, U 4, and there exists / (0</<k—1) such
that o;=og,;, then o,y =054, (0S/<k—2) or o4 =05 o ({=k—1). When (a;, B;)€ 45
and there exists / (0</<k—1) such that a;=0ag ,, we put

1—2ag , As,1
L e S BT
—Us,; — s,
and
Bi
ﬁ§+1=1— .
l—di

There are two possibilities: ,
(1) 0=aj,,<1/2 (equivalently 1/2<ag,,,<1). If (a}4, Bi+,)€4,, then we have

1 Oivy I—os 141 205541 —1
- —=1- = =%s,1+2 -
I—ajyy 1—-(1—og,,44) %s,1+1
If (2;+4, Bi+1) €45, then we have
1—2“§+1_1_2(1—“s,1+1)_2°‘s,1+1"‘1__
= = =5, 1+2 -

I—aiy; 1—(l—ag;4q) s, 141
(2 1/2=a;.,<1 (equivalently 0=<ag ;1 <1/2). If (%5 ;4 1, Bs,141) € 4;, we have

_20‘;+1—1= 1 _2(1 "‘as,t+_1)—1__ Us,1+1

1 =
I3
Ai+1 —ag 4 1—os,044

=0s,1+2 -

If (5,14 15 Bs,1+1) € 43, we have




262 YUKO HARA-MIMACHI AND SHUNII ITO

20‘2+1_1=2(1 —otg1+1)—1 — 1—205,44

. ] 1 =0s,1+2 -
Oit+1 —Og 1+1 —O0s, 141

In both cases, every element of the sequence (g, &;, - * *) is included in
(o) ={ots, 05 "~ "> s,k—1>%0s * " "5 Ak—y, 1 =0, " "7, l—ap_q}.

Since the cardinality of the set 2(a) is finite, the cardinality of the set {e, &, - - - } is finite.
Now, we define the matrices associated with 7 as follows;

110 2 -1 0 2 -1 0
B,=|0 10|, B,=|1 00|, By=|1 —1 0][.
00 1 0 01 1 0 —1

- We define p®, ¢, r®, and ¢, by

7" q 0
pY p? 0 |=B,B, B,

11 12 in (ng0)°
r 2 e

From [1], we get

q;n n q(Z)a ’ “)

r+rPa, +¢,p,

B=
4.+,

(5)
LEMMA 5. Let a be a quadratic surd and B € (o) be a-reduced. Then the cardinality

of the set {Bo, By, B2, - -} is finite.
PrROOF. We put

. o/ . ./ d
=filj—d ﬁ]:ul_-'-v;— (mj, n;, lja tj’ uj’ UJ-EZ, j; 0)
J

j . s
From Lemma 4, it follows that there exist at most finite number of such m;’s. From
(5) and g,= +1, we get
V=@ +gPa)f—rV —rPa,} .

Therefore we have t;=m; x t, and there are finitely many such ¢;’s. Since  is a-reduced,
we see that B, is a,-reduced for any n=1 by Lemma 3 (A). Noting that

0<ﬁn<l_an’ |Fr—||<|a_n|9
we conclude from Lemma 4 that there are only finitely many such S,’s.

Therefore we obtain the following proposition.
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PROPOSITION 2. Let o be a quadratic surd and € Q(a) be a-reduced. Then the name
of (a, P) is purely periodic.

ProoF. From Lemma 3 (A), B, is a,-reduced for any n>0. From Lemma 5, there
exist i and N such that f;=pf;,.5. From Lemma 3 (B), we have a;_;=o;,y_, and
Bi-1=P:+n-1- In the same way, we have

O_r=04n- and B;_,=Biin_2,

..............................

Xo =N and Bo=Bn
Finally we show the results on more general case.

THEOREM 2. Let (o, f)€ X and o be a quadratic surd. The number f belongs to Q(a)
if and only if the name of («, p) is periodic.

PrROOF. We consider the transformation T on the extended domain X x R2. Such
an extension is possible because T is defined by two linear fractional transformations.
To prove the necessity, it is enough to show that there exists NeN such that
(n-1, By -1, &y -1, By-1)€ X. From the definition of 8, we have

ﬁ”=5n_1+3’i‘1ﬁ_":1_, ) (6)
Ep—1 0y
where
(15 Os 1) lf (ais ﬁi)EAl

(')’i; 8 si)={(1a0’ 0) if (a, B)ed,
('—1, la 1) lf (ai’ ﬂi)EA3 .

From (6), we get

n— 5n— n— DRI
ﬁn==(5n_1.+_2__z___3_4_...4_ Ya-2"" V170 )
En—1— %y (8,,_1—&"_1)"'(31—“1)

Ya—2"""V1%0" Bo _ ™
(En—1—%y—1)" " " (e — 01 fE0 — %p)
Now we define
(“m Bn, a_m ﬁ:)= T"((Zo, ﬂo, &09 O) .

From (o, Bo, &g, 0)€ X, we have (a,, B,, &,, B¥)e X for every n=0 by Lemma 3 (A).
Noting y;= + 1, we have

e | Bo
Lol (a1 —0p— 1) " (61— (€0 — o)
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by (7). We show | B,—B*|—-0 as n—co.
(1) if (o, B)e 4, and |¢;—a;| <1, then 1 <&; <2 by ¢;=1. For

(Ei_&i)(8i+l——_ai..) ={|o¢,~| ey =0
1—a;

|1_&i| if 8i+1=1’
the left hand side of the above formula is larger than 1.
(2) If (o;, B)e 4, and |g;— ;| <1, then —1 <&; <0. Hence

_ 2a;—1
(ai—ai)(eH—l_ oz_ )|>1,

o;

which follows in the same way as (1).
(3) If(x;, p)eds; and |g;—a;| <1, then 1 <&;<2. Hence

_ 1—2a;
(3i—°‘i)(3i+ 1— - )
1—a;

which follows in the same way as (1).
From (1), (2) and (3), the sequence (o, &;, &5, * - *) is periodic and we see | B,— ¥ |—0
(as n—o0).

Now we consider the case that (&,, B¥) belongs to the boundary of X* for any n
larger than some N. We put '

>1,

X*e)={(z, weX* | |w|<eor |z—w|<eg}.

To analyze the behavior of (4; x X*) by T, we consider the following two cases.
(1) There exists N such that for any n= N,

(@ B E{(z, WEX*E) | Iw|<e}.

(2) There exists N such that for any n= N,
(G BY){(z, WEX* @) | z—w|<e}.

In the case (1), we get (iy, i, - - -)€{1, 2}" and such a point («, f) belongs to

Iy={(a, peX|0=<a<l, =0}.
From I,c 4, U A4,, for every (a, f)€l,, we have

(%, Br)=(S"(), 0) .
In the case (2), we get (i, iy, - - -)€{1, 3} and such a pair («, ) belongs to
Jo={(e PeX | f=a}.

On J,c A4, U 4,, we define a transformation 7" by
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(i, L) if (x,yed,
T'(x. y) l—x 1—x )
X, Y)=
1-2x 1—x—y .
, if (x,y)ed,.
<l—x 1—x> (x, y)e43

We see that 7" and U are isomorphic by the mapping U,. The sequence
(iv,15 iy, 25 iy, 3, - ) is periodic as we have seen in §1. Hence (i, i,, - - *) is periodic
because the periodicity is preserved by the isomorphism.

Next we show the sufficiency. Before doing this, we need the following:

COROLLARY 1 (The converse of Proposition 2). If the name of («, p) is purely
periodic, then a is quadratic and B is a-reduced.

Proor. By (4) and (5), we have a is quadratic and B e @(«). By the necessity part
of Theorem 2, there exists N such that

(i19 i29 o .)=(i13 i29 o .9iN—1’ iN9 o .’iN+k—1)‘

By the pure periodicity of the name of (a, ), we get N=1. From the proof of the
necessity part of Theorem 2, we conclude («, B, &, B e X.

Now, we prove the sufficiency part of Theorem 2. Assume that there exist N and
k with

(i1, iz, - ')=(i1, i INe g, T iN+K) .

Since the ‘name' of (ay, By) is purely periodic, ay is quadratic and By is ay-reduced by
Corollary 1. Therefore a is quadratic and B e Q(«).

§3. Invariance under substitutions.

Let C(a, f) be the characteristic sequence of (a, f)e X in §0. We define the
substitutions on the set of finite sequences of {0, 1} by
0 0 5. - 0 01 5. 0 .

"1—01’ 2 ’ 3

S : :
! 1——>1 1——0

The following theorem is due to [1].

THEOREM. Let (o, f)e X, and (i, i,, -+ -) be the name of (a, P) introduced in §2.
Then the sequence C(a, B) is given by

Clo, f)=1lm (5;, 2 5;,0 - -+ 26, )0) .

By this theorem and Theorem 2, we have the following corollary.
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COROLLARY 2. Let o be a quadratic surd and (o, p)e X and (iy, iy, - - ) be the
name of (o, B). The number B belongs to o) if and only if there exist N and k such
that the sequence C(ay, By) is iy, ,°0in,,° " " " ©Oiy,  ~invariant.

iN+k

ProoF. If Be Q(x), then there exist N and k with

(il; iy *° ')=(i15 s e T iN+k)

by Theorem 2. By [1], we have
C(a, )= lim (6;,0;,° - - - 6, X0) .

From

C(“N’ ﬁN)= li_’rll (6ilv+1 °r°: oéin+m)(0) ’

we have ‘
Clan, BN) =0y, ,° " " iy, ) Cloy, Bn) -
Conversely if Cloy, Bn)=(i,,,° " * °0iy..)* Clan, Bn), we get
Cloy, BN) =iy, o " 8y, )' Clon, By)  forany n.

Thus we have

lim (6i1v+1°5i1v+2° o

m—> n— oo

S0 8y, NO)=lm (5,0 -+ 084y, )'0) -

IN+1

For a given (a, f), there is a 1-1 correspondence between the name of («, f) and the
sequence C(a, B). Then we have

(iN+1’ iN+29 o ')=(iN+1, Y iN+k)

and

(i1, i3, ~- =01, " ins iNe1s T iN+k) .

Therefore we get fe () from Theorem 2.

References

[1] SH. ITo and S. Yasutomi, On continued fractions, substitutions and characteristic sequences
[nx+y]—[(n—1)x+y], Japanese J. Math., 16 (1990), 287-306.

[2] SH. ITo, Algorithms with mediant convergents and their metrical theory, Osaka J. Math., 26 (1989),
557-578. '

[3] Y. Hara and SH. ITo, On real quadratic fields and periodic expansions, Tokyo J. Math., 12 (1989),

357-370.
[4] H. NAKADA, On ergodic theory of A. Schmidt’s complex continued fractions over Gaussian field,




DIOPHANTINE ALGORITHMS 267

Monatshefte fiir Math., 105 (1988), 131-150.
[5]3 A.L.ScumipT, Diophantine approximation of complex numbers, Acta Math., 134 (1975), 1-85.
[6] K. ScHMIDT, On periodic expansions of Pisot-numbers and Salem-numbers, Bull. London Math. Soc.,
12 (1980), 269-278.
[7]1 B. A. VEnkoV, Elementary Number Theory, Wolter-Noordhoff, 1970.

Present Address:

Yuko HARA-MIMACHI
DEPARTMENT OF MATHEMATICS, MEIJO UNIVERSITY
SHIOGAMAGUCHI, TENPAKU-KU, NAGOYA 468, JAPAN

SHuUNII ITO
DEPARTMENT OF MATHEMATICS, TSUDA COLLEGE
Tsubpa-MAcHI, KoDAIRA-SHI, TOKYO 187, JAPAN




