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$0$. Introduction.

Let $M$ be a minimal surface in the N-dimensional Euclidean space $R^{N}$ with Gaussian
curvature $K(\leqq 0)$ with respect to the induced metric $ds^{2}$ . We consider the Gauss map
from $M$ to the Grassmann manifold $G_{2,N}$ of 2-planes in $R^{N}$ , where $G_{2,N}$ may be identified
with the complex quadric $Q_{N-2}$ in the $(N-1)$-dimensional complex projective space
$CP^{N-1}$ of constant holomorphic sectional curvature 2. Then the metric $d\hat{s}_{0}^{2}$ on $M$

induced by the Gauss map is $-Kds^{2}$ , which is degenerate at points where $K=0$ (see
[7]). Let $\hat{K}_{0}$ denote the Gaussian curvature of $M$ with respect to $d\hat{s}_{0}^{2}$ , which is the
Gaussian curvature of the Gauss image of $M$. Lawson [7], Hoffman and Osserman [4]
discussed minimal surfaces in $R^{N}$ with constant $\hat{K}_{0}$ . In particular, they showed that if
$M$ is a minimal surface lying fully in $R^{N}$ with constant $\hat{K}_{0}$ , then $\hat{K}_{0}$ must be of the form
$2/m$ for some positive integer $m$ , and $m+1\leqq N\leqq 2m+2$ . Some examples of minimal
surfaces in $R^{N}$ with constant $\hat{K}_{0}$ are given in [3].

In [5] Johnson studied a class of minimal surfaces in space forms, which are called
exceptional minimal surfaces. First, in this paper, we discuss exceptional minimal surfaces
in $R^{N}$ with constant $\hat{K}_{0}$ .

THEOREM 1. Let $M$ be an exceptionalminimal surface lyingfully in $R^{N}$ with constant
$\hat{K}_{0}$ . Then $\hat{K}_{0}=1/n$ when $N=2n+1$ , and $\hat{K}_{0}=2/n$ when $N=2n+2$ .

REMARK 1. (i) We will also show that for every positive integer $n$ , there are excep-
tional minimal surfaces lying fully in $R^{2n+1}$ with $\hat{K}_{0}=1/n$ , and in $R^{2n+2}$ with $\hat{K}_{0}=2/n$ .

(ii) By Theorem 1 and [3], we can find that there are non-exceptional minimal
surfaces in $R^{N}$ with constant $\hat{K}_{0}$ .

Next, we deal with the case where the ambient spaces are other space forms. Let
$M$ be a minimal surface in the N-dimensional simply connected space form $X^{N}(c)$ of
constant curvature $c$ . We denote by $K(\leqq c)$ the Gaussian curvature of $M$ with respect
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to the induced metric a1S2. We consider Obata’s Gauss map from $M$ to the space of ,

totally geodesic 2-subspaces in $X^{N}(c)$ (see [8]). The metric $d\hat{s}_{c}^{2}$ on $M$ induced by tl
Gauss map is $(c-K)ds^{2}$ , which is degenerate at points where $K=c$ (see [8]). Let $\rfloor$

denote the Gaussian curvature of $M$ with respect to $d\hat{s}_{c}^{2}$ , which is the Gaussian curvatu
of the Gauss image of $M$. We discuss exceptional minimal surfaoes in $X^{6}(c)$ with consta]

$\hat{K}_{c}$, where $c\neq 0$ .
THEOREM 2. Let $M$ be an exceptional minimal surface in $X^{6}(c)$ with constant 1

where $c>0$ . Then $M$ has constant curvature $c/3,$ $c/6$ or $0$ .
THEOREM 3. There are no exceptional minimal surfaces in $X^{6}(c)$ with constant A

where $c<0$ .
REMARK 2. Bryant [1] classified minimal surfaces with constant curvature]

spaoe forms. Minimal surfaces with positive constant curvature in $X^{N}(c)$ , where $c>|$

are parts of minimal 2-spheres. So they are exceptional (see [5] and [2]). In [9] $v$

noted that for every positive integer $n$ , there are flat exceptional minimal surfaces lyin
fully in $X^{2n+1}(c)$ , where $c>0$ .

1. Exceptional minimal surfaces.

In this section, we follow [5] and recall the definition of exceptional minim
surfaces. Suppose $M$ is a minimal surface in $X^{N}(c)$ . Assume that $M$ lies fully in $X^{N}(c$

namely, does not lie in a totally geodesic submanifold of $X^{N}(c)$ . Let the integer $nl$

given by $N=2n+1$ or $2n+2$ , and let indices have the following ranges:
$1\leqq i,$ $j\leqq 2$ , $3\leqq\alpha\leqq N$ , $1\leqq A,$ $B\leqq N$ .

Let $\tilde{e}_{4}$ be a local orthonormal frame field on $X^{N}(c)$ , and let $\theta_{4}4$ be the coframe du
to $\tilde{e}_{A}$ . Then $d\tilde{\theta}_{4A}=\sum_{B}\tilde{\omega}_{AB}\wedge\tilde{\theta}_{B}$, where $\tilde{\omega}_{AB}$ are the connection forms on $X^{N}(c)$ .

Suppose that $e_{i}$ is a local orthonormal frame field on $M$ and that the frame $\tilde{e}_{A}$

chosen so that on $M,$ $e_{i}=\tilde{e}_{i}$ and $\tilde{e}_{\alpha}$ are normal to $M$. When forms and vectors on $X^{N}($

are restricted to $M$, let them be denoted by the same symbol without tilde: $\theta_{A}$

$\tilde{\theta}_{A}|_{M},$ $\omega_{4AB}=\tilde{\omega}_{AB}|_{M}$ and $e_{A}=\tilde{e}_{A}|_{M}$ . Then $\omega_{\alpha i}=\sum_{j}h_{\alpha ij}\theta_{j}$ , where $h_{\alpha ij}$ are the coefficien
of the second fundamental form of $M$.

Let $T_{x}M$ and $T_{x}X^{N}(c)$ denote the tangent space of $M$ and $X^{N}(c)$ , respectively,
a point $x$ . Curv\^es on $M$ through $x$ have their first derivatives at $x$ in $T_{x}M$, but $high|$

order derivatives will have components normal to $M$. The space spanned by tl
derivatives of order up to $r$ is called the r-th osculating space of $M$ at $x$, denoted $T_{x}^{(r)}A$

The r-th normal space of $M$ at $x$, denoted $Nor_{x}^{(r)}M$, is the orthogonal compleme)
of $T_{x}^{\langle r)}M$ in $T_{x}^{(r+1)}M$. At generic points of $M$, the dimension of $Nor_{x}^{\langle r)}M$ is 2 wht
$1\leqq r\leqq n-1$ , and the dimension of $Nor_{x}^{\langle n)}M$ is 1 or 2, depending on whether $N$ is od
or even. Those normal spaces that have dimension 2 are called the normal planes of A
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Let $\beta_{N}$ denote the number of normal planes possessed by $M$ at generic points: $\beta_{N}=n-1$

if $N=2n+1$ , and $\beta_{N}=n$ if $N=2n+2$ .
Choose the normal vectors $e_{\alpha}$ so that $Nor_{x}^{\langle r)}M$ is spanned by $\{e_{2r+1}, e_{2r+2}\}$ , where

$1\leqq r\leqq\beta_{N}$ . When $N=2n+1,$ $Nor_{x}^{\langle n)}M$ is spanned by $\{e_{2n+1}\}$ . Set $\varphi=\theta_{1}+\sqrt{-1}\theta_{2}$ . Then
there are $H_{\alpha}$ such that $H_{a}=h_{\alpha 11}+\sqrt{-1}h_{\alpha 12}$ for $\alpha=3$ and 4, for each $r$ such that $2\leqq r\leqq\beta_{N}$

$H_{2r-1}\omega_{\alpha,2r-1}+H_{2r}\omega_{\alpha,2r}=H_{\alpha}\overline{\varphi}$

where $\alpha=2r+1$ and $2r+2$ , and when $N=2n+1$

$H_{2n-1}\omega_{2n+1,2n-1}+H_{2n}\omega_{2n+1,2n}=H_{2n+1}\overline{\varphi}$

(see [5]).
The r-th normal plane, $Nor_{x}^{\langle r)}M$, of $M$ is called exceptional if $H_{2},+2=\pm\sqrt{-1}H_{2r+1}$ .

The minimal surface $M$ is called exceptional if all of its normal planes are exceptional.
Note that when $N=2n+1,$ $Nor_{x}^{\langle n)}M$ is a line, not a plane, and the notion ofexceptionality
does not apply. So, every minimal surface in $X^{3}(c)$ is exceptional.

2. A lemma.

Let $(M, ds^{2})$ be a 2-dimensional Riemannian manifold with Gaussian curvature
$K<c$ . We denote by $\Delta$ the Laplacian of $(M, ds^{2})$ . Set

$A_{0}^{c}=1/2$ , $A_{1}^{c}=c-K$ ,

(1)
$A_{p+1}^{c}=\left\{\begin{array}{ll}A_{p}^{c}[\Delta\log(A_{p}^{c})+A_{p}^{c}/A_{p-1}^{c}-2(p+1)K] , & if A_{p}^{c}>0,\\0, & otherwise.\end{array}\right.$

for $2\leqq p\leqq m+1$ ,

Let $\hat{K}_{c}$ be the Gaussian curvature of $M$ with respect to the metric $d\hat{s}_{c}^{2}=$ ($c$ -K)&2.
Then

(2) $\hat{K}_{c}=\frac{K}{c-K}-\frac{1}{2(c-K)}\Delta\log(c-K)$ .

Now suppose that $c=0$ and $\hat{K}_{0}=2/m$ , where $m$ is a positive integer. Then by (2),

we have

(3) $\Delta\log(-K)=2(1+\frac{2}{m})K$ .

LEMMA. Under the hypothesis above,

$A_{p}^{0}=p((p-1)!)^{2}\{\prod_{k=1}^{p-1}(\frac{2}{k}-\frac{2}{m})\}(-K)^{p}$

and
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$A_{p}^{0}=0$ for $p\geqq m+1$ .
$PR\infty F$ . By (1) and (3), we have

$A_{2}^{0}=(-K)[\Delta\log(-K)-2K-4K]$

$=2(2-\frac{2}{m})(-K)^{2}$ ,

and

$A_{3}^{0}=2(2-\frac{2}{m})(-K)^{2}[2\Delta\log(-K)-2(2-\frac{2}{m})K-6K]$

$=12(2-\frac{2}{m})(1-\frac{2}{m})(-K)^{3}$

So the lemma is true for $p=2$ and 3. Assume that the lemma is true for $p$ and $p+$

where $2\leqq p\leqq m-1$ . Then by (1), (3) and the assumption,

$A_{p+2}^{0}=(p+1)(p!)^{2}\{\prod_{k=1}^{p}(\frac{2}{k}-\frac{2}{m})\}(-K)^{p+1}$

$\times[(p+1)\Delta\log(-K)-p(p+1)(\frac{2}{p}-\frac{2}{m})K-2(p+2)K]$

$=(p+2)((p+1)!)^{2}\{\prod_{k=1}^{p+1}(\frac{2}{k}-\frac{2}{m})\}(-K)^{p+2}$

So the lemma is true for$p+2$ . Therefore, by induction, the lemma is true for $2\leqq p\leqq m+$

$ThuswehaveA_{m+1}^{0}=0$ , and by (1) $wehaveA_{p}^{0}=0forp\geqq m+1$ . Q.E.I

3. Proof of Theorem 1.

$PR\infty F$ OF THEOREM 1. Let $ds^{2}$ and $K$ be as in Section $0$ . We assume that $K<$

in the theorem because $\hat{K}_{0}$ cannot be defined at points where $K=0$ . Let $\Delta$ and $A_{p}^{0}t$

as in Section 1. By [4], $\hat{K}_{0}=2/m$ for some positive integer $m$ . So the equation (3) an
Lemma are valid.

When $N=2n+1$ , by Theorem A of [5], $A_{p}^{0}\geqq 0$ for $1\leqq p\leqq n$ with equality only.
isolated points, and the metric $(A_{n}^{0})^{1/(n+1)}ds^{2}$ is flat at points where $A_{p}^{0}>0$ for $ 1\leqq p\leqq$ ’

So by Lemma, we find that $m\geqq n$ and

$A_{n}^{0}=n((n-1)!)^{2}\{\prod_{k=1}^{n-1}(\frac{2}{k}-\frac{2}{m})\}(-K)^{n}$

Using the lemma in Section 3 of [5] and the equation (3), we have
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$0=\Delta\log(A_{n}^{0})-2(n+1)K=(\frac{4n}{m}-2)K$ .

Thus we have $m=2n$ , and $\hat{K}_{0}=1/n$ .
When $N=2n+2$ , by Theorem A of [5], $A_{p}^{O}\geqq 0$ for $1\leqq p\leqq n$ with equality only at

isolated points, and $A_{n+1}^{0}=0$ identically. So by Lemma, we have $m=n$ , and $\hat{K}_{0}=2/n$ .
Q.E.D.

We shall show the fact in Remark 1 (i). Let $(M, ds^{2})$ be a 2-dimensional Riemannian
manifold with Gaussian curvature $K<0$ . Let $\Delta,$ $A_{p}^{0}$ and $\hat{K}_{0}$ be defined as in Section 1.

First suppose that $\hat{K}_{0}=1/n$ , where $n$ is a positive integer. We note that there are
such 2-dimensional Riemannian manifolds. Then the equation (3) and Lemma are valid
for $m=2n$ . So $A_{p}^{0}>0$ for $p\leqq 2n$ . Using Lemma and (3) with $m=2n$ , we have

$\Delta\log(A_{n}^{O})-2(n+1)K=0$ .

By the lemma in Section 3 of [5], the metric $(A_{n}^{0})^{1/\langle n+1)}ds^{2}$ is flat. By Theorem $B$ of
[5], $(M, ds^{2})$ can be realized locally as an exceptional minimal surface lying fully in
$R^{2n+1}$ . Therefore, for every positive integer $n$ , there are exceptional minimal surfaces
lying fully in $R^{2n+1}$ with $\hat{K}_{0}=1/n$ .

Next suppose that $\hat{K}_{0}=2/n$ , where $n$ is a positive integer. Then the lemma is valid
for $m=n$ . So $A_{p}^{0}>0$ for $p\leqq n$ and $A_{n+1}^{0}=0$ . By Theorem $B$ of [5], $(M, ds^{2})$ can be
realized locally as an exeptional minimal surface lying fully in $R^{2n+2}$ . Therefore, for
every positive integer $n$ , there are exceptional minimal surfaces lying fully in $R^{2n+2}$ with
$\hat{K}_{0}=2/n$ .

4. Proof of Theorems 2 and 3.

In this section we prove the following proposition. Combining the proposition with
[1], we have Theorems 2 and 3.

PROPOSITION. Let $M$ be an exceptional minimal surface in $X^{6}(c)$ with constant
$\hat{K}_{c}$ , where $c\neq 0$ . Then $M$ has constant curvature.

PROOF. Let $ds^{2}$ and $K$ be as in Section $0$ . We assume that $K<c$ in the proposition
because $\hat{K}_{c}$ cannot be defined at points where $K=c$ . Let $\Delta$ and $A_{p}^{c}$ be as in Section 1.
We assume that $\hat{K}_{c}=a$ . Then by (2), we have

(4) $\Delta\log(c-K)=2\{(a+1)K-ca\}$ .
By (1) and (4),

(5) $A_{2}^{c}=(c-K)[\Delta\log(c-K)+2(c-K)-4K]$

$=2(c-K)\{(a-2)K-c(a-1)\}$ .
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Set $M_{1}=\{x\in M;A_{2}^{c}>0\}$ . By (1), (4) and (5),

(6) $A_{3}^{c}=A_{2}^{c}[\Delta\log(c-K)+\Delta\log\{(a-2)K-c(a-1)\}+2\{(a-2)K-c(a-1)\}-6K]$

$=A_{2}^{c}[\Delta\log\{(a-2)K-c(a-1)\}+2\{2(a-2)K-c(2a-1)\}]$

on $M_{1}$ .
Now suppose that $M$ lies fully in $X^{N}(c)$ where $3\leqq N\leqq 6$ . When $N=3$ , by Theore

A and the lemma in Section 3 of [5],

(7) $\Delta\log(c-K)=4K$ .
By (4) and (7), we can see that $K$ is constant. When $N=4,$ $A_{2}^{c}=0$ identically by Theore
A of [5]. Then by (5), we can see that $K$ is constant.

When $N=5$ , by Theorem A of [5], $M_{1}$ is $M$ minus isolated points and the metr
$(A_{2}^{c})^{1/3}ds^{2}$ is flat on $M_{1}$ . Using the lemma in Section 3 of [5], the equations (4) ar
(5), we have

(8) $0=\Delta\log(A_{2}^{c})-6K$

$=\Delta\log(c-K)+\Delta\log\{(a-2)K-c(a-1)\}-6K$

$=\Delta\log\{(a-2)K-c(a-1)\}+2\{(a-2)K-ca\}$

on $M_{1}$ . By (8) we can see that $a\neq 2$ . By (4) and (8), we have

$\Delta K=F(K)=b_{0}+b_{1}K+b_{2}K^{2}+b_{3}K^{3}$

and

$|\nabla K|^{2}=G(K)=b_{4}+b_{5}K+b_{6}K^{2}+b_{7}K^{3}+b_{3}K^{4}$

on $M_{1}$ and, by continuity, on $M$, where

$b_{0}=-\frac{2c^{2}a(2a^{2}-6a+5)}{a-2}$ , $b_{1}=2c(6a^{2}-9a-1)$ ,

$b_{2}=-12a(a-2)$ ,

$b_{4}=\frac{2c^{3}a(a-1)(2a-3)}{a-2}$ ,

$b_{3}=\frac{2(a-2)(2a-1)}{c}$ ,

$b_{5}=-\frac{2c^{2}a(8a^{2}-24a+17)}{a-2}$ ,

$b_{6}=2c(12a^{2}-18a+1)$ , $b_{7}=-2(8a^{2}-16a+3)$ .
If $K$ is not constant, then

(9) $GK+(F-G^{\prime})(F-\frac{1}{2}G^{\prime})+G(F^{\prime}-\frac{1}{2}G^{n})=0$ ,
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where the prime denotes the differentiation with respect to $K$ (see for example [6,

p. 136]). The left-hand side of (9) is a polynomial of $K$ such that the coefficient of $K^{5}$

is $-16(a-2)(2a-1)/c$ and the constant term is $-8c^{4}a(a-1)(5a-3)/(a-2)$ . So it is a
nontrivial polynomial. Thus $K$ must be constant, which is a contradiction. Therefore,
$K$ is constant.

When $N=6$ , by Theorem A of [5], $M_{1}$ is $M$ minus isolated points and $A_{3}^{c}=0$

identically. By (6) we have

(10) $\Delta\log\{(a-2)K-c(a-1)\}+2\{2(a-2)K-c(2a-1)\}=0$

on $M_{1}$ . By (10) we can see that $a\neq 2$ . By (4) and (10), we have

$\Delta K=P(K)=d_{0}+d_{1}K+d_{2}K^{2}+d_{3}K^{3}$

and

$|\nabla K|^{2}=Q(K)=d_{4}+d_{5}K+d_{6}K^{2}+d_{7}K^{3}+d_{3}K^{4}$

on $M_{1}$ and, by continuity, on $M$, where

$d_{0}=-\frac{2c^{2}(3a^{3}-9a^{2}+8a-1)}{a-2}$ , $d_{1}=2c(9a^{2}-15a+2)$ ,

$6(a-1)(a-2)$
$d_{2}=-6(a-2)(3a-1)$ , $d_{3}=\overline{c}$ ,

$d_{4}=\frac{2c^{3}(a-1)(3a^{2}-5a+1)}{a-2}$ , $d_{5}=-\frac{2c^{2}(12a^{3}-39a^{2}+35a-7)}{a-2}$ ,

$d_{6}=2c(18a^{2}-33a+10)$ , $d_{7}=-2(12a^{2}-29a+13)$ .
If $K$ is not constant, then

(11) $QK+(P-Q^{\prime})(P-\frac{1}{2}Q^{\prime})+Q(P^{\prime}-\frac{1}{2}Q^{\prime\prime)=0}$

(similar to (9)). The left-hand side of (11) is a polynomial of $K$ such that the coefficient
of $K^{5}$ is $6(a-1)(a-2)(3a-14)/c$ and the constant term is $-2c^{4}(a-1)(9a^{3}+12a^{2}-$

$14a+1)/(a-2)$ . When $a=1$ , the coefficient of $K$ is 16c3 #0. So the left-hand side of (11)
is a nontrivial polynomial. Thus $K$must be constant, which is a contradiction. Therefore,
$K$ is constant. Q.E.D.

Minimal 2-spheres in $X^{N}(c)$ , where $c>0$ , are always exceptional (see [5] and [2]).
So, by Theorem 2, we have the following:

COROLLARY. Let $M$ be a minimal 2-sphere in $X^{6}(c)$ with constant $\hat{K}_{c}$, where $c>0$ .
Then $M$ has constant curvature $c/3$ or $c/6$ .
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