A Characterization of Real Quadratic Numbers by Diophantine Algorithms

Yuko HARA-MIMACHI and Shunji ITO

Tsuda College

§0. Introduction.

We consider a transformation T on

$$X = \{(x, y) \mid 0 \le x < 1, 0 \le y < 1 - x\} - \{(0, 1)\}$$

defined by

$$T(x, y) = \begin{cases} \left(\frac{x}{1-x}, \frac{y}{1-x}\right) & \text{if } (x, y) \in \Delta_1, \\ \left(\frac{2x-1}{x}, \frac{y}{x}\right) & \text{if } (x, y) \in \Delta_2, \\ \left(\frac{1-2x}{1-x}, \frac{1-x-y}{1-x}\right) & \text{if } (x, y) \in \Delta_3, \end{cases}$$

with

$$\Delta_1 = \{(x, y) \in X \mid 0 \le x < 1/2, \ 0 \le y \le 1 - 2x\},$$

$$\Delta_2 = \{(x, y) \in X \mid 1/2 \le x < 1, \ 0 \le y < 1 - x\}$$

and

$$\Delta_3 = \{(x, y) \in X \mid 0 \le x < 1/2, 1 - 2x < y \le 1 - x\}.$$

This transformation was fiirst introduced, in [1], to consider properties of the sequence

$$C(\alpha, \beta) = \{ [n\alpha + \beta] - [(n-1)\alpha + \beta] \mid n = 1, 2, \cdots \},$$

(where [·] denotes its integral part).

The purpose of this paper is to study algebraic properties of periodic points under

the transformation T. We will show the following theorem:

THEOREM. Let α be a quadratic surd and $(\alpha, \beta) \in X$. Then β is an element of the quadratic field $Q(\alpha)$ if and only if (α, β) is a periodic point of the transformation T.

Here, the periodic point means that there exist natural numbers k and n such that

$$T^{n+j}(\alpha, \beta) = T^{n+kl+j}(\alpha, \beta)$$
 for $1 \le j \le k$ and $l \in N$.

The fundamental idea used to obtain this theorem comes from the following notion:

DEFINITION. Let α be a quadratic surd and β is in $Q(\alpha)$. Then β is said to be α -reduced if $(\alpha, \beta, \bar{\alpha}, \bar{\beta}) \in X \times X^*$, where

$$X^* = \{(z, w) \; ; \; z \leq 0, \, z < w \leq 0\} \cup \{(z, w) \; ; \; z > 1, \, 0 \leq w < z\} \; .$$

Here and henceforth, \bar{x} denotes its algebraic conjugate when x is a quadratic surd, or x itself when x is a rational number.

With this notion, it is possible to show that if β is α -reduced, then the cardinality of the set $\{T^n(\alpha, \beta); n=1, 2, \dots\}$ is finite, and so the point (α, β) is periodic.

A similar approach goes back to Lagrange-Galois' work: a real number α is quadratic if and only if the partial quotients of the continued fraction expansion of α is periodic. Furthermore, it has been taken up later by A. L. Schmidt in his work on quadratic numbers over Gaussian integers [5] and by K. Schmidt on Pisot-Salem numbers [6].

§ 1. Periodicity under some transformations.

In this section, we introduce two one-dimensional transformations S and U, which correspond to the algorithms related to the mediant convergents (see [1] and [2]). Theorems, obtained in this section, pave the way for discussions in the subsequent section.

Let S be a transformation of $X_1 = [0, 1)$ onto itself defined by

$$S(x) = \begin{cases} S_1(x) = \frac{x}{1-x} & \text{if } 0 \le x < 1/2, \text{ and} \\ S_2(x) = \frac{2x-1}{x} & \text{if } 1/2 \le x < 1 \end{cases}$$
 (Fig. 1).

We put $\alpha_{S,n} = S^n(\alpha)$ $(n \ge 0)$ and

$$i_{S,n+1} = \begin{cases} 1 & \text{if } 0 \leq \alpha_{S,n} < 1/2 \\ 2 & \text{if } 1/2 \leq \alpha_{S,n} < 1 \end{cases} \quad (n \geq 0).$$

So we get a sequence $(i_{S,1}, i_{S,2}, \dots) \in \{1, 2\}^N$ for every $\alpha \in X_1$, which we call the name of α with respect to S. We prove "Lagrange type" theorem, i.e. α is quadratic if and only if the name of α with respect to S is periodic.

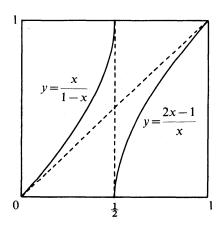


FIGURE 1

DEFINITION 1. Let $\alpha \in X_1$ be a quadratic surd. Then α is said to be S-reduced if $\bar{\alpha} \leq 0$ or $\bar{\alpha} > 1$, where \bar{x} denotes the algebraic conjugate of x.

We show two lemmas concerning S-reduced numbers.

LEMMA 1. For an S-reduced number α , we have

- (A) $\alpha_{S,1}$ is also S-reduced.
- (B) There exists a unique element $\alpha_{S,-1}$ in $S^{-1}(\alpha)$, which is S-reduced.

PROOF. We put $\overline{X}_1 = [0, 1) \times ((-\infty, 0] \cup (1, \infty))$ and define two partitions of \overline{X}_1 by

$$\begin{cases} D_{S,1} = [0, 1/2) \times (1, \infty) \\ D_{S,2} = [0, 1/2) \times (-\infty, 0] \\ D_{S,3} = [1/2, 1) \times (1, \infty) \\ D_{S,4} = [1/2, 1) \times (-\infty, 0] \end{cases},$$

and

$$\begin{cases} E_{S,1} = [0,1) \times (-\infty, -1) \\ E_{S,2} = [0,1) \times [-1,0] \\ E_{S,3} = [0,1) \times (1,2) \\ E_{S,4} = [0,1) \times [2,\infty) . \end{cases}$$

We consider a transformation \bar{S} on \bar{X}_1 defined by

$$\overline{S}(x, y) = \begin{cases} (S_1(x), S_1(y)) = \left(\frac{x}{1-x}, \frac{y}{1-y}\right) & \text{if } 0 \le x < 1/2 \\ (S_2(x), S_2(y)) = \left(\frac{2x-1}{x}, \frac{2y-1}{y}\right) & \text{if } 1/2 \le x < 1. \end{cases}$$

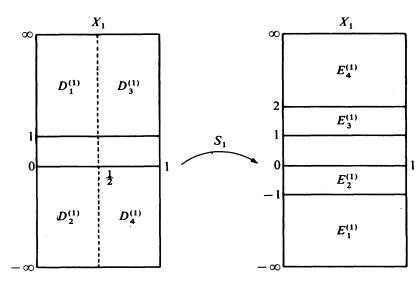


FIGURE 2

We call \overline{S} a natural extension of S.

(A) For an S-reduced number α , we have $(\alpha, \bar{\alpha}) \in \bar{X}_1$. So there exists some i (i = 1, 2, 3 or 4) such that $(\alpha, \bar{\alpha}) \in D_{S, i}$, therefore

$$(\alpha_{S,1}, \overline{\alpha_{S,1}}) = \overline{S}(\alpha, \bar{\alpha}) \in E_{S,i}$$
 (Fig. 2).

(B) For every $(\alpha, \bar{\alpha}) \in \bar{X}_1$, there exists i such that $(\alpha, \bar{\alpha}) \in E_{S,i}$. If we put

$$\alpha_{S,-1} = \begin{cases} \frac{\alpha}{1+\alpha} & \text{if} \quad (\alpha, \bar{\alpha}) \in E_{S,1} \cup E_{S,2} \\ \\ \frac{1}{2-\alpha} & \text{if} \quad (\alpha, \bar{\alpha}) \in E_{S,3} \cup E_{S,4} \end{cases},$$

 $(\alpha_{S,-1}, \overline{\alpha_{S,-1}}) \in D_{S,i}$ and $\alpha_{S,-1}$ is S-reduced.

LEMMA 2. There are only finite number of S-reduced quadratic surds with a given discriminant d>0.

PROOF. Let α be a root of

$$ax^2-2bx+c=0$$
 $(a, b, c \in \mathbb{Z}, a>0, d=b^2-ac>0)$

and S-reduced.

- (1) If $0 \le \alpha < 1$ and $\bar{\alpha} > 1$, then, from $0 \le (b \sqrt{d})/a$ and $(b + \sqrt{d})/a > 1$, we get 0 < a < d and $\sqrt{d} < b < d + \sqrt{d}$.
- (2) If $0 \le \alpha < 1$ and $\bar{\alpha} \le 0$, then we get 0 < a < d and $-\sqrt{d} < b < \sqrt{d}$. From (1) and (2), the number of such α 's is finite.

PROPOSITION 1. If $\alpha \in X_1$ is a quadratic surd and S-reduced, the name of α with respect to S is purely periodic, that is, there exists a natural number k such that $i_{S,j} = i_{S,kl+j}$

for $1 \le j \le k$ and $l \in \mathbb{N}$.

NOTICE. In the sequel, we denote such periodicity by

$$(i_{S,1},i_{S,2},\cdots)=(\overline{i_{S,1},\cdots,i_{S,k}}).$$

PROOF. From Lemma 1 (A), if α is S-reduced, then $\alpha_{S,1}$ is S-reduced, and therefore $\alpha_{S,2}, \alpha_{S,3}, \cdots$ are also S-reduced. Moreover it is clear from the definition of S that if α is a quadratic surd with a discriminant d, then $\alpha_{S,1}, \alpha_{S,2}, \cdots$ are quadratic with the same discriminant. From Lemma 2, there exist i and k such that $\alpha_{S,i} = \alpha_{S,i+k}$. From Lemma 1 (B), we get $\alpha_{S,i-1} = \alpha_{S,i+k-1}$ and in the same way

$$\alpha_{S,i-2} = \alpha_{S,i+k-2},$$

$$\dots \dots \dots$$

$$\alpha = \alpha_{S,k}.$$

Therefore the name of α with respect to S is a purely periodic sequence with the period k.

THEOREM 1. A real number $\alpha \in X_1$ is quadratic if and only if the name of α with respect to S is periodic.

Proof. Let

$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad A_2 = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$$

which correspond to $S_1^{-1}(x) = x/(1+x)$ and $S_2^{-1}(x) = 1/(2-x)$, respectively. For every name $\{i_{S,1}, i_{S,2}, \dots\}$ of α with respect to S, we put

$$\begin{pmatrix} r_{S,n} & s_{S,n} \\ t_{S,n} & u_{S,n} \end{pmatrix} = A_{i_{S,1}} A_{i_{S,2}} \cdots A_{i_{S,n}} \qquad (n \ge 1).$$

Then it is easy to show that

$$\alpha = \frac{t_{S,n} + u_{S,n} \cdot \alpha_{S,n}}{r_{S,n} + S_{S,n} \cdot \alpha_{S,n}}, \tag{1}$$

and that $t_{S,n}/r_{S,n}$ and $u_{S,n}/s_{S,n}$ are the convergents of α (see [1]). We denote $\overline{S}^n(\alpha,0)$ by $(\alpha_{S,n},\alpha_{S,n}^*)$, and we see that $(\alpha_{S,n},\alpha_{S,n}^*) \in \overline{X}_1$ for all $n \ge 0$. We have $(\alpha_{S,n},\overline{\alpha_{S,n}}) \in \overline{X}_1$ for large n in the following way. Noting that $\det A_1 = \det A_2 = 1$ and so $r_{S,n}u_{S,n} - t_{S,n}s_{S,n} = 1$, we see that

$$|\overline{\alpha_{S,n}} - \alpha_{S,n}^*| = \left| \frac{t_{S,n} - r_{S,n} \bar{\alpha}}{-u_{S,n} + s_{S,n} \bar{\alpha}} - \frac{t_{S,n}}{-u_{S,n}} \right|$$
$$= \left| \frac{\bar{\alpha}}{-u_{S,n} (-u_{S,n} + s_{S,n} \bar{\alpha})} \right|$$

$$= \left| \frac{\bar{\alpha}}{-u_{S,n} s_{S,n} (\bar{\alpha} - u_{S,n} / s_{S,n})} \right| \to 0 \quad \text{as} \quad n \to \infty$$
 (2)

(see [1]). Let

$$\overline{X_1(\varepsilon)} = [0, 1) \times (-\varepsilon, 0] \cup [0, 1) \times (1, 1+\varepsilon)$$

where ε is positive but small enough. We consider the following two cases.

- (1) If for every N, there exists $n \ge N$ such that $(\alpha_{S,n}, \alpha_{S,n}^*) \in \overline{X}_1 \overline{X_1(\varepsilon)}$, then $(\alpha_{S,n}, \overline{\alpha_{S,n}}) \in \overline{X}_1$ by (2).
- (2) If there exists N such that $(\alpha_{S,n}, \alpha_{S,n}^*) \in \overline{X_1(\varepsilon)}$ for every $n \ge N$, then $\{i_{S,1}, i_{S,2}, \cdots\} = \{1, 1, \cdots\}$ or $\{2, 2, \cdots\}$.

From (1) and (2), it follows that the name of α with respect to S is periodic. Conversely, if $\{i_{S,1}, i_{S,2}, \dots\}$ is periodic, that is, there exist N and k with $\alpha_{S,N} = \alpha_{S,N+k}$, then from (1),

$$\alpha = \frac{t_{S,N} + u_{S,N} \cdot \alpha_{S,N}}{r_{S,N} + s_{S,N} \cdot \alpha_{S,N}}$$

$$= \frac{t_{S,N+k} + u_{S,N+k} \cdot \alpha_{S,N+k}}{r_{S,N+k} + s_{S,N+k} \cdot \alpha_{S,N+k}}$$

$$= \frac{t_{S,N+k} + u_{S,N+k} \cdot \alpha_{S,N}}{r_{S,N+k} + s_{S,N+k} \cdot \alpha_{S,N}}.$$

So $\alpha_{S,N}$ is quadratic, therefore α is quadratic.

REMARK. The converse of Proposition 1 also holds from Theorem 1. In fact if, the name of α with respect to S is a purely periodic sequence with a period k, then from (1), $\alpha = (t_{S,k} + u_{S,k} \cdot \alpha)/(r_{S,k} + s_{S,k} \cdot \alpha)$, and so α is quadratic.

From Theorem 1, there exists N such that $\alpha_{S,N}$ is S-reduced. Since $\alpha_{S,n}$'s, $n \ge N$, are S-reduced and $\alpha = \alpha_{S,kl}$ for every $l \ge 0$, we see that α is S-reduced from Lemma 1 (A).

Now we define the second transformation U from [0, 1) to [0, 1) as follows. We see properties analogous to those of S. We only state the definitions and the properties without any proofs.

We define the transformation U on $X_2 = [0, 1)$ by

$$U(x) = \begin{cases} U_1(x) = \frac{x}{1-x} & \text{if } 0 \le x < 1/2 \\ U_2(x) = \frac{1-x}{x} & \text{if } 1/2 \le x < 1 \end{cases}$$
 (Fig. 3).

The name of α with respect to U is given by $\alpha_{U,n} = U^n(\alpha)$ $(n \ge 0)$ and

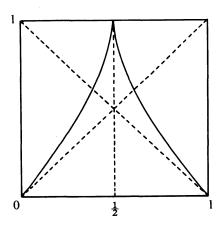


FIGURE 3

$$i_{U,n+1} = \begin{cases} 1 & \text{if } 0 \leq \alpha_{U,n} < 1/2 \\ 3 & \text{if } 1/2 \leq \alpha_{U,n} < 1 \end{cases} \quad (n \geq 0).$$

DEFINITION 1*. A quadratic number $\alpha \in X_2$ is called *U*-reduced if

$$(\alpha, \bar{\alpha}) \in \overline{X}_2 = [0, 1) \times (-\infty, 0]$$
.

The associated matrices with respect to U are given by

$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \qquad A_3 = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix},$$

which give the following relation;

$$\alpha = \frac{t_{U,n} + u_{U,n} \cdot \alpha_{U,n}}{r_{U,n} + s_{U,n} \cdot \alpha_{U,n}} \tag{3}$$

where

$$\begin{pmatrix} r_{U,n} & s_{U,n} \\ t_{U,n} & u_{U,n} \end{pmatrix} = A_{i_{U,1}} A_{i_{U,2}} \cdots A_{i_{U,n}} \qquad (n \ge 1).$$

Then we have

LEMMA 1*. For an U-reduced number α , we have

- (A) $\alpha_{U,1}$ is also U-reduced.
- (B) There exists a unique element $\alpha_{U,-1}$ in $U^{-1}(\alpha)$, which is U-reduced.

The proof is obtained by introducing a natural extension \bar{U} (Fig. 4):

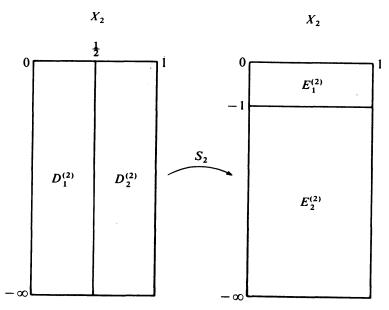


FIGURE 4

$$\bar{U}(x, y) = \begin{cases}
(U_1(x), U_1(y)) = \left(\frac{x}{1-x}, \frac{y}{1-y}\right) & \text{if } 0 \le x < 1/2 \\
(U_2(x), U_2(y)) = \left(\frac{1-x}{x}, \frac{1-y}{y}\right) & \text{if } 1/2 \le x < 1.
\end{cases}$$

LEMMA 2*. There are only finite number of U-reduced quadratic numbers with a given discriminant d>0.

The proof is obtained by the analogy with the proof of Lemma 2. We will also have the following:

PROPOSITION 1*. If $\alpha \in X_2$ is a quadratic surd and U-reduced, the name of α with respect to U is purely periodic.

THEOREM 1*. The number $\alpha \in X_2$ is quadratic if and only if the name of α with respect to U is periodic.

§2. Periodicity under the transformation T.

We consider the transformation T defined in §0. We note that $\{\Delta_1, \Delta_2, \Delta_3\}$ is a partition of X (Fig. 5) and that

$$T(\Delta_1) = X$$
, $T(\Delta_2) = X$, and $T(\Delta_3) = X - \{(x, y) \in X \mid y = 1 - x\}$.

Putting $\bar{X} = X \times X^*$, we define a transformation \bar{T} from \bar{X} to \bar{X} as follows:

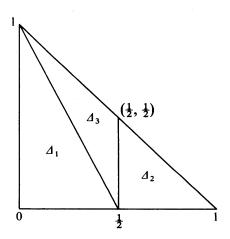


FIGURE 5

$$\overline{T}(x, y, z, w) = \begin{cases}
\left(\frac{x}{1-x}, \frac{y}{1-x}, \frac{z}{1-z}, \frac{w}{1-z}\right) & \text{if } (x, y) \in \Delta_1 \\
\left(\frac{2x-1}{x}, \frac{y}{x}, \frac{2z-1}{z}, \frac{w}{z}\right) & \text{if } (x, y) \in \Delta_2 \\
\left(\frac{1-2x}{1-x}, \frac{1-x-y}{1-x}, \frac{1-2z}{1-z}, \frac{1-z-w}{1-z}\right) & \text{if } (x, y) \in \Delta_3 .
\end{cases}$$

The transformation \overline{T} is a natural extension of T. Putting $(\alpha_n, \beta_n) = T^n(\alpha, \beta)$ $(n \ge 0)$ and $i_{n+1} = i$ if $(\alpha_n, \beta_n) \in \Delta_i$, we get a sequence (i_1, i_2, i_3, \cdots) , which we call the name of (α, β) .

LEMMA 3. Let α be a quadratic surd and $\beta \in Q(\alpha)$ be α -reduced. Then we have

- (A) β_1 is α_1 -reduced.
- (B) There exists a unique point $(\alpha_{-1}, \beta_{-1})$ in $T^{-1}(\alpha, \beta)$ so that β_{-1} is α_{-1} -reduced.

PROOF. We define a partition $\{\Delta_1^*, \Delta_2^*, \Delta_3^*\}$ of X^* by

$$\Delta_1^* = \{ (z, w) \in X^* \mid z \le 0, z < w \le 0 \}$$

$$\Delta_2^* = \{ (z, w) \in X^* \mid z > 1, 0 \le w < 1 \}$$

$$\Delta_3^* = \{(z, w) \in X^* \mid z > 1, 1 \le w < z\}$$
.

(A) For an α -reduced number β , there exists i (i = 1, 2 or 3) with

$$(\alpha, \beta, \bar{\alpha}, \bar{\beta}) \in \Delta_i \times X^*$$
.

Then we get $(\alpha_1, \beta_1, \bar{\alpha}_1, \bar{\beta}_1) = \bar{T}(\alpha, \beta, \bar{\alpha}, \bar{\beta}) \in X \times \Delta_i^*$ (Fig. 6). Therefore β_1 is α_1 -reduced.

(B) For an α -reduced number β , there exists i (i = 1, 2 or 3) with

$$(\alpha, \beta, \bar{\alpha}, \bar{\beta}) \in X \times \Delta_i^*$$
.

If we put

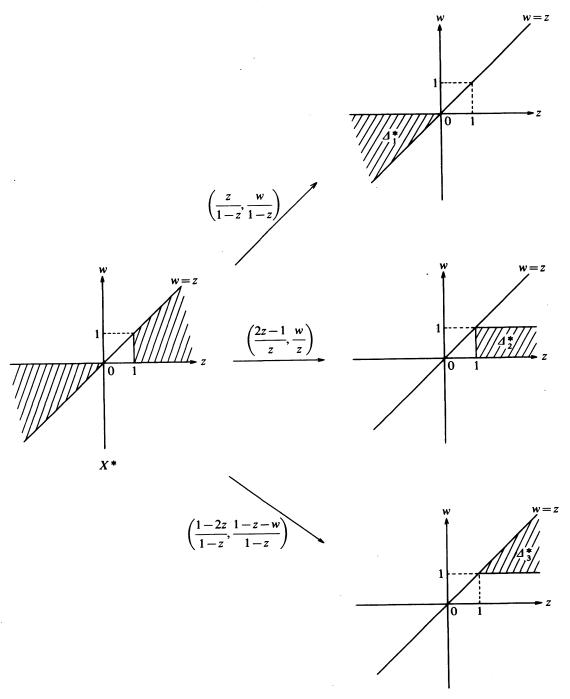


FIGURE 6

$$(\alpha_{-1}, \beta_{-1}) = \begin{cases} \left(\frac{\alpha}{1+\alpha}, \frac{\beta}{1+\alpha}\right) & \text{if } (\bar{\alpha}, \bar{\beta}) \in \Delta_1^* \\ \left(\frac{1}{2-\alpha}, \frac{\beta}{2-\alpha}\right) & \text{if } (\bar{\alpha}, \bar{\beta}) \in \Delta_2^* \\ \left(\frac{1-\alpha}{2-\alpha}, \frac{1-\beta}{2-\alpha}\right) & \text{if } (\bar{\alpha}, \bar{\beta}) \in \Delta_3^* \end{cases},$$

we have $(\alpha_{-1}, \beta_{-1}) \in \Delta_i \times X^*$. Therefore β_{-1} is α_{-1} -reduced.

LEMMA 4. Let $\alpha \in X$ be quadratic and $\beta \in \mathbf{Q}(\alpha)$ be α -reduced. Then the cardinality of the set $\{\alpha_0, \alpha_1, \alpha_2, \cdots\}$ is finite.

PROOF. By Proposition 1, the sequence of α with respect to S is purely periodic. We denote its period by k. We denote the sequence $(\alpha_{S,0},\alpha_{S,1},\cdots)$ by $(\alpha_0,\alpha_1,\cdots)$. For every quadratic surd α and α -reduced $\beta \in \mathbf{Q}(\alpha)$, we have $\alpha \in \{\alpha_{S,0},\cdots,\alpha_{S,k-1}\}$ because α is also S-reduced. For any $i \ge 0$, if $(\alpha_i,\beta_i) \in \Delta_1 \cup \Delta_2$ and there exists l $(0 \le l \le k-1)$ such that $\alpha_i = \alpha_{S,l}$, then $\alpha_{i+1} = \alpha_{S,l+1}$ $(0 \le l \le k-2)$ or $\alpha_{i+1} = \alpha_{S,0}$ (l=k-1). When $(\alpha_i,\beta_i) \in \Delta_3$ and there exists l $(0 \le l \le k-1)$ such that $\alpha_i = \alpha_{S,l}$, we put

$$\alpha'_{i+1} = \frac{1 - 2\alpha_{S,i}}{1 - \alpha_{S,i}} = 1 - \frac{\alpha_{S,i}}{1 - \alpha_{S,i}} = 1 - \alpha_{S,i+1}$$

and

$$\beta_{i+1}' = 1 - \frac{\beta_i}{1 - \alpha_i}.$$

There are two possibilities:

(1) $0 \le \alpha'_{i+1} < 1/2$ (equivalently $1/2 < \alpha_{S,i+1} < 1$). If $(\alpha'_{i+1}, \beta'_{i+1}) \in \Delta_1$, then we have

$$1 - \frac{\alpha'_{i+1}}{1 - \alpha'_{i+1}} = 1 - \frac{1 - \alpha_{S,l+1}}{1 - (1 - \alpha_{S,l+1})} = \frac{2\alpha_{S,l+1} - 1}{\alpha_{S,l+1}} = \alpha_{S,l+2}.$$

If $(\alpha'_{i+1}, \beta'_{i+1}) \in \Delta_3$, then we have

$$\frac{1-2\alpha'_{i+1}}{1-\alpha'_{i+1}} = \frac{1-2(1-\alpha_{S,l+1})}{1-(1-\alpha_{S,l+1})} = \frac{2\alpha_{S,l+1}-1}{\alpha_{S,l+1}} = \alpha_{S,l+2}.$$

(2) $1/2 \le \alpha'_{i+1} < 1$ (equivalently $0 \le \alpha_{S,i+1} < 1/2$). If $(\alpha_{S,i+1}, \beta_{S,i+1}) \in \Delta_1$, we have

$$1 - \frac{2\alpha'_{i+1} - 1}{\alpha'_{i+1}} = 1 - \frac{2(1 - \alpha_{S,l+1}) - 1}{1 - \alpha_{S,l+1}} = \frac{\alpha_{S,l+1}}{1 - \alpha_{S,l+1}} = \alpha_{S,l+2}.$$

If $(\alpha_{S,l+1}, \beta_{S,l+1}) \in \Delta_3$, we have

$$\frac{2\alpha'_{i+1}-1}{\alpha'_{i+1}} = \frac{2(1-\alpha_{S,l+1})-1}{1-\alpha_{S,l+1}} = \frac{1-2\alpha_{S,l+1}}{1-\alpha_{S,l+1}} = \alpha_{S,l+2}.$$

In both cases, every element of the sequence $(\alpha_0, \alpha_1, \cdots)$ is included in

$$\mathfrak{A}(\alpha) = \{\alpha_{S,0}, \cdots, \alpha_{S,k-1}, \alpha'_0, \cdots, \alpha'_{k-1}, 1-\alpha'_0, \cdots, 1-\alpha'_{k-1}\}.$$

Since the cardinality of the set $\mathfrak{A}(\alpha)$ is finite, the cardinality of the set $\{\alpha_0, \alpha_1, \cdots\}$ is finite. Now, we define the matrices associated with T as follows;

$$B_1 = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad B_2 = \begin{pmatrix} 2 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \quad B_3 = \begin{pmatrix} 2 & -1 & 0 \\ 1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}.$$

We define $p_n^{(i)}$, $q_n^{(i)}$, $r_n^{(i)}$, and ε_n by

$$\begin{pmatrix} q_n^{(1)} & q_n^{(2)} & 0 \\ p_n^{(1)} & p_n^{(2)} & 0 \\ r_n^{(1)} & r_n^{(2)} & \varepsilon_n \end{pmatrix} = B_{i_1} B_{i_2} \cdots B_{i_n} \qquad (n \ge 0) .$$

From [1], we get

$$\alpha = \frac{p_n^{(1)} + p_n^{(2)} \alpha_n}{q_n^{(1)} + q_n^{(2)} \alpha_n},\tag{4}$$

$$\beta = \frac{r_n^{(1)} + r_n^{(2)} \alpha_n + \varepsilon_n \beta_n}{a_n^{(1)} + a_n^{(2)} \alpha_n}.$$
 (5)

LEMMA 5. Let α be a quadratic surd and $\beta \in Q(\alpha)$ be α -reduced. Then the cardinality of the set $\{\beta_0, \beta_1, \beta_2, \cdots\}$ is finite.

Proof. We put

$$\alpha_{j} = \frac{n_{j} + l_{j}\sqrt{d}}{m_{j}}, \quad \beta_{j} = \frac{u_{j} + v_{j}\sqrt{d}}{t_{j}} \quad (m_{j}, n_{j}, l_{j}, t_{j}, u_{j}, v_{j} \in \mathbb{Z}, \ j \ge 0)$$

From Lemma 4, it follows that there exist at most finite number of such m_j 's. From (5) and $\varepsilon_n = \pm 1$, we get

$$\beta_n = \varepsilon_n \{ (q_n^{(1)} + q_n^{(2)} \alpha_n) \beta - r_n^{(1)} - r_n^{(2)} \alpha_n \}.$$

Therefore we have $t_j = m_j \times t_0$ and there are finitely many such t_j 's. Since β is α -reduced, we see that β_n is α_n -reduced for any $n \ge 1$ by Lemma 3 (A). Noting that

$$0 < \beta_n < 1 - \alpha_n$$
, $|\overline{\beta_n}| < |\overline{\alpha_n}|$,

we conclude from Lemma 4 that there are only finitely many such β_n 's.

Therefore we obtain the following proposition.

PROPOSITION 2. Let α be a quadratic surd and $\beta \in \mathbf{Q}(\alpha)$ be α -reduced. Then the name of (α, β) is purely periodic.

PROOF. From Lemma 3 (A), β_n is α_n -reduced for any n > 0. From Lemma 5, there exist i and N such that $\beta_i = \beta_{i+N}$. From Lemma 3 (B), we have $\alpha_{i-1} = \alpha_{i+N-1}$ and $\beta_{i-1} = \beta_{i+N-1}$. In the same way, we have

$$\alpha_{i-2} = \alpha_{i+N-2}$$
 and $\beta_{i-2} = \beta_{i+N-2}$, ..., $\alpha_0 = \alpha_N$ and $\beta_0 = \beta_N$.

Finally we show the results on more general case.

THEOREM 2. Let $(\alpha, \beta) \in X$ and α be a quadratic surd. The number β belongs to $Q(\alpha)$ if and only if the name of (α, β) is periodic.

PROOF. We consider the transformation \overline{T} on the extended domain $X \times \mathbb{R}^2$. Such an extension is possible because \overline{T} is defined by two linear fractional transformations. To prove the necessity, it is enough to show that there exists $N \in \mathbb{N}$ such that $(\alpha_{N-1}, \beta_{N-1}, \overline{\alpha}_{N-1}, \overline{\beta}_{N-1}) \in \overline{X}$. From the definition of β , we have

$$\beta_n = \delta_{n-1} + \frac{\gamma_{n-1}\beta_{n-1}}{\varepsilon_{n-1} - \alpha_{n-1}}, \tag{6}$$

where

$$(\gamma_i, \delta_i, \varepsilon_i) = \begin{cases} (1, 0, 1) & \text{if } (\alpha_i, \beta_i) \in \Delta_1 \\ (1, 0, 0) & \text{if } (\alpha_i, \beta_i) \in \Delta_2 \\ (-1, 1, 1) & \text{if } (\alpha_i, \beta_i) \in \Delta_3 \end{cases}.$$

From (6), we get

$$\beta_{n} = \left(\delta_{n-1} + \frac{\gamma_{n-2}\delta_{n-2}}{\varepsilon_{n-1} - \alpha_{n-1}} + \dots + \frac{\gamma_{n-2} \cdots \gamma_{1}\gamma_{0}}{(\varepsilon_{n-1} - \alpha_{n-1}) \cdots (\varepsilon_{1} - \alpha_{1})}\right) + \frac{\gamma_{n-2} \cdots \gamma_{1}\gamma_{0} \cdot \beta_{0}}{(\varepsilon_{n-1} - \alpha_{n-1}) \cdots (\varepsilon_{1} - \alpha_{1})(\varepsilon_{0} - \alpha_{0})}.$$

$$(7)$$

Now we define

$$(\alpha_n, \beta_n, \bar{\alpha}_n, \beta_n^*) = \overline{T}^n(\alpha_0, \beta_0, \bar{\alpha}_0, 0).$$

From $(\alpha_0, \beta_0, \bar{\alpha}_0, 0) \in \bar{X}$, we have $(\alpha_n, \beta_n, \bar{\alpha}_n, \beta_n^*) \in \bar{X}$ for every $n \ge 0$ by Lemma 3 (A). Noting $\gamma_i = \pm 1$, we have

$$|\overline{\beta}_n - \beta_n^*| = \left| \frac{\beta_0}{(\varepsilon_{n-1} - \overline{\alpha}_{n-1}) \cdot \cdot \cdot (\varepsilon_1 - \overline{\alpha}_1)(\varepsilon_0 - \overline{\alpha}_0)} \right|$$

by (7). We show $|\overline{\beta}_n - \beta_n^*| \to 0$ as $n \to \infty$.

(1) if $(\alpha_i, \beta_i) \in \Delta_1$ and $|\epsilon_i - \bar{\alpha}_i| < 1$, then $1 < \bar{\alpha}_i < 2$ by $\epsilon_i = 1$. For

$$\left| (\varepsilon_i - \bar{\alpha}_i) \left(\varepsilon_{i+1} - \frac{\bar{\alpha}_i}{1 - \bar{\alpha}_i} \right) \right| = \begin{cases} |\bar{\alpha}_i| & \text{if } \varepsilon_{i+1} = 0 \\ |1 - \bar{\alpha}_i| & \text{if } \varepsilon_{i+1} = 1 \end{cases}$$

the left hand side of the above formula is larger than 1.

(2) If $(\alpha_i, \beta_i) \in \Delta_2$ and $|\epsilon_i - \bar{\alpha}_i| < 1$, then $-1 < \bar{\alpha}_i < 0$. Hence

$$\left| \left(\varepsilon_i - \bar{\alpha}_i \right) \left(\varepsilon_{i+1} - \frac{2\bar{\alpha}_i - 1}{\bar{\alpha}_i} \right) \right| > 1 ,$$

which follows in the same way as (1).

(3) If $(\alpha_i, \beta_i) \in \Delta_3$ and $|\epsilon_i - \bar{\alpha}_i| < 1$, then $1 < \bar{\alpha}_i < 2$. Hence

$$\left| (\varepsilon_i - \bar{\alpha}_i) \left(\varepsilon_{i+1} - \frac{1 - 2\bar{\alpha}_i}{1 - \bar{\alpha}_i} \right) \right| > 1 ,$$

which follows in the same way as (1).

From (1), (2) and (3), the sequence $(\alpha_0, \alpha_1, \alpha_2, \cdots)$ is periodic and we see $|\overline{\beta}_n - \beta_n^*| \to 0$ (as $n \to \infty$).

Now we consider the case that $(\bar{\alpha}_n, \beta_n^*)$ belongs to the boundary of X^* for any n larger than some N. We put

$$X^*(\varepsilon) = \{(z, w) \in X^* \mid |w| < \varepsilon \text{ or } |z-w| < \varepsilon \}$$
.

To analyze the behavior of $(\Delta_i \times X^*)$ by \overline{T} , we consider the following two cases.

(1) There exists N such that for any $n \ge N$,

$$(\bar{\alpha}_n, \beta_n^*) \in \{(z, w) \in X^*(\varepsilon) \mid |w| < \varepsilon\}$$
.

(2) There exists N such that for any $n \ge N$,

$$(\bar{\alpha}_n, \beta_n^*) \in \{(z, w) \in X^*(\varepsilon) \mid |z-w| < \varepsilon\}$$
.

In the case (1), we get $(i_1, i_2, \dots) \in \{1, 2\}^N$ and such a point (α, β) belongs to

$$I_0 = \{(\alpha, \beta) \in X \mid 0 \le \alpha < 1, \beta = 0\}$$
.

From $I_0 \subset \Delta_1 \cup \Delta_2$, for every $(\alpha, \beta) \in I_0$, we have

$$(\alpha_n, \beta_n) = (S^n(\alpha), 0)$$
.

In the case (2), we get $(i_1, i_2, \cdots) \in \{1, 3\}^N$ and such a pair (α, β) belongs to

$$J_0 = \{(\alpha, \beta) \in X \mid \beta = \alpha\}$$
.

On $J_0 \subset \Delta_1 \cup \Delta_3$, we define a transformation T' by

$$T'(x, y) = \begin{cases} \left(\frac{x}{1 - x}, \frac{y}{1 - x}\right) & \text{if } (x, y) \in \Delta_1 \\ \left(\frac{1 - 2x}{1 - x}, \frac{1 - x - y}{1 - x}\right) & \text{if } (x, y) \in \Delta_3 \end{cases}.$$

We see that T' and U are isomorphic by the mapping U_1 . The sequence $(i_{U,1}, i_{U,2}, i_{U,3}, \cdots)$ is periodic as we have seen in §1. Hence (i_1, i_2, \cdots) is periodic because the periodicity is preserved by the isomorphism.

Next we show the sufficiency. Before doing this, we need the following:

COROLLARY 1 (The converse of Proposition 2). If the name of (α, β) is purely periodic, then α is quadratic and β is α -reduced.

PROOF. By (4) and (5), we have α is quadratic and $\beta \in Q(\alpha)$. By the necessity part of Theorem 2, there exists N such that

$$(i_1, i_2, \cdots) = (i_1, i_2, \cdots, i_{N-1}, \overline{i_N, \cdots, i_{N+k-1}}).$$

By the pure periodicity of the name of (α, β) , we get N=1. From the proof of the necessity part of Theorem 2, we conclude $(\alpha, \beta, \bar{\alpha}, \bar{\beta}) \in \bar{X}$.

Now, we prove the sufficiency part of Theorem 2. Assume that there exist N and k with

$$(i_1, i_2, \cdots) = (i_1, \cdots, i_N, \overline{i_{N+1}, \cdots, i_{N+K}}).$$

Since the name of (α_N, β_N) is purely periodic, α_N is quadratic and β_N is α_N -reduced by Corollary 1. Therefore α is quadratic and $\beta \in Q(\alpha)$.

§3. Invariance under substitutions.

Let $C(\alpha, \beta)$ be the characteristic sequence of $(\alpha, \beta) \in X$ in §0. We define the substitutions on the set of finite sequences of $\{0, 1\}$ by

$$\delta_1: 0 \longrightarrow 0$$
, $\delta_2: 0 \longrightarrow 01$, $\delta_3: 0 \longrightarrow 01$.

The following theorem is due to $\lceil 1 \rceil$.

THEOREM. Let $(\alpha, \beta) \in X$, and (i_1, i_2, \cdots) be the name of (α, β) introduced in §2. Then the sequence $C(\alpha, \beta)$ is given by

$$C(\alpha, \beta) = \lim_{n \to \infty} (\delta_{i_1} \circ \delta_{i_2} \circ \cdots \circ \delta_{i_n})(0) .$$

By this theorem and Theorem 2, we have the following corollary.

COROLLARY 2. Let α be a quadratic surd and $(\alpha, \beta) \in X$ and (i_1, i_2, \cdots) be the name of (α, β) . The number β belongs to $Q(\alpha)$ if and only if there exist N and k such that the sequence $C(\alpha_N, \beta_N)$ is $\delta_{i_{N+1}} \circ \delta_{i_{N+2}} \circ \cdots \circ \delta_{i_{N+k}}$ -invariant.

PROOF. If $\beta \in Q(\alpha)$, then there exist N and k with

$$(i_1, i_2, \cdots) = (i_1, \cdots, i_N, \overline{i_{N+1}, \cdots, i_{N+k}})$$

by Theorem 2. By [1], we have

$$C(\alpha, \beta) = \lim_{n \to \infty} (\delta_{i_1} \circ \delta_{i_2} \circ \cdots \circ \delta_{i_n})(0).$$

From

$$C(\alpha_N, \beta_N) = \lim_{m \to \infty} (\delta_{i_{N+1}} \circ \cdots \circ \delta_{i_{N+m}})(0),$$

we have

$$C(\alpha_N, \beta_N) = (\delta_{i_{N+1}} \circ \cdots \circ \delta_{i_{N+k}}) \cdot C(\alpha_N, \beta_N)$$
.

Conversely if $C(\alpha_N, \beta_N) = (\delta_{i_{N+1}} \circ \cdots \circ \delta_{i_{N+k}}) \cdot C(\alpha_N, \beta_N)$, we get

$$C(\alpha_N, \beta_N) = (\delta_{i_{N+1}} \circ \cdots \circ \delta_{i_{N+k}})^n \cdot C(\alpha_N, \beta_N)$$
 for any n .

Thus we have

$$\lim_{m\to\infty} (\delta_{i_{N+1}} \circ \delta_{i_{N+2}} \circ \cdots \circ \delta_{i_{N+m}})(0) = \lim_{n\to\infty} (\delta_{i_{N+1}} \circ \cdots \circ \delta_{i_{N+k}})^{n}(0).$$

For a given (α, β) , there is a 1-1 correspondence between the name of (α, β) and the sequence $C(\alpha, \beta)$. Then we have

$$(i_{N+1}, i_{N+2}, \cdots) = (\overline{i_{N+1}, \cdots, i_{N+k}})$$

and

$$(i_1, i_2, \cdots) = (i_1, \cdots, i_N, \overline{i_{N+1}, \cdots, i_{N+k}}).$$

Therefore we get $\beta \in \mathbf{Q}(\alpha)$ from Theorem 2.

References

- [1] SH. Ito and S. Yasutomi, On continued fractions, substitutions and characteristic sequences [nx+y]-[(n-1)x+y], Japanese J. Math., 16 (1990), 287-306.
- [2] Sh. Ito, Algorithms with mediant convergents and their metrical theory, Osaka J. Math., 26 (1989), 557-578.
- [3] Y. HARA and Sh. Ito, On real quadratic fields and periodic expansions, Tokyo J. Math., 12 (1989), 357-370.
- [4] H. NAKADA, On ergodic theory of A. Schmidt's complex continued fractions over Gaussian field,

Monatshefte für Math., 105 (1988), 131-150.

- [5] A. L. SCHMIDT, Diophantine approximation of complex numbers, Acta Math., 134 (1975), 1-85.
- [6] K. SCHMIDT, On periodic expansions of Pisot-numbers and Salem-numbers, Bull. London Math. Soc., 12 (1980), 269–278.
- [7] B. A. Venkov, Elementary Number Theory, Wolter-Noordhoff, 1970.

Present Address:

YUKO HARA-MIMACHI DEPARTMENT OF MATHEMATICS, MEIJO UNIVERSITY SHIOGAMAGUCHI, TENPAKU-KU, NAGOYA 468, JAPAN

Shunji Ito Department of Mathematics, Tsuda College Tsuda-Machi, Kodaira-shi, Tokyo 187, Japan