Unknotting Operations of Polygonal Type

Haruko AIDA

Tsuda College
(Communicated by K. Katayama)

1. Introduction.

In this paper, we consider about knots and links in the 3-sphere S^3 .

A 3-gon move is a local move on a link diagram as indicated in Figure 1.1. In [3], Y. Nakanishi showed that a Δ -unknotting operation can be realized by a finite sequence of 3-gon moves. A Δ -unknotting operation is a local move on a diagram as shown in Figure 1.2, and it is a kind of unknotting operation ([2]). Hence a 3-gon move is a kind of unknotting operation. We generalize the notion of 3-gon moves to n-gon moves as shown in Figure 1.3. In section 2, we obtain some results about n-gon moves which are similar to those about H(n)-moves in [1]. For example, we will show that for given any knot K, there exists an integer n such that K can be transformed into a trivial knot by one n-gon move.

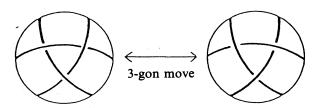


FIGURE 1.1.

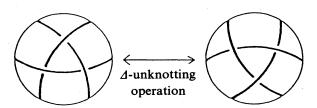


FIGURE 1.2.

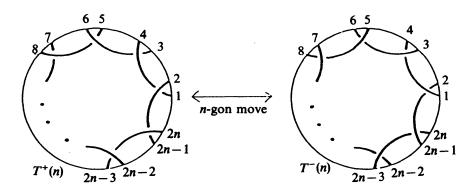


FIGURE 1.3.

In section 3, we will apply n-gon moves to links and will consider the number of the equivalence classes generated by n-gon moves.

2. *n*-gon moves on knots.

DEFINITION. For any integer $n \ge 3$, an *n*-gon move on a link diagram is a local move on the diagram as indicated in Figure 1.3. And more precisely, under the notations $T^+(n)$, $T^-(n)$ in Figure 1.3, an n^+ -gon move on a diagram is a local move that replace a tangle $T^+(n)$ with a tangle $T^-(n)$ and an n^- -gon move on a diagram is the inverse move of an n^+ -gon move.

REMARK. In fact, for any integer $n \ge 3$, n^+ -gon and n^- -gon moves are equivalent moves, i.e. each move can be realized by a finite sequence of the other moves.

DEFINITION. For any integer $n \ge 3$, an *n*-gon move on a link is a deformation of the link which corresponds to an *n*-gon move on a diagram of the link. Similarly, n^+ -gon and n^- -gon moves on a link are defined.

PROPOSITION 2.1. For any integer $n \ge 3$, every knot can be transformed into a trivial knot by a finite sequence of n-gon moves, i.e. an n-gon move is a kind of unknotting operation.

PROOF. This follows from the following lemma:

LEMMA 1. (1) Any knot can be transformed into a trivial knot by a finite sequence of 3-gon moves.

(2) For any integer $n \ge 3$, an n-gon move can be realized by an (n+1)-gon move.

PROOF. (1) In [3], Y. Nakanishi showed that a ∆-unknotting operation can be realized by a finite sequence of 3-gon moves. So the proof is completed.

(2) Figure 2.1 illustrates how this can be accomplished. \Box

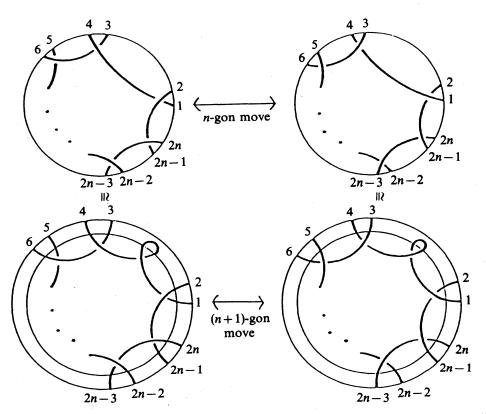


FIGURE 2.1.

PROPOSITION 2.2. For any integer $n \ge 3$, every knot can be transformed into a trivial knot by a finite sequence of n^+ -gon moves, i.e. an n^+ -gon move is a kind of unknotting operation.

PROOF. This follows from the following lemma:

LEMMA 2. (1) Any knot can be transformed into a trivial knot by a finite sequence of 3⁺-gon moves.

(2) For any integer $n \ge 3$, an n^+ -gon move can be realized by an $(n+1)^+$ -gon move.

PROOF. (1) Figure 2.2 shows that a Δ -unknotting operation can be realized by a finite sequence of 3^+ -gon moves.

(2) Figure 2.1 illustrates how this can be done.

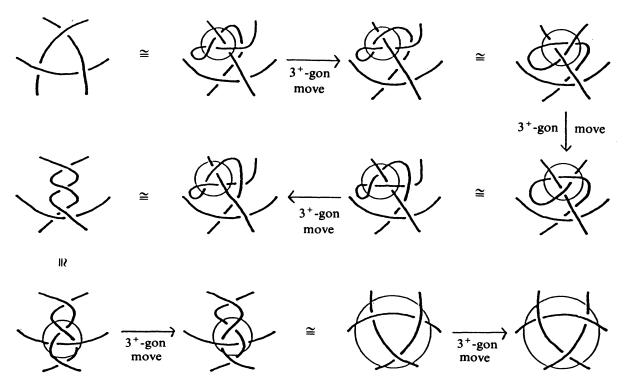


FIGURE 2.2.

REMARK. Similarly, we can also prove that an n^- -gon move is a kind of unknotting operation.

DEFINITION. For a knot K and an integer $n \ (\ge 3)$, $u_n(K)$ is defined to be the minimum number of n-gon moves which are necessary to transform K into a trivial knot.

For a knot K and an integer $r \ge 2$, let mg(K, r) denote the minimum number of generators of the first integral homology group of the r-fold cyclic branched covering space of S^3 branched along K.

PROPOSITION 2.3. For a knot K and integers $n \ge 3$ and $r \ge 2$, we have

$$u_n(K) \ge mg(K,r)/(n-1)(r-1) .$$

PROOF. By replacing an H(n)-move by an n-gon move in the proof of Theorem 4 in [1], we can obtain Proposition 2.3. \square

Proposition 2.4. For any knot K and any integer $n \ge 3$, we have

$$u_n(K) \ge u_{n+1}(K) .$$

PROOF. This is obvious from Lemma 1 (2).

THEOREM 2.5. For any knot K, there exists an integer n such that $u_n(K) = 1$.

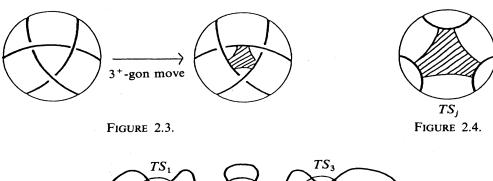
PROOF. First of all, we show the following lemma:

LEMMA 3. There exists a diagram k of the knot K satisfying the following condition:

(*) k includes disjoint tangles $T_1^+(3)$, $T_2^+(3)$, \cdots , $T_l^+(3)$ for some l, so that, k is transformed into a diagram of a trivial knot by 3^+ -gon moves on $T_1^+(3)$, $T_2^+(3)$, \cdots , $T_l^+(3)$.

PROOF OF LEMMA 3. By Proposition 2.2, K can be transformed into a trivial knot by a finite sequence of 3^+ -gon moves. For each 3^+ -gon move in this sequence, attach a disk to K as in Figure 2.3 such that these attaching disks are disjoint from each other. Thus K is deformed into a trivial knot K_0 with attaching disks. Let l be the number of these disks. Moreover, by contracting these disks, we may draw a diagram k_0 of K_0 with attaching disks, as follows:

 k_0 contains disjoint 3-tangles TS_1 , TS_2 , \cdots , TS_l with attaching disks as in Figure 2.4, and the remainder part of k_0 is a diagram of disjoint arcs in S^3 (for example, see Figure 2.5).



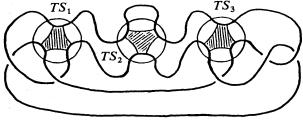


FIGURE 2.5.

Finally we construct a diagram of K in the following way. For each tangle TS_j $(j=1, 2, \dots, l)$ in k_0 , we remove the attaching disk and apply a 3⁻-gon move as shown in Figure 2.6. Denote $T_j^+(3)$ be the resulting "small" 3-tangle in Figure 2.6. Then we obtain a diagram of K which satisfies the condition (*).

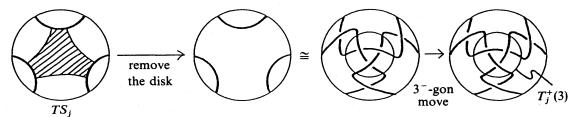


FIGURE 2.6.

Let k be a diagram of K satisfying (*). More generally, we consider the following condition on a knot diagram D:

(**)_l D includes l disjoint tangles $T_1^+(n_1)$, $T_2^+(n_2)$, \cdots , $T_l^+(n_l)$ for some l (where n_1 , n_2 , \cdots , $n_l \ge 3$), so that, by an n_i^+ -gon move on $T_i^+(n_i)$ for all i ($1 \le i \le l$), D is transformed into a diagram of a trivial knot.

Since k satisfies (**)_l, so, by the induction on l, we can show Theorem 2.5 using the following lemma:

LEMMA 4. Assume $l \ge 2$. Let k be a diagram of K satisfying (**)_l. Then there exists a diagram of K satisfying (**)_{l-1}.

PROOF OF LEMMA 4. Let G be the diagram which is obtained from k by collapsing the tangles $T_1^+(n_1)$, $T_2^+(n_2)$, \cdots , $T_l^+(n_l)$ to vertices v_1, v_2, \cdots, v_l respectively. Let v_i , v_j be vertices which are connected by an edge e in G.

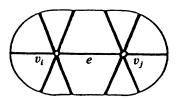
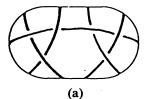


FIGURE 2.7.

For simplicity, we consider the case $n_i = n_j = 3$. We can assume that there is a neighborhood U of v_i , v_j and e in S^2 such that $U \cap G$ looks like Figure 2.7. If it is not, move v_j along e by an ambient isotopy of S^3 , and then we can obtain a diagram as indicated in Figure 2.7. Therefore, we can assume that the corresponding part of k looks like (a) or (b) in Figure 2.8. In the case (b), deform the diagram and choose the other tangle $T'^+(3)$ as shown in Figure 2.9. Then 3^+ -gon moves on $T_i^+(3)$ and $T_j^+(3)$ are equivalent to that on $T'^+(3)$. So we can reduce to the case Figure 2.8 (a).



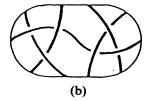


FIGURE 2.8.

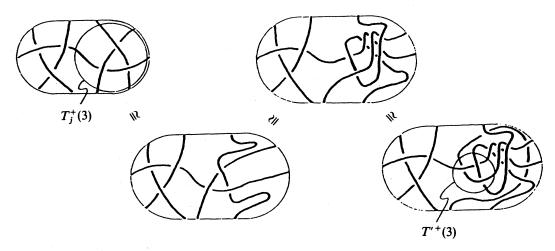


FIGURE 2.9.

Next deform the diagram $U \cap k$ and choose a tangle $T^+(3+3+2) = T^+(8)$ as shown in Figure 2.10. Then the 3⁺-gon moves on $T_i^+(3)$ and $T_j^+(3)$ in k can be realized by an 8⁺-gon move on $T^+(8)$ in the new diagram. Hence the proof is completed in the case of $n_i = n_j = 3$.

In the general case, by the same method, we can show that:

Two polygonal moves in k (that is, the n_i^+ -gon move on $T_i^+(n_i)$ and the n_j^+ -gon move on $T_j^+(n_j)$) can be realized by a single (n_i+n_j+2) -gon move on $T^+(n_i+n_j+2)$ in another diagram of K. \square

COROLLARY 2.6. For any knot K, we have

$$\lim_{n\to\infty}u_n(K)=1.$$

PROOF. This follows from Proposition 2.4 and Theorem 2.5.

DEFINITION. For a knot K, p(K) is defined to be the minimum integer n satisfying $u_n(K) = 1$.

PROPOSITION 2.7. For a knot K and integers $n \ge 3$ and $r \ge 2$, we have

$$p(K) \ge mg(K, r)/(r-1) + 1.$$

PROOF. This follows by letting n = p(K) in Proposition 2.3. \square

EXAMPLE (Y. Nakanishi). Let n be an integer which satisfies $n \ge 4$ and $n \ne 0$ (mod 3). Then the knot K_n as indicated in Figure 2.11 has $p(K_n) = n$ (where $n = 3k \pm 1$).

This follows from Proposition 2.7 using $mg(K_n, 2) = n - 1$.

3. An equivalence relation of links.

Let L^{μ} be the set of all μ -component links. We define the equivalence relation γ

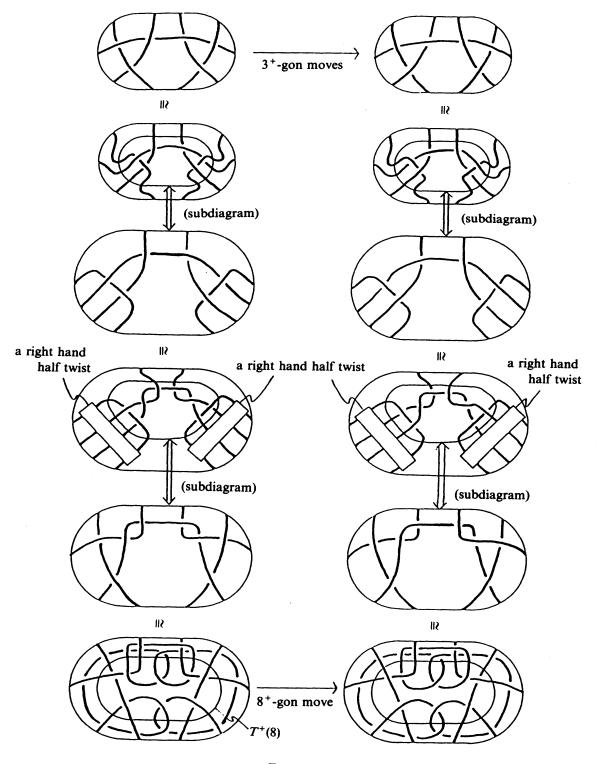


FIGURE 2.10.

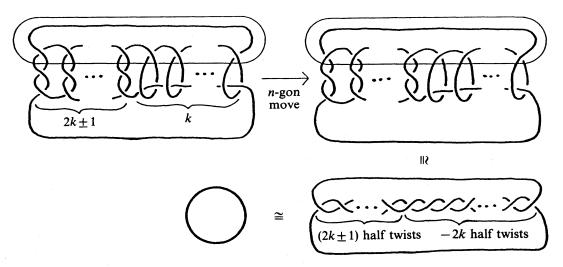


FIGURE 2.11.

for links $L, L' \in L^{\mu}$ as follows:

 $L_{n} L' \iff L$ is obtained from L' by a finite sequence of n-gon moves.

THEOREM 3.1. Let $L = K_1 \cup K_2 \cup \cdots \cup K_{\mu}$ and $L' = K'_1 \cup K'_2 \cup \cdots \cup K'_{\mu}$ be two μ -component links. For any integer $n \geq 3$, $L_n L'$ if and only if, after suitably oriented and/or ordered if necessary, L and L' satisfy the following condition with respect to their linking numbers:

$$\sum_{\substack{j=1\\j\neq i}}^{\mu} lk(K_i, K_j) \equiv \sum_{\substack{j=1\\j\neq i}}^{\mu} lk(K_i, K_j) \pmod{2} \quad \text{for all } i = 1, 2, \dots, \mu.$$

PROOF. At first, we prove the following lemma:

LEMMA 5. For any integer $n \ge 4$, an n-gon move can be realized by a finite sequence of (n-1)-gon moves.

PROOF. This follows from Lemma 1 (2) and Figure 3.1.

By Lemma 1 (2) and 5, for any integers m and $n \ge 3$, if $L_{\widetilde{m}}L'$ then $L_{\widetilde{n}}L'$. On the other hand, in [3], it was shown the case of n=3. So the proof is completed. \square

 $L^{\mu}/_{n}$ denotes the set of equivalence classes of L^{μ} by $_{n}$.

COROLLARY 3.2. For integers $\mu \ (\geq 1)$ and $n \ (\geq 3)$, we have

$$\sharp (L^{\mu}/_{n})=2^{\mu-1},$$

where #A denotes the number of the elements contained in A.

PROOF. By Lemma 1 (2) and 5, the number of the equivalence classes generated by n-gon moves is independent of n. On the other hand, in [3], it was shown that

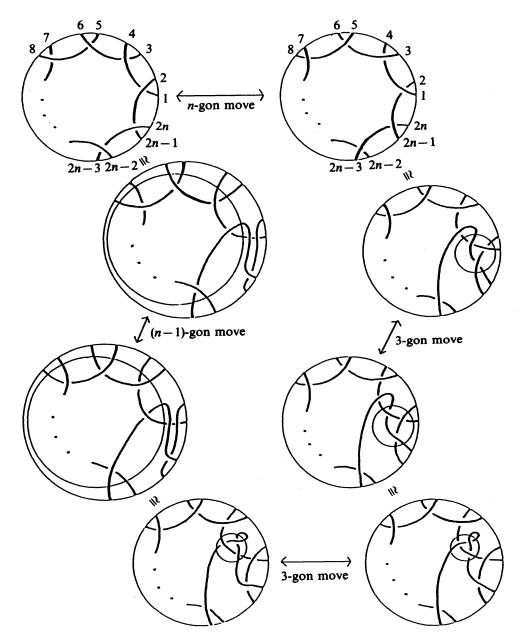


FIGURE 3.1.

$$\sharp (L^{\mu}/_{\widetilde{3}}) = 2^{\mu-1}.$$

ACKNOWLEDGEMENTS. The author wishes to thank Professor K. Sakamoto, Professor Y. Nakanishi and Professor Y. Ohyama for their useful advices and encouragements.

References

- [1] J. Hoste, Y. Nakanishi and K. Taniyama, Unknotting operations involving trivial tangles, Osaka J. Math., 27 (1990), 555-566.
- [2] H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann., 284 (1989), 75–89.
- [3] Y. NAKANISHI, Replacements in the Conway third identity, Tokyo J. Math., 14 (1991), 197-203.

Present Address:

DEPARTMENT OF MATHEMATICS, TSUDA COLLEGE TSUDA-MACHI, KODAIRA-SHI, TOKYO 187, JAPAN