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1. Introduction.

In this paper, we consider about knots and links in the 3-sphere $S^{3}$ .
A 3-gon move is a local move on a link diagram as indicated in Figure 1.1. In [3],

Y. Nakanishi showed that a $\Delta$ -unknotting operation can be realized by a finite sequence
of 3-gon moves. A $\Delta$ -unknotting operation is a local move on a diagram as shown in
Figure 1.2, and it is a kind of unknotting operation ([2]). Hence a 3-gon move is a
kind of unknotting operation. We generalize the notion of 3-gon moves to n-gon moves
as shown in Figure 1.3. In section 2, we obtain some results about n-gon moves which
are similar to those about $H(n)$-moves in [1]. For example, we will show that for given
any knot $K$, there exists an integer $n$ such that $K$ can be transformed into a trivial knot
by one n-gon move.

FIGURE 1.1.

FIGURE 1.2.
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FIGURE 1.3.

In section 3, we will apply n-gon moves to links and will consider the number of
the equivalence classes generated by n-gon moves.

2. n-gon moves on knots.

DEFINITION. For any integer $n(\geq 3)$ , an n-gon move on a link diagram is a local
move on the diagram as indicated in Figure 1.3. And more precisely, under the notations
$T^{+}(n),$ $T^{-}(n)$ in Figure 1.3, an $n^{+}- gon$ move on a diagram is a local move that replace
a tangle $T^{+}(n)$ with a tangle $T^{-}(n)$ and an $n^{-}- gon$ move on a diagram is the inverse
move of an $n^{+}$ -gon move.

REMARK. In fact, for any integer $n(\geq 3),$ $n^{+}$ -gon and $n^{-}$ -gon moves are equivalent
moves, i.e. each move can be realized by a finite sequence of the other moves.

DEFINITION. For any integer $n(\geq 3)$ , an n-gon move on a link is a deformation of
the link which corresponds to an n-gon move on a diagram of the link. Similarly, $n^{+}$ -gon
and $n^{-}- gon$ moves on a link are defined.

PROPOSITION 2.1. For any integer $n(\geq 3)$ , every knot can be transformed into a
trivial knot by afinite sequence ofn-gon moves, i.e. an n-gon move is a kind ofunknotting
operation.

PROOF. This follows from the following lemma:

LEMMA 1. (1) Any knot can be transformed into a trivial knot by afinite sequence
of 3-gon moves.

(2) For any integern $(\geq 3),$ $ann- gonmovecanberealizedbyan(n+1)$-gon move.

PROOF. (1) In [3], Y. Nakanishi showed that a $\Delta$ -unknotting operation can be
realized by a finite sequence of 3-gon moves. So the proof is completed.

(2) Figure 2.1 illustrates how this can be accomplished.
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FIGURE 2.1.

PROPOSITION 2.2. For any integer $n(\geq 3)$ , every knot can be transformed into a
trivial knot by a finite,sequence of $n^{+}$ -gon moves, i.e. an $n^{+}$ -gon move is a kind of
unknotting operation.

PROOF. This follows from the following lemma:

LEMMA 2. (1) Any knot can be transformed into a trivial knot by afinite sequence
of $3^{+}- gon$ moves.

(2) For any integern $(\geq 3),$ $ann^{+}- gonmovecanberealizedbyan(n+1)^{+}$ -gon move.

PROOF. (1) Figure 2.2 shows that a $\Delta$ -unknotting operation can be realized by a
finite sequence of $3^{+}$ -gon moves.

(2) Figure 2.1 illustrates how this can be done. $\square $
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FIGURE 2.2.

REMARK. Similarly, we can also prove that an $n^{-}$ -gon move is a kind ofunknotting
operation.

DEFINITION. For a knot $K$ and an integer $n(\geq 3),$ $u_{n}(K)$ is defined to be the
minimum number ofn-gon moves which are necessary to transform $K$ into a trivial knot.

For a knot $K$ and an integer $r(\geq 2)$ , let $mg(K, r)$ denote the minimum number
of generators of the first integral homology group of the r-fold cyclic branched covering
space of $S^{3}$ branched along $K$.

PROPOSITION 2.3. For a knot $K$ and integers $n(\geq 3)$ and $r(\geq 2)$ , we have

$u_{n}(K)\geq mg(K, r)/(n-1)(r-1)$ .
PROOF. By replacing an $H(n)$-move by an n-gon move in the proof of The rem

4 in [1], we can obtain Proposition 2.3. $\square $

PROPOSITION 2.4. For any knot $K$ and any integer $n(\geq 3)$ , we have
$u_{n}(K)\geq u_{n+1}(K)$ .

PROOF. This is obvious from Lemma 1 (2). $\square $

THEOREM 2.5. For any knot $K$, there exists an integer $n$ such that $u.(K)=1$ .
$PR\infty F$ . First of all, we show the following lemma:
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LEMMA 3. There exists a diagram $k$ of the knot $K$ satisfying thefollowing condition:

$(*)$ $k$ includes disjoint tangles $T_{1}^{+}(3),$ $T_{2}^{+}(3),$ $\cdots,$ $T_{l}^{+}(3)$ for some 1, so that, $k$ is

transformed into a diagram of a trivial knot by $3^{+}- gon$ moves on $T_{1}^{+}(3),$ $T_{2}^{+}(3)$ ,
$T_{l}^{+}(3)$ .

PROOF OF LEMMA 3. By Proposition 2.2, $K$ can be transformed into a trivial knot
by a finite sequence of $3^{+}$ -gon moves. For each $3^{+}$ -gon move in this sequence, attach
a disk to $K$ as in Figure 2.3 such that these attaching disks are disjoint from each other.
Thus $K$ is deformed into a trivial knot $K_{O}$ with attaching disks. Let $l$ be the number of
these disks. Moreover, by contracting these disks, we may draw a diagram $k_{0}$ of $K_{0}$

with attaching disks, as follows:
$k_{0}$ contains disjoint 3-tangles $TS_{1},$ $TS_{2},$ $\cdots,$ $TS_{l}$ with attaching disks as in Figure
2.4, and the remaimder part of $k_{0}$ is adiagram of disjoint arcs in $S^{3}$ (for example,
see Figure 2.5).

FIGURE 2.3.

FIGURE 2.5.

Finally we construct a diagram of $K$ in the following way. For each tangle
$TS_{j}(i=1,2, \cdots, 1)$ in $k_{0}$ , we remove the attaching disk and apply a $3^{-}$ -gon move as
shown in Figure 2.6. Denote $T_{j}^{+}(3)$ be the resulting “small” 3-tangle in Figure 2.6.
Then we obtain a diagram of $K$ which satisfies the condition $(^{*})$ . $\square $

FIGURE 2.6.
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Let $k$ be a diagram of $K$ satisfying $(^{*})$ . More generally, we consider the following
condition on a knot diagram $D$ :
$(**)_{l}$ $D$ includes $l$ disjoint tangles $T_{1}^{+}(n_{1}),$ $T_{2}^{+}(n_{2}),$

$\cdots,$ $T_{l}^{+}(n_{l})$ for some $l$ (where $n_{1}$ ,
$n_{2},$ $\cdots,$ $n_{l}\geq 3$), so that, by an $n_{i}^{+}$ -gon move on $T_{i}^{+}(n_{i})$ for all $i(1\leq i\leq l),$ $D$ is
transform$ed$ into a diagram of a trivial knot.

Since $k$ satisfies $(^{**})_{l}$ , so, by the induction on $l$, we can show Theorem 2.5
using the following lemma:

LEMMA 4. Assume $l\geq 2$ . Let $k$ be a diagram of $K$ satisfying $(^{**})_{l}$ . Then there
exists a diagram of $K$ satisfying $(^{**})_{l-1}$ .

$PR\infty F$ OF LEMMA 4. Let $G$ be the diagram which is obtained from $k$ by collapsing
the tangles $T_{1}^{+}(n_{1}),$ $T_{2}^{+}(n_{2}),$

$\cdots,$ $T_{l}^{+}(n_{l})$ to vertices $v_{1},$ $v_{2},$ $\cdots,v_{l}$ respectively. Let $v_{i}$ ,
$v_{j}$ be vertices which are connected by an edge $e$ in $G$ .

FIGURE 2.7.

For simplicity, we consider the case $n_{i}=n_{j}=3$ . We can assume that there is a
neighborhood $U$ of $v_{i},$ $v_{j}$ and $e$ in $S^{2}$ such that $U\cap G$ looks like Figure 2.7. If it is not,
move $v_{j}$ along $e$ by an ambient isotopy of $S^{3}$ , and then we can obtain a diagram as
indicated in Figure 2.7. Therefore, we can assume that th$e$ corresponding part of $k$

looks like (a) or (b) in Figure 2.8. In the case (b), deform the diagram and choose the
other tangle $T^{\prime+}(3)$ as shown in Figure 2.9. Then $3^{+}$ -gon moves on $T_{i}^{+}(3)$ and $T_{j}^{+}(3)$

are equivalent to that on $T^{\prime+}(3)$ . So we can reduce to the case Figure 2.8 (a).

(a) (b)

FIGURE 2.8.
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$T_{j}^{+}(3)$ $\backslash \backslash \iota$

$d//$

FIGURE 2.9.

Next deform the diagram $U\cap k$ and choose a tangle $T^{+}(3+3+2)=T^{+}(8)$ as shown
in Figure 2.10. Then the $3^{+}$ -gon moves on $T_{i}^{+}(3)$ and $T_{j}^{+}(3)$ in $k$ can be realized by an
$8^{+}$ -gon move on $T^{+}(8)$ in the new diagram. Hence the proof is completed in the case
$ofn_{i}=n_{j}=3$ .

In the general case, by the same method, we can show that:

Two polygonal moves in $k$ (that is, the $n_{i}^{+}$ -gon move on $T_{i}^{+}(n_{i})$ and the
$n_{j}^{+}$ -gon move on $T_{j}^{+}(n_{j}))$ can be realized by a single $(n_{i}+n_{j}+2)- gon$ move on
$T^{+}(n_{i}+n_{j}+2)$ in another diagram of K., $\square $

COROLLARY 2.6. For any knot $K$, we have

$\lim_{n\rightarrow\infty}u_{n}(K)=1$ .
$PR\infty F$ . This follows from Proposition 2.4 and Theorem 2.5. $\square $

DEFINITION. For a knot $K,$ $p(K)$ is defined to be the minimum integer $n$ satisfying
$u_{n}(K)=1$ .

PROPOSITION 2.7. For a knot $K$ and integers $n(\geq 3)$ and $r(\geq 2)$ , we have

$p(K)\geq mg(K, r)/(r-1)+1$ .

PROOF. This follows by lettingn $=p(K)$ in Proposition2.3. $\square $

EXAMPLE (Y. Nakanishi). Let $n$ be an integer which satisfies $n\geq 4$ and $n\not\equiv O$

$(mod 3)$ . Then the knot $K_{n}$ as indicated in Figure 2.11 has $p(K_{n})=n$ (where $n=3k\pm 1$ ).

This follows from Proposition 2.7 using $mg(K_{n}, 2)=n-1$ .

3. An equivalence relation of links.

Let $L^{\mu}$ be the set of all $\mu$-component links. We define the equivalence relation $\sim n$
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FIGURE 2.11.

for links $L,$ $L^{\prime}\in L^{\mu}$ as follows:

$L\sim_{n}L^{\prime}=defL$ is obtained from $L^{\prime}$ by a finite sequence of n-gon moves.

THEOREM 3.1. Let $L=K_{1}\cup K_{2}u\cdots\cup K_{\mu}$ and $L^{\prime}=K_{1}^{\prime}\cup K_{2}^{\prime}\cup\cdots\cup K_{\mu}^{\prime}$ be two

$\mu$-component links. For any integer $n(\geq 3),$ $L_{n}\sim L^{\prime}\iota f$ and only if after suitably oriented
$and/or$ ordered if necessary, $L$ and $L^{\prime}$ satisfy the following condition with respect to their
linking numbers:

$\sum_{J_{j\neq i}^{--1}}^{\mu}lk(K_{i}, K_{j})\equiv$ $\sum_{-,j-1j\neq i}^{\mu}lk(K_{i}, K_{j})(mod 2)$ for all $i=1,2,$ $\cdots,$ $\mu$ .

PROOF. At first, we prove the following lemma:

LEMMA 5. For any integer $n(\geq 4)$ , an n-gon move can be realized by afinite sequence
of $(n-1)- gon$ moves.

$PR\infty F$ . This follows from Lemma 1 (2) and Figure 3.1. $\square $

By Lemma 1 (2) and 5, for any integers $m$ and $n(\geq 3)$ , if $L_{m}\sim L^{\prime}$ then $L_{n}\sim L^{\prime}$ . On
the other hand, in [3], it was shown the case of $n=3$ . So the proof is completed. $\square $

$L^{\mu}/\sim n$ denotes the set of equivalence classes of $L^{\mu}$ by $\sim n$

COROLLARY 3.2. For integers $\mu(\geq 1)$ and $n(\geq 3)$ , we have

$\#(L^{\mu}/\sim n)=2^{\mu-1}$ ,

where $\# A$ denotes the number of the elements contained in $A$ .

PROOF. By Lemma 1 (2) and 5, the number of the equivalence classes generated
by n-gon moves is independent of $n$ . On the other hand, in [3], it was shown that



120 HARUKO AIDA

FIGURE 3.1.

$\#(L^{\mu}/3\sim)=2^{\mu-1}$ . $\square $
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