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Introduction.

In this paper we study the structure of the algebra of invariant differential
operators on a homogeneous vector bundle over a reductive coset space, define the
eigensections and spherical sections, and determine the dimension of the space of the
spherical sections in case of a vector bundle over a Riemannian symmetric space.

Let G be a connected Lie group with Lie algebra g and K be a closed subgroup
with Lie algebra I. We assume that G/K is reductive, that is, there exists an Ad(K)-
invariant subspace p in g such that g=I+p (direct sum). Let g, . and p. be the
complexifications of g, f and p respectively. Let U(g,) and U(f,) be the universal en-
veloping algebra of g, and f, respectively, S(p.) the symmetric algebra of p., and
T the canonical anti-automorphism of U(g,) defined by 1T=1, x"=—x, (xy)"=y"x"
(x, yeg,). Let © be a representation of K on a complex vector space V of finite di-
mension, dt be its differential representation of U(f,) and let .# be the kernel of dr in
U(,). #7 denotes the image of .# under T. Let E, be the homogeneous vector bundle
over G/K associated to t and D(E,) be the algebra of G-invariant differential oper-
ators on E,. In §1 we establish a linear isomorphism between D(E,) and K-invariants
in S(p,)® End V (Proposition 1.2). Then under a certain condition, we have an algebra
isomorphism D(E,)= U(g,)X/U(g)*nU(g,).# " (Theorem 1.3).

Let y be a finite-dimensional representation of the algebra D(E,). In §2, we give a
definition of an eigensection of E, of type x (Definition 2.1) and give a definition of a
spherical section (Definition 2.4) which is a generalization of the so-called (zonal)
spherical functions ([5], [7]). In particular when K is compact, we can give an upper
bound of the dimension of the space of spherical sections (Theorem 2.5).

In §3 we determine the dimension of the space of spherical sections by using the
Poisson transform (Definition 3.2) when G/K is a Riemannian symmetric space
(Theorem 3.5).
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We shall use C for the field of complex numbers. If M is an analytic manifold, D
a differential operator and f a differentiable function, the value of Df at x in M is
often denoted by f(x; D). If E is an analytic vector bundle over M, we denote by #(E)
the space of hyperfunctions of type E over M (for details, see [13]). In this paper we
shall usually call a hyperfunction of type E over M a hyperfunctional section (or simply
a hyperfunction) of E over M. For a group G and G-modules V and W, let V¢ denote
the set of G-invariants in ¥ and let Homg(V, W) denote the set of homomorphisms
which commute with the action of G. For a vector space H, let H* denote the dual
space of H and let {, > denote the canonical bilinear form on H* x H.

1. The algebra of invariant differential operators.

In this section we assume that G is a connected Lie group with Lie algebra g and
K is a closed subgroup of G with Lie algebra T such that G/K is reductive, that is, there
exists an Ad(K)-invariant subspace p complementary to f in g. We fix such p once and
for all. We keep to the notation in the introduction. '

Let 7 be a representation of K on a complex vector space V, of finite dimension and
let E, be the vector bundle over G/K associated to t. Let C*(G, V,) be the space of
C* functions on G with values in V, and let C®(G, 1) be the space of the elements f
in C*(G, V,) such that f(gk)=1t(k~)f(g) for all g in G and all k in K. We identify the
fiber of E, at eK with V, and define u~(g) =g~ 'u(gK) for g in G and u in C*®(E,). Then
u~ lies in C®(G, t) and C®(E,) is isomorphic to C*(G, t) by the correspondence
ur—>u”~. Hereafter we identify C*(E,) with C*(G, 7).

Let g act on C*(G, V) by

Xf(g)= (i f@exp tX)) (Xeg).
dt t=0

Then this action induces a representation of U(g.) on C*(G, V,). Let ¢ be another
finite-dimensional representation of K on ¥V, and let L(V,, V,) denote the space of
all linear maps from V, to V,. For X in U(g.) and T in L(V, V,), set (XQ®T)f=
T-Xf (f e C*(G, V,)). This assigns a differential operater from G x V, to G x V, to each
element in U(g)®L(V,, V,) ([15, 5.4.5]). Let D(E, E,) denote the space of all
homogeneous differential operators from E, to E, (for the definition see [15,
5.4.1]). If t equals o, we denote D(E,, E,) simply by D(E,) and call its elements invari-
ant differential operators of E..

Since g and p are K-modules, K acts on U(g,) and S(p.) canonically. Let K act on
LV, V,) by

kT=o(k) - T-t(k™") (TeL(V,V,)

and let K act on U(g)QL(V,, V,) and S(p.))®L(V,, V,) by tensor product. By [15,
Proposition 5.4.11], for any element De(U(g,)®L(V,, V)X
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D(C®(G, 1)) = C*(G, o) .

Therefore D defines an element Ae D(E,, E,) through the isomorphism C*(E))=
C*®(G, 1) and C®(E,)~C>(G, ¢). We define a map p, from (U(g)®L(V,, V)X to
D(E,, E,) by sending D to the above A. Thus, for De(U(g)®L(V,, V)X and ue
C>(E,), putting A= uy(D) we have

Aw)~=Du").

Let A be the symmetrization from S(g.) to U(g.) and let v be the linear map from
S@IRL(V,, V,) to U@IRL(V,, V,) defined by v(p@T)=A(p)®T (peS(a), Te
L(V., V,)). We regard S(p,) as the subalgebra of S(g,) generated by p and 1. Let vg
be the restriction of v to (S(p.)®L(V,, V,))X. Since v is a K-isomorphism, vk is an
isomorphism from (S(p )R L(V,, V,))¥ onto (A(S(P))IRL(V,, V,)X. We define {x to
be the map p,* vg from (S(p)RL(V,, V,))X into D(E,, E,).

For simplicity we denote the differential representation of t also by the same sym-
bol 7.

LEMMA 1.1. Let 1 (resp. o) be a finite-dimensional representation of K on V, (resp.
V), and let E, (resp. E,) be the associated bundle to t (resp. ) over G/K. Then the map
Lx from (SpIRL(V,, V)X to D(E,, E,) is an onto isomorphism.

PrOOF. Let A be an arbitrary element in D(E,, E,). Then there exists an element
D in U(g)®L(V,, V,) whose restriction to C*(G, t) induces A by the identification
C*(E,)=C>(G, 1) ([15, Proposition 5.4.11]). Let X, X,, - -, X, (resp. Y, Y,, - -, ¥,)
be a basis of p (resp. f). By the decomposition U(gc)=A(S(pc))U(fc) ([3, Proposition

2.4.15]), with multi-indices a and B, D is written as

D=Y AX)Y’®A,, (A3 L(V,, V).
a,p

Set D, to be the element y, ,A(X)®A, 5 t((Y#)") and rewrite it as ), A(X*)® B,. Then
for any fe C*(G, 1) and g€G,

(DN(g)= Zﬂ A, g(AXYP )(9)

= XI; A g7 (Y)W AX*) ) g)
= (D p.f)(g) .
Since A belongs to D(E,, E,),

(Df)gk)=a(k™)Df)g) 9eG,keK).
Therefore,
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(Df)gk)=0(k™ ) (Df)g)
=a(k™ " )D,N9) -
On the other hand, since f belongs to C*(G, 1),

(Df)gk)=(Dy.f)gk)
=2 B,otk T WAA(K) A(X) /)(g) -

Therefore, we have
(D)) =(Q. 6(k)B.r(k™ " )(Ad(K)A(X))) f)g)
=((kDy)f)g) -

Since G/K is a reductive coset space, C*(G, t) has sufficiently many elements in order
to conclude that D,=kD, for all ke K. Therefore D, belongs to (A(S(P)RL(V,, V)X
and po(D,)=A. Hence {y is surjective. Injectivity of { is proved by the same arguments.
This finishes the proof.

From now on, we assume moreover that o equals T and the differential of 7, which
is denoted also by 1, is irreducible. We ragard U(g)X as a subset of (U(g.)®End V)X
by sending g+ ¢®Id and let u be the restriction of u, to U(g,)X. Extending 7 to the
representation of U(f,) canonically, let # be the kernel of 7 in U(1,). Since Ad(k) (k€ K)
commutes with T and .# is K-invariant, # " is also K-invariant and S(p,)® U(t,)/# " is
regarded as a K-module by tensor product. Then the map & given by

(q®2)=q®(+SFT) (e Sk.), ze UR,)

is clearly a K-homomorphism from S(p.)® U(f,) onto S(p,)® U(t,)/.# . Therefore, the
restriction of & to (S(p.)® U(f,))¥ gives a homomorphism & from (S(p,)® U(,))X into
(S(PI®UE,)/F X

Now since 7 is irreducible, the map 7 given by

ng®(z+FN)=9®t(z")  (geS®p.), z€ U(E,)

is a well-defined K-isomorphism from S(p.)® U(t)/# " onto S(p.)®End V, and the
restriction of n to (S(p.)® U(.)/.# )X gives an isomorphism 5y from (S(p,)® U(E,)/.# "X
onto (S(p.)®End V).

Let y be the map given by

Y(g®z)=A(q)z (ge S, ze U()) .

Then ¢ is a K-isomorphism from S(p))® U(f,) onto U(g,) by [3, Proposition 2.4.15].
Therefore, restricted to (S(p,) ® U)X, ¢ gives an isomorphism ¥ of (S(p.)® U)X
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onto U(g,)X.

PROPOSITION 1.2. Let © be a finite-dimensional representation of K on V, whose
differential is irreducible. Let u, {, ng, x and Y be as above. Then

() u is an algebra homomorphism of U(g,)* into D(E,) and the following diagram is
commutative:

(SPI® U~ (SPI@U(E)/F VK 2=, (S(pr)®End V)X

l//l( = CK =

U(gc)K — D (Et) .

(i) The kernel of u is U(g)*nU(g,)# .
(iii) Let ux be the algebra isomorphism of U(g.)%/U(8,)*nU(g,).# " into D(E,) given

by u and (ii). Then py is bijective if, and only if, Sk is surjective.

PROOF. (l) Take any pe (S(pc)® U(fc))Ka write it as P=Z qi®zi (qie S(pc)5 z;€
U(t,)) and set D=y (p). Then for any feC®(G, t) and geG, we have

D= Z A1)z
nxCx(P) =2 4:®1(z])
and
(WD) N)g) = A(4:)z:./)9)
=Y t(z))(A@))g) -
On the other hand, we have
CxtnE(PNNG) = Cx(E a:®1(zD) )9

=(T A(g)®(z))S)9)

=Y. 1z (A f)9) -
Therefore we get

u(D) f =Lxnx(Ex(PN)S -

(i) By the bijectivity of the maps Y, nx and (g, we have ker u= U(g )X ny(ker &)
by (i). Since ker¢ is equal to S(p)®.F", keru is equal to U(g)* n U(g)#" ([3,
Proposition 2.4.15]).

(iii) This follows immediately from (i). This completes the proof.
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Now we give some sufficient conditions for the surjectivity of ug.

THEOREM 1.3. Let G be a connected Lie group and let K be a closed subgroup of
G such that G/K is reductive. Let T be a finite-dimensional representation of K such that
its differential representation is irreducible and let # be the kernel of T in U(L,). Let E,
be the vector bundle over G/K associated to t and let D(E,) be the algebra of invariant
differential operators on the vector bundle E,. Then the algebra isomorphism uy of
U@G)* /U)X nU(8,)# T into D(E,) is surjective if one of the following conditions is
satisfied.

(i) There exists a K-invariant subspace ¢ in U®) such that Ut)= 5@ ¢ (direct
sum), or equivalently UX)=S5"® ¢ (direct sum).

(it) The adjoint representation of K on £, is semisimple.

(iii)) Ad(K) is compact.

Proor. Clearly (iii) implies (ii) and (ii) implies (i) (cf. [1]). Now assume that ¢
is a K-invariant subspace such that U(f,)=#@®_¢. Then since Ad(k) (ke K) commutes
with T, we have U(f)=4"@® ¢ " and a K-homomorphism a: S(p,)® U(t)/.# - S(p)®
U(t.) such that £ -« is identity. Therefore & is surjective and consequently py is surjective
by Proposition 1.2. This finishes the proof.

REMARK. Let 7 be the trivial representation of K and let D(G/K) denote the algebra
of invariant differential operators on G/K. Then, since .# = U(f)f, we have a K-invariant
direct sum decomposition U(f)= U(,)I@®C, and by the above theorem, we have the
well-known isomorphism

U(g)*/U(8)*nU(g)t = D(G/K)

for the reductive coset space G/K.

2. [Eigensections and spherical sections.

In this section we assume that G is a connected Lie group and K is a compact
subgroup of G. Then the coset space G/K is automatically reductive ([7]). We keep to
the notation in §1.

Let R(D,) denote the set of the equivalence classes of finite-dimensional representa-
tions of the algebra D(E,). We denote a representation y of D(E,) on a vector space H
by (x, H), and denote its equivalence class by [y, H] (or simply by [x]).

Let #(E,) be the space of hyperfunctional sections of E, over G/K. Let G act on
B(E,) by n(g)u(x)=gu(g~'x) for ge G, ue B(E,), and xe G/K (see [15]). Then B(E,) is
regarded as a G-module by n. For any u in #(E), let ¥~ denote the V -valued
hyperfunction on G which corresponds to u by u~(g)=g" 'u(gK) (g G) in the same
way as §1. With the consideration of Lemma 3.4 we give the following

DEerFINITION 2.1. Let [y, H] be in R(D,). A (hyperfunctional) section u in #(E,) is
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called an eigensection of type y if there exists a finite number of D(E,)-invariant subspaces
H; such that 1) u belongs to > H,, and 2) as a D(E,)-module, each H; is isomorphic to
a quotient D(E,)-module of H.

Let #(E., x) be the space of eigensections of type x. Because of the G-invariance
of Ae D(E), #(E,, ) is a G-invariant subspace of #(E,).

LEMMA 2.2. All sections in B(E,, x) are analytic.

PrROOF. Let p be an Ad(K)-invariant subspace of g such that g=f@®p. Then there
exists an Ad(K)-invariant inner product on p since K is compact. Let X, X, - -+, X,,
be an orthonormal basis of p with respect to this inner product. Then the element
g=0Q_,X?)®1 belongs to (S(p.)@End V)X. Put A={x(q). Then A is an elliptic
differential operator. Let S be a subspace of #(E,, x) which is isomorphic to a quotient
of H and take an arbitrary element « in S. Then, since dim(S) is finite, there exists a
monomial P(¢) in ¢ such that P(A)u=0. Since P(A) is also elliptic, we see that u is
analytic. This finishes the proof. '

Hereafter we write &/(E,, x) instead of #(E, x).

Let d(1) be the dimension of ¥, and let dk be the Haar measure on K so normalized
that the total volume of K is equal to 1. Let f be a V,-valued analytic function on G and
consider the following three conditions:

(C fgh)=1(k"")f(g (9geG,kekK),

(C2) flkgk™")=f(g) (9€G, keK),

(C3)  d(D)ftr(z(k)) f(k™'g)dk=f(g) (9€GC).

Let & (resp. 7) be the space of such analytic functions on G that satisfies (C1)
and (C3) (resp. (C2) and (C3)). Let e denote the identity element in G. :

LEMMA 2.3. Let S and T be the linear maps defined by

(Sf)(g)=f' flkgk™Ndk  (fe¥, ge@),
K

(Tf)g)=d(v)? J wk)f(gkydk  (feT, geG).

K

Then

(i) S is an isomorphism of & onto I and T is its inverse.

(i) Let f be an element of & and let D be an element of U(g.)X. Then (Sf)(e; D)
is equal to f(e; D). In particular, if [ satisfies f(e; D)=0 for all De U(g)X, then f is
equal to zero.

Proof. The first assertion (i) is clear if we notice that tr(z(k~!)) =tr(z(k)) and that
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d(z) j trG(k))r(k)dk =1d
K

d(7) j w(kk k™ VYdk = (tr(z(k,))Id
. |

(here Id denotes the identity operator on V), since vis irreducible. Let D be in U(g,)X.
Then

(Sf)(e; D)= f S (e; Ad(k)D)dk = f(e; D) .
K
Now suppose f(e; D)=0 for all De U(g.)*. Given De U(g,), put
DX = I Ad(k)Ddk .
K

Since (Sf)(e; Ad(k)D)=(Sf)(e; D), we have (Sf)(e; DX)=(Sf)(e; D), Then using (i), we
have (Sf)(e; D)= f(e; DX)=0 for all De U(g,). G being connected, Sf=0. Hence S=0
by (i). This completes the proof.

Let [x, Hle R(D,). Then from the definition of «/(E,, x), we have Au=0 for Ae
ker y and ue o(E,, x). Therefore u gives a map D(E,)/ker xy— V, by A+ (Au)(eK). Thus
we can define a linear map s, of (E,, ) into V,Q@(D(E,)/ker x)* such that

(5,0, A+Kker x> =(Au)(eK)
for Vue o (E,, y) and VAe D(E)) .

DEFINITION 2.4. Asectionuin /(E,, x)is called spherical if u satisfies the condition
d(7) J tr(z(k))rn(k)udk =u .
K

It is clear that ue A (E,, x) satisfies the above condition if and only if ¥~ satisfies
condition (C3). Let /(E,, x)* denote the space of spherical sections in 2/(E,, ).

THEOREM 2.5. Let G be a connected Lie group and K be a compact subgroup of G.
Let t be a finite-dimensional representation of K and assume that the differential of t is
irreducible. Let E, be the vector bundle over G/K associated to t and let y be a finite-
dimensional representation of D(E,). Then the restriction of s, to A(E,, x)* is injective. In
particular,

dim (E,, x)* <d(1)-dim(D(E,)/ker x) .

PROOF. Suppose ue o/ (E,, X)* satisfies 5,(«) =0. Then by the definition of s,, for
VD e U(g.)*,
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(u(D)u)~(e)=0.

Since (u(D)u)~(e)=u"(e; D), we get u~ =0 by using Lemma 2.2 and Lemma 2.3, which
completes the proof.

3. Spherical sections and the Poisson transform on Riemannian symmetric spaces.

In this section we assume that G is a connected semisimple Lie group with finite
center. Let K be a maximal compact subgroup of G and let g and T be the Lie algebras
of G and K, respectively as before. Let p be the orthogonal complement of f in g with
respect to the Killing form of g. Since p is Ad(K)-invariant, G/K is reductive. We keep
to the notation in previous sections. Fix a maximal abelian subspace a of p, then
complexify g, fand a to g,, f, and a, respectively, and introduce a linear order in the dual
space a*. Let X and X, be the set of restricted roots and positive restricted roots,
respectively. For any root « in X, we denote by g, the root space in g corresponding
to «. We put n=y__, g, and p=4Y,_, dim(g,)o. Let 4 and N denote the analytic
subgroups of G corresponding to a and n, respectively. Then by the Iwasawa de-
composition G=KAN, write any geG as g=x(g)e"®n with k(g)e K, H(g)ea and
ne N. Let M be the centralizer of 4 in K and put P=MAN.

Let 7 be an irreducible representation of K on a vector space V and let E, be the
vector bundle over G/K associated to 7. In this section too, we denote the differential
of T by t. Let 1,, denote the restriction of 7 to the group M. For a finite-dimensional
representation ¢ of M on V, and Ae€a¥, let F,; denote the vector bundle over G/P
associated to the representation P3amanrse'”**PH@g(m) (meM,ac A, neN). In
particular, if 6=1,, we write simply F,, instead of F,, ;. Let #(E,) and #(F, ;)
be the spaces of hyperfunctional sections of E, and F,; over G/K and G/P, respec-
tively. As in §2, #(E, and %(F,,) are considered as G-modules and we denote
the action of G on #(E,) and #(F,;) by n and =, ,, respectively. Let #(G, t) and
#(G, (0, A)) denote the spaces of V-valued hyperfunctions f on G such that f(gk)
=tk )f(g) (geG, keK) and f(gman)=e* PH%G(m~1)f(g) (geG,meM, ae 4,
ne N), respectively. Then in the same way as C*(E,)=~ C*(G, 1), we have the canonical
isomorphisms #(E,)~%(G, ) and #(F, ;)= %(G, (g, 2)). Throughout this section, we
identify #(E) and %(F,,) with #(G,t) and %(G, (0, A)), respectively, by these
isomorphisms.

Let M be the set of equivalence classes of irreducible representations of M and R,
be the set of ¢ in M such that [7: ¢], the multiplicity of o in 1,,, is positive. For ceM
we denote by V, the fixed M-module in o, and for simplicity we denote the representation
of M on V_ also by o.

Let U(g,), U(n,), U(a,) and U(f,) be the universal enveloping algebras of g, n, a,
and ¥, respectively. For D e U(g,)X let w(D) be the element in U(a,)U(f,) determined by
the condition D—w(D)enU(g,). Then identifying U(a)U(¥) with the algebra



240 KATSUHIRO MINEMURA

U(a,)® U(,), we have an algebra anti-isomorphism w of U(g)¥ into U(a)® U(¥)M
([31, [91, [12]). Let # be the kernel of 7 in U(f) and End,, V' be the set of
TeEnd V such that t(m) - T=T-1(m) for all me M. Let # denote the automorphism
of U(a,) given by $(H)=H+p(H) (Hea) and put 0,=#®(( ' 1) 0, 0,=#®1) w,
where t is regarded as a homomorphism of U(f)) onto End ¥ and T is the canonical
anti-automorphism of U(g,). Then w, (resp. w;) is an algebra homomorphism (resp.
anti-homomorphism) of U(g)X into U(a,)®End, V, and the kernel of w, is equal to
U(g X nU(g)# T ([9, Corollary 4.5]). Since K is compact and connected and 7t is
irreducible, u,: U(g)*/U(g) N U(g,).# T— D(E,) is a surjective algebra isomorphism by
Theorem 1.3. Therefore there exists a unique algebra isomorphism y, of D(E,) into
U(a))®End,V such that y,-u=ow,.

For Aea,, let e; be the evaluation map of U(a,) into C defined by e,(H)=<{4, H)
(Hea,). For 0 € R,, let H, denote Hom,(V,, V). Since V is isomorphicto ) _ R, Ve®H,
as an M-module, we have Endy V=) _. EndH,. Define w, to be the projection of
End,V to EndH, according to this decomposition. Put

Xea=(€,®1d) 1, ,
Xeo2=(€2005) " x:

Dr2=Xe,a B>
Wi6,0= Kea,a" M -

For o€ M and Aea*, let ¥(o, 1) denote the space of K-finite sections of #(F, ;) under
m,,,. Then by the differential representation of n, ;, which we shall denote also by =, ,,
V(o, A) is regarded as an admissible (g., K)-module and hence Homg(V, ¥V (o, 1)) is
regarded as a U(g,)*-module canonically. Let t* and 6* (¢ € R,) denote the contragredient
representation of T and ¢ on V* and V7, respectively, and put Wi 4. ; =(€; @@, ) - Wia.

‘Since o* is irreducible, the bilinear form

(b, a)=tr(a’-b) (beH,.,aeH,)
is non-singular, where &' denotes the transpose of a.

LEMMA 3.1. Leto bein R, and A be in a¥, and regard H, and Homg(V*, V(c*, — 1))
as U(g.)X-module by w,, ; and 7. _;, respectively.
(i) For DeU(g)X, be H,. and ac H, we have

<w;‘,a“,}.(D)b9 a> = <bs wt,a‘,l(D)a> ’

and as a U(g,)X-module, H, is isomorphic to Homg(V*, V(c*, —1)).
(ii) If V(o*, —A) is an irreducible (g., K)-module, then H, is irreducible.

ProOF. (i) Take any De U(g)X and write D as
D = Z hiz,- + w (hi € U(Clc), Z,- (3 U(fc), we I'IU(QC)) .
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Then for be H,« and ae H,, we have
{Wis g2,2(D)b, @) =tr(a' W v, 2(D)b)
=tr(} d'e; + ,(h;)T*(z;)b)
=tr(} e;+ ,(h;)a't'(z])b)
=tr((F. €1+ ,(h;)e(z])a)'b)
= tr((@,,,.(D)a)’b)
=<b, ®, q,1(D)a) .

On the other hand, H,. is adjoint to Homy(V*, V(c*, —A)) by [9, Theorem 5.5
and Theorem 7.2]. Therefore H, is isomorphic to Homg(V*, V(c*, — 1)) as a U(g)X-
module.

(ii) This follows immediately from [10, Theorem 5.5]. This finishes the proof.

Now we are in the position to give the definition of the Poisson transform for the
vector bundle E, following Okamoto [11]. Let dk be the normalized Haar measure on
K. For ¢ e B(F,;), consider the function Z_ ;¢ on G given by

(Z2:.:9)(9)= f w(k)p(gk)dk  (9eG).
K

Then one can show that
(Z2.,.9)9)= J e~ A+ PHG™ 1(1e(g ~ k) Pp(k)dk
K

and that 2, ;¢ belongs to #(E,). Put P, ,(g)=e A*PHE Dy(x(g~1)). Since ¥, , is
analytic and K is compact, 2, ;¢ is an analytic section of E,. Let &/(E,) denote the
space of analytic sections of E, on G/KX.

DEefFINITION 3.2. The map 2, , from %(F,,) into «/(E,) is called the Poisson
transform for E..

LemMMA 3.3. For any De U(g)X, P, (g; D)=, (9) o, (D) (g€ G).
PrROOF. Write De U(g)X as

D=Zhiz,~+z th}Zj s
i J

where w;e nU(n,), h;and h;e U(a,), and z;€ U(t,). Thenforne N,ae Aand ke K, we have
V. x(nak; D)=1(k~")¥, ,(na; D)

=t(k” 1){2 ¥..(na; hiz,)+ 2P, ((na; wjhjzj)}
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=1(k™ e @Y e, (h)e(2]),
i

since ¥, ;(na; X)=0 for Xen. Therefore we get

¥ ((nak; D)=V y(nak) Y e;(¥h;)e(z])

=¥ (nak): w, (D),
which completes the proof.

Now for g € R,, regard H, as a trivial bundle over G/K. Then, since F, , is isomorphic
to the direct sum of F, ;® H, (c€ R,), we have

BF, )= Y BF,,)RH, (direct sum)

ceR;

and #(F, ;)®H, is regarded as a subspace of #(F, ;) by the G-isomorphism
B(F, )®H, BZ o ®a; — Z aip;e B(F, ;) .

Define the map 2, , ; to be the restriction of 2, ; to #(F, ,))®H,.
Let H,, (seR,) denote Homy(V, V,). For Aca¥ and w=) v,®b,c VQH,,
(v;eV, b;e H, ,), the function ¥, given by

You(g) =2 A~ PH@p, - 1(x(g) ™ ")y,

clearly belongs to #(F, ;). Let #(F, ;)" be the set of the section ue %B(F, ;) satisfying

d(z) J tr(z(k))n, ;(Kudk=u .
K

Thenthemap I', ;: w—y,, is an isomorphism of V@ H, , onto #(F, ,)* by the Frobenius
reciprocity theorem. Hereafter we identify V®H, , with #(F, ;) by I', ;.

Let (x, H) be a subrepresentation of (x,, ., H,). Since ¢ is irreducible, the bilinear
form (b, a)=d(t) " 'tr(b-a) (be H,,, ae H,) is non-singular. By this bilinear form we
can identify H, with H},, dual of H,,. Then we have canonical isomorphisms

D(E)/ker x=y(D(E,))<End Hx HQH*c H,Q H*=(H, , @ H)* .

Let p, be the linear map from H, ,® H onto (D(E,)/ker x)* defined to be the transpose

of the above inclusion D(E,)/ker y=(H, ,®H)*. We regard #(F, ;))® H as a subspace
of #(F, ;)®H, canonically.

LEMMA 3.4. Let (x, H) be a subrepresentation of (%, .., H,) (6€ R,, A€ a¥).
() 2., is a G-homomorphism of #(F, ;)® H into s/(E,) and the diagram
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Id® x(A
BE, )QH D, B(F, )oH
gat,a,l gt,a.l

A
S(E,) . (E)

is commutative for all Ae D(E,). Therefore we have
gt,a,ﬁ. : '@(Fa,i.)®H—)"d(Ers X) s
gt,a’,}. : '@(Fa,l)t®H_)"d(Ev X)t .

(ii) Let s, be the linear map from s/(E., x) into VQ(D(E,)/ker x)* defined in §2.
Then we have the following commutative diagram:

r Id
BE, yQH 2% V®H, ,QH
‘@r.a,l Id®P,
A(E,, 1) Y VR(D(E,)/ker n)*.

Proor. (i) The G-equivariance of Z_,, , is clear from the definition of Z, ;. Let
acH and ¢ B(F, ). Put u=2,_, ,(¢®a). For Ae D(E,), take a De U(g,)* such that
w(D)=A. Then by Lemma 3.3,

(Au)(g) =u(g; D)

=| Y. uk™19) @, (D) ad(k)dk
JK

=1 Y.1k"19)* (Ae,o.2(D)D)P(K)dK

=| Y. k™' g) 1d@x(A))(P®a)(k)dk ,

JK

which shows that the above diagram is commutative and that u belongs to «/(E,, x).
Hence, by the G-equivariance, the image of #(F, ;)’® H is contained in «/(E,, x)".
(i) LetveV, beH,, and ae H. Put u=2_, ; (v®b®a). Then for VAe D(E),
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(Au)(e) = f ¥ (k™ e,0,1(A)al’, ;(v@b)(K)dk
K

= J ©(k)(Xe,0,1(A)@)be (k™ vk
K

=d(t) " 'tr(Ye,q,1(A)ab)v
=<b, x(A)ayv .
On the other hand by the definition of p,, we have
P (b®a), A+ker x)>=<b, x(A)a) .
Therefore we obtain that s,* 2, , ,(v®b®a)=vQp,(bRa). This completes the proof.

THEOREM 3.5. Let G be a connected semisimple Lie group with finite center and
let K be a maximal compact subgroup of G. Let t be a finite-dimensional representation
of K and assume that the differential of t is irreducible, and let E, be the vector bundle
over G/K associated to t. Let (x, H) be a subrepresentation of (X, ,.,, H,) for o in R, and
A in a}. Then we have the followings:

(1) The map s, is an isomorphism of A(E,, x)* onto V@ (D(E,)/ker x)*.

(ii) [Identifying #(F, ;) ® H with VR H, ,® H we have

gt,a,l( V®Ht,d’®H) = M(Et’ X)t >
ker?, ,,"V®H, ,QH=VQkerp, .

(iii) The following three conditions are mutually equivalent:
1)  X..0.1 is irreducible.

2) dim H(E,, ¥, =d@)[7 : 61

3) 2., is injective on VRH, ,QH,.

PrOOF. This theorem follows immediately from Theorem 2.5, Lemma 3.4 and the
surjectivity of p,.
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