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The aim of this paper is to correct the errors in our preveious paper [1]. There in
Lemma 2.7, we have misquoted a result of Kamiya [2]. Consequently the proof of
Proposition 2.10 [1] is not correct. But, by using the same result of Kamiya, we can
prove the following Proposition A which is stronger than Proposition 2.10.

Now let us define the trace form $\gamma_{B}$ for aGJTS $(U, B)$ (not necessarily of the 2nd
kind) as in [1]. Then the first equality in Lemma 2.7, $\gamma_{B}((xyz), w)=\gamma_{B}(z, (yxw))$ , is
valid for an arbitrary GJTS $(U, B)(cf.[2])$ . This fact will be used in the course of the
proof of Proposition A. In order to prove the second equality $\gamma_{B}(z, (yxw))=\gamma_{B}(x, (wzy))$

in Lemma 2.7, we need the equality $S_{S_{x,y}\langle z),w}=L_{w,z}S_{x,y}+S_{x,y}L_{z,w}$ ([2]). But this equality
is valid under the assumption that the GJTS $(U, B)$ is of the 2nd kind satisfying the
condition (A). That second equality is used in proving Theorem 2.8 [1].

PROPOSITION A. Any non-degenerate GJTS satisfies the condition (A).

The proof of this proposition is obtained just from that of Proposition 2.10 [1]
by making the modification given in the following (4).

Thus we should make the following corrections on our paper [1]:
(1) page $111,$ $\uparrow 1$ , “of the 2nd kind” should read “of the 2nd kind satisfying the

condition (A).
(2) page $112,$ $\downarrow 6$ , “Lemma 2.7” should read “Lemma 2.7 and Proposition 2.5”.
(3) page $112,$ $\uparrow 5$ , “GJTS of the 2nd kind” should read “GJTS”.
(4) page $113,$ $\downarrow 2-\downarrow 5$ ,

“Since $\gamma_{B}$ is non-degenerate, $\cdots$ , we get $\gamma_{B}(a, x)=\cdots=0$ . should read ”Since
$\gamma_{B}((axy), z)=\gamma_{B}(y, (xaz))$ , it follows from non-degeneracy of $\gamma_{B}$ that $L_{ax}=0$ for
each $x\in U$, and hence $\gamma_{B}(a, x)=TrR_{xa}$ . We claim that $R_{xa}^{2}=0$ . In fact, by using
the equality (1.1), we have $R_{xa}^{2}(y)=(yxL_{ax}(a))+L_{a\langle xyx)}(a)-L_{ax}((yxa))$ . The right
hand side of this equality is zero, since $L_{ax}=0$ for each $x\in U$. Thus we have
$\gamma_{B}(a, x)=0$ for every $x\in U$.

Received March 7, 1992



484 HIROSHI ASANO AND SOJI KANEYUKI

References

[1] H. ASANO and S. KANEYUKI, On compact generalized Jordan triple systems of the second kind, To
J. Math., 11 (1988), 105-118.

[2] N. KAMIYA, A structure theory of Freudenthal-Kantor triple systems, J. of Algebra, 110 (19
108-123.

Present Address:
HIROSHI ASANO
DEPARTMENT OF MATHEMATICS, YOKOHAMA CITY UNIVERSITY
SETO, KANAZAWA-KU, YOKOHAMA 236, JAPAN

SOJI KANEYUKI
DEPARTMENT OF MATHEMATICS, SOPHIA UNIVERSITY
KIOICHO, CHIYODA-KU, TOKYO 102, JAPAN


