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Introduction.

We will study stability ofp-harmonic maps (1.3; called harmonic ifp $=2$) ofcompact
Riemannian manifolds into others when those maps are isometric and totally geodesic
and prove that they are stable for sufficiently large $p$ if and only if they are stable as
minimal immersions (Theorem 2.12). The proof is not hard but the theorem applies to
numerous important examples, (3.1) through (3.10), to establish stability for large $p$ ;
in $a1!$ of them, the maps are stable minimal immersions of compact symmetric spaces
into other ones. As to the number $p$ , a sharp estimate is given in case the domain of
the map is Einsteinian (Theorem 2.14).

Our motivation is this. If one wants to know the structure of the space $C^{\infty}(M, N)$

of the smooth maps of a compact manifold $M$ into another, then one would like to
see the Palais-Smale condition (C) and regularity both valid in an appropriate completion
of $C^{\infty}(M, N)$ . The p-energy seems to be a most promising function (See [U]).

We thank Prof. Y. Ohnita for invaluable advices. For one, after we had submitted
this paper to the Journal, he showed usacopy ofa preprint by A. El Soufi&A. Jeune.

1. Preliminaries.

Given a smooth map ( $C^{\infty}$ -map) $f:M\rightarrow N$ of a compact connected Riemannian
manifold $M$ into another, we denote the p-energy of $f$ by

1.1. $ E=E_{p}=E_{p}(f):=p^{-1}\int_{M}\Vert df\Vert^{p}\omega$ ,

where $p$ is a real with $p\geqq 2$ (for simplicity) and $\omega$ is the volume element. The length
$\Vert df\Vert$ of the differential of $f$ is defined in the natural fashion; $\Vert df\Vert^{2}=\langle df, df\rangle$ .
Computation of its first variation yields the Euler-Lagrange equation

1.2. $\nabla^{*}(\Vert df\Vert^{p-2}df)=0$
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out of $(\Vert df\Vert^{p-2}df, \nabla v)=0$ for a smooth homotopy $f_{t},$ $|t|<\epsilon$, of $f=f_{0}$ , where
$v:=\partial_{t}|_{t=0}f_{t}$ , the parentheses $(, )$ denote the $L^{2}$ inner product and $\nabla^{*}$ is the formal
adjoint of $d$ or that of the covariant derivation $\nabla$ for the sections of the pull back $f^{*}TN$

of the tangent bundle $TN$ with the metric and the associated bundles. We will write $E$

for $f^{*}TN$.
1.3. DEFINITiON. The $C^{\infty}$-map $f$ is p-harmonic iff it is a solution of the Euler-

Lagrange equation 1.2.

1.4. A p-harmonic map $f$ may be, in terms of local coordinates, characterized
(as in [EL] for $p=2$) by

1.5. $g^{ij}\partial_{i}(\Vert df\Vert^{p-2})\partial_{j}f^{q}+\Vert df\Vert^{p-2}g^{ij}(\partial_{i}\partial_{j}f^{q}-u\Gamma_{ij}^{k}\partial_{k}f^{q}+N\Gamma_{rs}^{q}\partial_{i}f\partial_{j}f^{s})=0$ ,

where $g$ is the Riemannian metric of $M$ with the Christoffel symbol $ u\Gamma$ and similarly
for $ N\Gamma$ . One readily sees it, since one has $\nabla^{*}\rho=$ -TrVp for an E-valued l-form $\rho$ , Tr
denoting the trace.

Here are a few observations about the Euler-Lagrange equation.

1.6. In case $f$ is an isometric immersion, $f$ is harmonic (i.e. 2-harmonic) if and
only if $f$ is p-harmonic for every $p\geqq 2$ . In fact $\Vert df\Vert^{2}$ is then a constant $(=\dim M)$ .

1.7. The map $f$ is p-harmonic for every $p\geqq 2$ if and only if (1) $f$ is harmonic and
(2) $df$($grad$ ldf $\Vert^{2}$) $=0$ . Notice that (2) just states the vanishing of the first term in the
right hand side of (1.5).

Now we proceed to describe the Jacobi operator $J=J_{p}$ and the second variation
formula. Let $(f_{s,t})$ be a two-parameter variation of the p-harmonic map $f=f_{0,0}$ ,
$|s|,$ $|t|<\epsilon$ . Then a straightforward calculation gives the second variation formula

1.8. $(\partial_{s}\partial_{t}|_{s.t=0})E_{p}(f_{s.t})=\int_{M}\langle J(v), w\rangle\omega$

for $v:=(\partial_{s}|_{s.t=0})f_{s.t}$ and $w:=(\partial_{t}|_{s.t=0})f_{s.t}$ . Here $J(v)=J_{p}(v)$ is given by

1.9. $J_{p}(v)=\nabla^{*}\{(p-2)\Vert df\Vert^{p-4}(divv)df+\Vert df\Vert^{p-2}\nabla v\}-\Vert df\Vert^{p-2}TrK^{N}(df, v)df$ ,

where div $v$ denotes the inner product $\langle\nabla v, df\rangle(=g^{ij}h_{AB}\nabla_{l}v^{A}\partial_{j}f^{B},$ $h$ the pullback of the
Riemannian metric of $N$), $K^{N}$ is the curvature of $N$ and Tr$K^{N}(df, v)df$ is the trace of
the E-valued quadratic form: $u\mapsto K^{N}(df(u), v)df(u)$ on the vector fields $u$ on $M$. In fact
the left hand side of (1.8) equals

$(p-2)\int_{M}\Vert df\Vert^{p-4}(divvXdivw)\omega+\int_{M}\Vert df\Vert^{p-2}\{\langle\nabla v, \nabla w\rangle-\langle TrK^{N}(df, v)df, w\rangle\}\omega$ .

The formula (1.9) agrees with [Th] (or more precisely, with the extreme right-hand side
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of (3.2) in [Th].)
In case $p=2$ , the formula (1.9) reads

1.10. $J_{2}(v)=\nabla^{*}\nabla v-TrK^{N}(df, v)df$ .

The operator $\nabla^{*}\nabla$ is often written $\Delta$ and called the rough Laplacian.

1.11. DEFINITION. A p-harmonic map is called p-stable or stable iff the integral
(1.8) is non-negative for every section $v=w$ of $E$, or, equivalently, the eigenvalues of
the elliptic self-adjoint operator $J_{p}$ are all non-negative.

2. The Main Results.

Throughout this section and the rest, we assume that

2.1. The map $f:M\rightarrow N$ is isometric and totally geodesic (but not constant).

Thus $f$ is p-harmonic for every $p\geqq 2$ and $f$ is a minimal immersion. Recall that $f$ is
minimal iff $f$ satisfies $\int_{M}(divv)\omega=0$ for every section $v$ of $E$.

The tangent bundle $TM$ may be identified with a subbundle of $E$ under (2.1);
hence every section $v$ of $E$ is decomposed into the sum of the tangential component $v_{T}$

and the normal one $v_{N};v=v_{T}+v_{N}$ .
2.2. PROPOSITION. One has $J_{p}(v)_{T}=J_{p}(v_{T})$ and $J_{p}(v)_{N}=J_{p}(v_{N})$ for every section $v$ of

$E$; that is, $J_{p}(v_{T})$ and $J_{p}(v_{N})$ are the tangential and the normal components of $J_{p}(v)$

respectively.

$PR\infty F$ . Since $\Vert df\Vert$ is a constant by (2.1) and (1.6), the Jacobi operator in (1.9)

may be written as

2.3. $(\Vert df\Vert^{p-4})^{-1}J_{p}(v)=\nabla^{*}\{(p-2)(divv)df+\Vert df|^{2}\nabla v\}-\Vert df\Vert^{2}TrK^{N}(df, v)df$ .
We look at the right hand side and observe

2.4. div $ v=\langle\nabla v, df\rangle=\langle(\nabla v)_{T}, df\rangle=\langle\nabla v_{T}, df\rangle$ ;

2.5. $\nabla^{*}\{(divv_{T})df\}=-df(grad(divv_{T}))=-grad(divv_{T})$, where grad $\phi$ denotes
the dual vector field to the l-form $ d\phi$ for the function $\phi$ on $M$;

2.6. $\nabla^{*}\nabla v=\Delta v$ with $(\Delta v)_{T}=\Delta v_{T}$ and $(\Delta v)_{N}=\Delta v_{N}$ by (2.1);

2.7. Tr $K^{N}(df, v_{T})df$ is tangential and equals Tr $K^{M}(df, v_{T})df$ ; and

2.8. Tr $K^{N}(df, v_{N})df$ is normal by $\langle K^{N}(df, v_{N})df, u\rangle=\langle K^{N}(df, u)df, v_{N}\rangle$

$=\langle K^{M}(df, u)df, v_{N}\rangle=0$ for every tangential vector field $u$ .
The proposition is proven. $\square $
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2.9. COROLLARY. The tangential and the normal components of the Jacobi operatc
are

2. $9a$ . $(\Vert df\Vert^{p-4})^{-1}J_{p}(v_{T})=-(p-2)grad(divv_{T})+\Vert df\Vert^{2}J_{2}(v_{T})$

$=-(p-2)grad(divv_{T})+\Vert df\Vert^{2}(\Delta v_{T}-R^{M}(v_{T}))$ ,

where $R^{M}(v_{T})=TrK^{M}(df, v_{T})df$ is the Ricci transform of $v_{T}$, and

2. $9b$ . $(\Vert df\Vert^{p-4})^{-1}J_{p}(v_{N})=\Vert df\Vert^{2}J_{\min}(v_{N})=\Vert df\Vert^{2}(\Delta v_{N}-TrK^{N}(df, v_{N})df)$ ,

where $J_{\min}$ is the Jacobi operator for the minimal immersion $f$ .
2.10. Recall (1.11) a p-harmonic map $f$ is unstable or p-unstable iff the secon

variation $(J_{p}(v), v)=\int_{M}\langle J_{p}(v), v\rangle\omega$ is negative for some sectionv of E $=f^{*}TN$.
2.11. PROPOSITION. Under the assumption (2.1), $f$ is p-stable if and only if th

identity map $1_{M}$ of $M$ is p-stable and $f$ is stable as a minimal immersion.

$PR\infty F$ . This is obvious from (2.9), (2.9a) and (2.9b), since $\Vert df\Vert$ is a positiv
constant; technically, the proof goes like that of Lemma 7.1 of [OU] (for the cas
$p=2)$ . $\square $

2.12. THEOREM. Let $f:M\rightarrow N$ be a non-constant $C^{\infty}$ -map ofa compact connecte
Riemannian manifold $M$ into another. Assume that $f$ is isometric and totally geodes’
immersion (i.e. we assume 2.1). Then $f$ is p-stable for a sufficiently large $p$ (sa]
$p\geqq 2+\dim M)$ if and only if $f$ is stable as a minimal immersion.

$PR\infty F$ . The only if” part follows from Proposition 2.11. Thus we assume stabilit
of $f$ as a minimal immersion. In view of (2.11), we have to show that the identity ma
is p-stable for asufficiently large $p$ . We work on $(J_{p}(v), v)$ for the sections $v=v_{T}$ of th
tangent bundle $TM\subset E$. Recall a formula ofK. Yano (4.4 in [Y], and quoted in [Sm]):

2. $12a$ . $(J_{2}(v), v)=\int_{M}\{\frac{1}{2}\Vert L_{v}g\Vert^{2}-(divv)^{2}\}\omega$ ,

where $L_{v}g$ is the Lie derivative of the metric $g$ . Then, writing $m$ for $\Vert df\Vert^{2}=dimA4$

one obtains from (2.9a) and (2.12a)

$(m^{2-p/2}J_{p}(v), v)=\int_{M}\langle m^{2-p/2}J_{p}(v), v\rangle\omega=(-(p-2)grad(divv)+mJ_{2}(v), v)$

$=$ ($p-2Xdivv$ , div $v$) $+m\int_{M}\{\frac{1}{2}\Vert L_{v}g\Vert^{2}-(divv)^{2}\}\omega$

$=$ ($p-2-mXdivv$, div $v$) $+\frac{1}{2}m\int_{M}\Vert L_{v}g\Vert^{2}\omega\geqq$ ($p-2-mXdivv$, div $v$),
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which is nonnegative for every $v$ provided $p\geqq 2+m$ . $\square $

2. $12b$ . ACKNOWLEDGEMENT. We owe a certain improvement of the proof to Prof.
Ohnita.

2.13. THEOREM. Assume furthermore that the domain $M$ is an Einstein manifold
(so that $R^{M}$ is a scalar, $c$ , times the identity or the Ricci tensor equals $cg$), in the setting

of the previous Theorem 2.12. Then $f:M\rightarrow N$ is p-stable if and only $\iota fp$ satisfies
2. 14. $(p-2+\dim M)\lambda_{1}-2c\dim M\geqq 0$ ,

where $\lambda_{1}$ is the smallest positive eigenvalue of the Laplacian $\Delta$ operating on functions and
$c$dim $M$ is the scalar curvature as mentioned; thus the estimate (2.14) is sharp.

$PR\infty F$ . This is easily checked by estimating \langle $J_{p}(grad\phi)$ , grad $\phi\rangle$ , $\Delta\phi=\lambda_{1}\phi$ . The
Hodge-Kodaira theory says that every vector field is a unique sum $ w+grad\phi$ of a vector
field $w$ with div $w=0$ and a gradient for some function $\phi$ ; here orientability is irrelevant.
Moreover the kernel Ker(div) is the orthogonal complement to the space of the gradients
of the functions in the space of all the vector fields with respect to the $L^{2}$-norm. The
Laplacian $\Delta+R^{M}$ (acting on the vector fields) preserves this decomposition, stabilizing
these subspaces; recall $\Delta$ denotes the rough Laplacian. Under the Einstein condition in
(2.13), $J_{p}$ also stabilizes them, since $R^{M}$ is then a scalar multiple of the identity; call
the scalar $c$ . Hence we may work on the vector fields $w$ with div $w=0$ and the gradients
grad $\phi$ separately; that is, we have

$(J_{p}(w+grad\phi), w+grad\phi)=(J_{p}(w), w)+$ ($J_{p}(grad\phi)$ , grad $\phi$).

By (2.9a) and (2.12a), we have

$m^{2-p/2}(J_{p}(w), w)=\int_{M}\langle m^{2-p/2}J_{p}(w), w\rangle\omega=(-(p-2)grad(divw)+mJ_{2}(w), w)$

$=\frac{1}{2}m\int_{M}\Vert L_{v}g\Vert^{2}\omega\geqq 0$ ,

while the same formulas give

2. $14a$ . $m^{2-p/2}$($J_{p}(grad\phi)$ , grad $\phi$) $=(p-2+m)(d\Delta\phi, d\phi)-2mc(d\phi, d\phi)$ ;

in fact

LHS $=$ ( $-(p-2)grad(div$ grad $\phi)+mJ_{2}(grad\phi)$ , grad $\phi$)

$=((p-2)d\Delta\phi, d\phi)+m$($J_{2}(grad\phi)$ , grad $\phi$)

$=(p-2)(d\Delta\phi, d\phi)+m$($(\Delta-R^{M})(grad\phi)$ , grad $\phi$)

$=(p-2)(d\Delta\phi, d\phi)+m(d\Delta\phi, d\phi)-2m$($R^{M}(grad\phi)$ , grad $\phi$)
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$=(p-2+mXdA\phi, d\phi)-2m$($R^{M}(grad\phi)$ , grad $\phi$)

$=(p-2+mXd\Delta\phi, d\phi)-2mc(d\phi, d\phi)$ ,

since one has $d\Delta=(\Delta+R^{M})d$ on the functions and ($grad\phi$ , grad $\phi$) $=(d\phi, d\phi)$ . We $no^{\rceil}$

recall the known facts:

2. $14b$ . $(d\Delta\phi, d\phi)\geqq\lambda_{1}(d\phi, d\phi)$ for every function $\phi$ and

2. $14c$ . there is some $\phi$ satisfying $(d\Delta\phi, d\phi)=\lambda_{1}(d\phi, d\phi)>0$ .
From these and (2.14a), we conclude that $f$ is p-stable if and only if $(p-2+m)\lambda_{1}-$

$2mc\geqq 0$ . $\square $

We wish to add the next corollary to illustrate a sharp contrast with the harmoni
maps (See [O6]).

2.15. COROLLARY. The identity map ofany compact Riemannian manifold is stabl
as a p-harmonic map for a sufficiently large $p(\geqq 2+\dim M)$ .

Furthermore (2.14) and the proof of (2.12) yield

2.16. COROLLARY. The index of the p-harmonic map $f$ equals that of the minima
immersion $f$ if $f$ is a map in Theorem (2.12) and $p$ is large enough $(p\geqq 2+\dim M)$ .

3. Applications to symmetric spaces.

We are interested in the compact symmetric spaces; $M$ and $N$ will be ones for $j$

nonconstant isometric immersion $f:M\rightarrow N$ throughout this section. A technica
advantage of this additional assumption is that both the tangential and the norma
components of the Jacobi operator has in their kernels the restrictions of Killing vecto
fields, which reduces the study of stability to comparison of the eigenvalues of $th|$

Casimir operators of relevant representations. Also one can explicitly calculate $ne\infty ssar$.
invariants such as $\lambda_{1}$ ; thus, if $M$ is simple and l-connected, the inequality (2.14) read
$(1+(p-2)/\dim M)\lambda_{1}\geqq 2$ (the metric being given by the Killing form) and the value $0$

$\lambda_{1}$ is listed in [KOT]. So there are many results to which Theorem 2.12 applies directly
providing with numerous examples ofp-stable mappings; (2.13) is still easily applicable
although $M$ may not quite be an Einstein manifold (but a local Riemann product $0$

Einstein manifolds). We will quote some of them, (3.1) through (3.10). We call $j$

min-stable iff $f$ is stable as a minimal immersion. $M$ is called min-stable iff $f$ is $i$

min-stable embedding.

3.1. Assume $f$ is the inclusion ofa symmetric R-space $M$ into the K\"ahler symmetri $($

space $N=M^{C}$ , which one might take as the complexification of $M$. Then $f$ is $\min- stabl($

if and only if $M$ is l-connected [T37].
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3.2. M. Takeuchi [T40] determined min-stability of $f$ when $f$ is the inclusion of
a totally complex subspace $M$ into the quaternionic symmetric space $N=M^{H}$ ,
2dim$M=\dim N$, and $N$ is a classical space. The exceptional cases have been worked
out by Sumi [Su]. Here are her results (without explanation of symbols; see [N]). In
case $N=EII$ , then CI(4) $\%$ and DIII(5) are min-stable but $S^{2}\cdot G_{3}(C^{6})$ is not, the symbol
% denoting the bottom or the adjoint space [H]. If $N$ is EVI, then $ G_{4}(C^{8})\%$ and EIII
are min-stable but $S^{2}\cdot DIII(6)$ is not. If $N$ is EIX, then DIII(8) $\%$ is min-stable but
$S^{2}\cdot EVII$ is not. Finally there is no min-stable totally complex subspaoe in FI or GI.

3.4. Ohnita [O12] proved that the Helgason spheres are min-stable and determined
min-stability of totally geodesic subspaces in case $N$ has rank 1.

3.5. Mashimo [M] determined min-stability of the Cartan embedding
$f:M=G/K\rightarrow G$ when $K$ is the fixed point set of the involution of $G$ which is simple.
Thus $M$ is unstable if and only if 1 $M$ is K\"ahlerian, 2’ $M$ is $AI(n)$ with $G=SU(n)$ ,
$n\geqq 3,3^{o}AI(4m+2)$ with $G=SU(4m+2)/\{\pm 1\},$ $m\geqq 1,4^{o}M=G_{3}^{o}(R^{n})$ with $G=Spin(n)$ ,
$n\geqq 7$ , or $5^{o}M=GI$ .

3.6. Mashimo and Tasaki [MT] studied the case of a subgroup $M$ of a simple
group $N$. They proved, among others, that (i) $M$ is min-stable if the subgroup has
the Dynkin-index $=1$ ; and (ii) the converse is true in case $M$ is SU(2).

3.7. Tasaki ([Ts] and a preceding paper) determined the quaternionic subspaces
of the quaternionic K\"ahler symmetric spaces and proved that those subspaces are all
min-stable (and even homologically minimal !).

3.8. Mashimo and Tasaki [MT2] determined min-stability of closed subgroups
$G$ of maximal rank in a compact simple group $U$. More precisely, (i) $G$ is min-stable
if the maximal tori $T$ are; and (ii) $T$ is not min-stable if and only if $U$ is $SU(n)$ , Spin(7),
$Sp(n)$ or $G_{2}$ . (They also showed that $G$ is R-homologous to zero, provided dim $G<\dim U.$)

3.9. Ohnita [O6] determined all the symmetric spaces $M$whose $1_{M}$ are unstable.

3.10. M. Sumi [Su] has determined min-stability of the fundamental building
blocks of $M$, that is, the polars $M^{+}$ and the meridians $M^{-}$ of $M$. A polar $M^{+}=M^{+}(p)$

is any connected component of the fixed point set $F(s_{o}, M)$ of the symmetry $s_{o}$ at a
point $0,p\in M^{+}(p)$ , and the meridian $M^{-}(p)$ is “the orthogonal complement” to the
polar $M^{+}(p)$ ; thus $M^{-}(p)$ is the component of $F(s_{o}\circ s_{p}, M)$ through $p$ (See [N]). A
consequence is that $M^{+}$ is R-homologous to zero if $M^{+}$ is min-unstable, and similarly
for $M^{-}$ . Also she has studied min-stability of totally geodesic spheres in $M$, all of which
are known [NS].

Added in proof. One can improve the estimate in 2.12, to the effect that the identity
map $1_{M}$ is p-stable $ ifp\geqq\dim$M. (Note that this estimate is sharp, since $1_{M}$ is not p-stable
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for $p<\dim M$ by 2.13.) For the proof one has only to see that the Cauchy-Schwz
inequality applied to the symmetric tensor $L_{v}g$ implies $4(divv)^{2}\leqq n\Vert L_{v}g\Vert^{2}$ ; thus one $F$

$(J_{2}(v), v)\geqq$ ($2/n$ -l)(div $v$ , div $v$). Hence one concludes

$n^{2-p/2}(J_{p}(v), v)\geqq(p-n)$($divv$ , div $v$).
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