Токуо Ј. Матн. Vol. 15, No. 2, 1992

Exceptional Minimal Surfaces Whose Gauss Images Have Constant Curvature

Makoto SAKAKI

Hirosaki University (Communicated by T. Nagano)

Dedicated to Professor Y. Hatakeyama on his 60th birthday

0. Introduction.

Let M be a minimal surface in the N-dimensional Euclidean space \mathbb{R}^N with Gaussian curvature $K (\leq 0)$ with respect to the induced metric ds^2 . We consider the Gauss map from M to the Grassmann manifold $G_{2,N}$ of 2-planes in \mathbb{R}^N , where $G_{2,N}$ may be identified with the complex quadric Q_{N-2} in the (N-1)-dimensional complex projective space CP^{N-1} of constant holomorphic sectional curvature 2. Then the metric ds_0^2 on Minduced by the Gauss map is $-Kds^2$, which is degenerate at points where K=0 (see [7]). Let \hat{K}_0 denote the Gaussian curvature of M with respect to ds_0^2 , which is the Gaussian curvature of the Gauss image of M. Lawson [7], Hoffman and Osserman [4] discussed minimal surfaces in \mathbb{R}^N with constant \hat{K}_0 . In particular, they showed that if M is a minimal surface lying fully in \mathbb{R}^N with constant \hat{K}_0 , then \hat{K}_0 must be of the form 2/m for some positive integer m, and $m+1 \leq N \leq 2m+2$. Some examples of minimal surfaces in \mathbb{R}^N with constant \hat{K}_0 are given in [3].

In [5] Johnson studied a class of minimal surfaces in space forms, which are called exceptional minimal surfaces. First, in this paper, we discuss exceptional minimal surfaces in \mathbb{R}^N with constant \hat{K}_0 .

THEOREM 1. Let M be an exceptional minimal surface lying fully in \mathbb{R}^N with constant \hat{K}_0 . Then $\hat{K}_0 = 1/n$ when N = 2n + 1, and $\hat{K}_0 = 2/n$ when N = 2n + 2.

REMARK 1. (i) We will also show that for every positive integer n, there are exceptional minimal surfaces lying fully in R²ⁿ⁺¹ with K₀=1/n, and in R²ⁿ⁺² with K₀=2/n. (ii) By Theorem 1 and [3], we can find that there are non-exceptional minimal surfaces in R^N with constant K₀.

Next, we deal with the case where the ambient spaces are other space forms. Let M be a minimal surface in the N-dimensional simply connected space form $X^{N}(c)$ of constant curvature c. We denote by $K (\leq c)$ the Gaussian curvature of M with respect

Received October 30, 1991

MAKOTO SAKAKI

to the induced metric ds^2 . We consider Obata's Gauss map from M to the space of all totally geodesic 2-subspaces in $X^N(c)$ (see [8]). The metric $d\hat{s}_c^2$ on M induced by the Gauss map is $(c-K)ds^2$, which is degenerate at points where K=c (see [8]). Let \hat{K}_c denote the Gaussian curvature of M with respect to $d\hat{s}_c^2$, which is the Gaussian curvature of the Gauss image of M. We discuss exceptional minimal surfaces in $X^6(c)$ with constant \hat{K}_c , where $c \neq 0$.

THEOREM 2. Let M be an exceptional minimal surface in $X^6(c)$ with constant \hat{K}_c , where c > 0. Then M has constant curvature c/3, c/6 or 0.

THEOREM 3. There are no exceptional minimal surfaces in $X^6(c)$ with constant \hat{K}_c , where c < 0.

REMARK 2. Bryant [1] classified minimal surfaces with constant curvature in space forms. Minimal surfaces with positive constant curvature in $X^{N}(c)$, where c > 0, are parts of minimal 2-spheres. So they are exceptional (see [5] and [2]). In [9] we noted that for every positive integer *n*, there are flat exceptional minimal surfaces lying fully in $X^{2n+1}(c)$, where c > 0.

1. Exceptional minimal surfaces.

In this section, we follow [5] and recall the definition of exceptional minimal surfaces. Suppose M is a minimal surface in $X^{N}(c)$. Assume that M lies fully in $X^{N}(c)$, namely, does not lie in a totally geodesic submanifold of $X^{N}(c)$. Let the integer n be given by N=2n+1 or 2n+2, and let indices have the following ranges:

$$1 \leq i, j \leq 2$$
, $3 \leq \alpha \leq N$, $1 \leq A, B \leq N$.

Let \tilde{e}_A be a local orthonormal frame field on $X^N(c)$, and let $\tilde{\theta}_A$ be the coframe dual to \tilde{e}_A . Then $d\tilde{\theta}_A = \sum_B \tilde{\omega}_{AB} \wedge \tilde{\theta}_B$, where $\tilde{\omega}_{AB}$ are the connection forms on $X^N(c)$.

Suppose that e_i is a local orthonormal frame field on M and that the frame \tilde{e}_A is chosen so that on M, $e_i = \tilde{e}_i$ and \tilde{e}_{α} are normal to M. When forms and vectors on $X^N(c)$ are restricted to M, let them be denoted by the same symbol without tilde: $\theta_A = \tilde{\theta}_A|_M$, $\omega_{AB} = \tilde{\omega}_{AB}|_M$ and $e_A = \tilde{e}_A|_M$. Then $\omega_{\alpha i} = \sum_j h_{\alpha i j} \theta_j$, where $h_{\alpha i j}$ are the coefficients of the second fundamental form of M.

Let T_xM and $T_xX^N(c)$ denote the tangent space of M and $X^N(c)$, respectively, at a point x. Curves on M through x have their first derivatives at x in T_xM , but higher order derivatives will have components normal to M. The space spanned by the derivatives of order up to r is called the r-th osculating space of M at x, denoted $T_x^{(r)}M$.

The r-th normal space of M at x, denoted $\operatorname{Nor}_{x}^{(r)}M$, is the orthogonal complement of $T_{x}^{(r)}M$ in $T_{x}^{(r+1)}M$. At generic points of M, the dimension of $\operatorname{Nor}_{x}^{(r)}M$ is 2 when $1 \leq r \leq n-1$, and the dimension of $\operatorname{Nor}_{x}^{(n)}M$ is 1 or 2, depending on whether N is odd or even. Those normal spaces that have dimension 2 are called the normal planes of M. Let β_N denote the number of normal planes possessed by M at generic points: $\beta_N = n-1$ if N = 2n+1, and $\beta_N = n$ if N = 2n+2.

Choose the normal vectors e_{α} so that $\operatorname{Nor}_{x}^{(r)}M$ is spanned by $\{e_{2r+1}, e_{2r+2}\}$, where $1 \leq r \leq \beta_{N}$. When N = 2n+1, $\operatorname{Nor}_{x}^{(n)}M$ is spanned by $\{e_{2n+1}\}$. Set $\varphi = \theta_{1} + \sqrt{-1}\theta_{2}$. Then there are H_{α} such that $H_{\alpha} = h_{\alpha 1 1} + \sqrt{-1}h_{\alpha 1 2}$ for $\alpha = 3$ and 4, for each r such that $2 \leq r \leq \beta_{N}$

$$H_{2r-1}\omega_{\alpha,2r-1} + H_{2r}\omega_{\alpha,2r} = H_{\alpha}\bar{\varphi}$$

where $\alpha = 2r + 1$ and 2r + 2, and when N = 2n + 1

$$H_{2n-1}\omega_{2n+1,2n-1} + H_{2n}\omega_{2n+1,2n} = H_{2n+1}\bar{\varphi}$$

(see [5]).

The *r*-th normal plane, $\operatorname{Nor}_{x}^{(r)}M$, of *M* is called exceptional if $H_{2r+2} = \pm \sqrt{-1}H_{2r+1}$. The minimal surface *M* is called exceptional if all of its normal planes are exceptional. Note that when N = 2n + 1, $\operatorname{Nor}_{x}^{(n)}M$ is a line, not a plane, and the notion of exceptionality does not apply. So, every minimal surface in $X^{3}(c)$ is exceptional.

2. A lemma.

Let (M, ds^2) be a 2-dimensional Riemannian manifold with Gaussian curvature K < c. We denote by Δ the Laplacian of (M, ds^2) . Set

(1)

$$A_{0}^{c} = 1/2, \qquad A_{1}^{c} = c - K,$$

$$A_{p+1}^{c} = \begin{cases} A_{p}^{c} [\Delta \log(A_{p}^{c}) + A_{p}^{c}/A_{p-1}^{c} - 2(p+1)K], & \text{if } A_{p}^{c} > 0, \\ 0, & \text{otherwise.} \end{cases}$$

Let \hat{K}_c be the Gaussian curvature of M with respect to the metric $d\hat{s}_c^2 = (c-K)ds^2$. Then

(2)
$$\hat{K}_{c} = \frac{K}{c-K} - \frac{1}{2(c-K)} \Delta \log(c-K) \, .$$

Now suppose that c=0 and $\hat{K}_0=2/m$, where *m* is a positive integer. Then by (2), we have

(3)
$$\Delta \log(-K) = 2\left(1 + \frac{2}{m}\right)K.$$

LEMMA. Under the hypothesis above,

$$A_p^0 = p((p-1)!)^2 \left\{ \prod_{k=1}^{p-1} \left(\frac{2}{k} - \frac{2}{m} \right) \right\} (-K)^p \quad \text{for } 2 \leq p \leq m+1 ,$$

and

$$A_p^0 = 0 \qquad for \ p \ge m+1 \ .$$

PROOF. By (1) and (3), we have

$$4_{2}^{0} = (-K)[\Delta \log(-K) - 2K - 4K]$$
$$= 2\left(2 - \frac{2}{m}\right)(-K)^{2},$$

and

$$A_{3}^{0} = 2\left(2-\frac{2}{m}\right)(-K)^{2}\left[2\Delta\log(-K)-2\left(2-\frac{2}{m}\right)K-6K\right]$$
$$= 12\left(2-\frac{2}{m}\right)\left(1-\frac{2}{m}\right)(-K)^{3}.$$

So the lemma is true for p=2 and 3. Assume that the lemma is true for p and p+1, where $2 \le p \le m-1$. Then by (1), (3) and the assumption,

$$A_{p+2}^{0} = (p+1)(p!)^{2} \left\{ \prod_{k=1}^{p} \left(\frac{2}{k} - \frac{2}{m} \right) \right\} (-K)^{p+1} \\ \times \left[(p+1)\Delta \log(-K) - p(p+1) \left(\frac{2}{p} - \frac{2}{m} \right) K - 2(p+2) K \right] \\ = (p+2)((p+1)!)^{2} \left\{ \prod_{k=1}^{p+1} \left(\frac{2}{k} - \frac{2}{m} \right) \right\} (-K)^{p+2}.$$

So the lemma is true for p+2. Therefore, by induction, the lemma is true for $2 \le p \le m+1$. Thus we have $A_{m+1}^0 = 0$, and by (1) we have $A_p^0 = 0$ for $p \ge m+1$. Q.E.D.

3. Proof of Theorem 1.

PROOF OF THEOREM 1. Let ds^2 and K be as in Section 0. We assume that K < 0 in the theorem because \hat{K}_0 cannot be defined at points where K=0. Let Δ and A_p^0 be as in Section 1. By [4], $\hat{K}_0 = 2/m$ for some positive integer m. So the equation (3) and Lemma are valid.

When N=2n+1, by Theorem A of [5], $A_p^0 \ge 0$ for $1 \le p \le n$ with equality only at isolated points, and the metric $(A_n^0)^{1/(n+1)} ds^2$ is flat at points where $A_p^0 > 0$ for $1 \le p \le n$. So by Lemma, we find that $m \ge n$ and

$$A_n^0 = n((n-1)!)^2 \left\{ \prod_{k=1}^{n-1} \left(\frac{2}{k} - \frac{2}{m} \right) \right\} (-K)^n .$$

Using the lemma in Section 3 of [5] and the equation (3), we have

$$0 = \Delta \log(A_n^0) - 2(n+1)K = \left(\frac{4n}{m} - 2\right)K.$$

Thus we have m = 2n, and $\hat{K}_0 = 1/n$.

When N=2n+2, by Theorem A of [5], $A_p^0 \ge 0$ for $1 \le p \le n$ with equality only at isolated points, and $A_{n+1}^0 = 0$ identically. So by Lemma, we have m=n, and $\hat{K}_0 = 2/n$. Q.E.D.

We shall show the fact in Remark 1 (i). Let (M, ds^2) be a 2-dimensional Riemannian manifold with Gaussian curvature K < 0. Let Δ , A_p^0 and \hat{K}_0 be defined as in Section 1.

First suppose that $\hat{K}_0 = 1/n$, where *n* is a positive integer. We note that there are such 2-dimensional Riemannian manifolds. Then the equation (3) and Lemma are valid for m=2n. So $A_p^0 > 0$ for $p \leq 2n$. Using Lemma and (3) with m=2n, we have

$$\Delta \log(A_n^0) - 2(n+1)K = 0$$

By the lemma in Section 3 of [5], the metric $(A_n^0)^{1/(n+1)}ds^2$ is flat. By Theorem B of [5], (M, ds^2) can be realized locally as an exceptional minimal surface lying fully in \mathbb{R}^{2n+1} . Therefore, for every positive integer *n*, there are exceptional minimal surfaces lying fully in \mathbb{R}^{2n+1} with $\hat{K}_0 = 1/n$.

Next suppose that $\hat{K}_0 = 2/n$, where *n* is a positive integer. Then the lemma is valid for m=n. So $A_p^0 > 0$ for $p \le n$ and $A_{n+1}^0 = 0$. By Theorem B of [5], (M, ds^2) can be realized locally as an exeptional minimal surface lying fully in \mathbb{R}^{2n+2} . Therefore, for every positive integer *n*, there are exceptional minimal surfaces lying fully in \mathbb{R}^{2n+2} with $\hat{K}_0 = 2/n$.

4. Proof of Theorems 2 and 3.

In this section we prove the following proposition. Combining the proposition with [1], we have Theorems 2 and 3.

PROPOSITION. Let M be an exceptional minimal surface in $X^{6}(c)$ with constant \hat{K}_{c} , where $c \neq 0$. Then M has constant curvature.

PROOF. Let ds^2 and K be as in Section 0. We assume that K < c in the proposition because \hat{K}_c cannot be defined at points where K=c. Let Δ and A_p^c be as in Section 1. We assume that $\hat{K}_c = a$. Then by (2), we have

(4)
$$\Delta \log(c-K) = 2\{(a+1)K - ca\}.$$

By (1) and (4),

(5)
$$A_{2}^{c} = (c-K)[\Delta \log(c-K) + 2(c-K) - 4K]$$
$$= 2(c-K)\{(a-2)K - c(a-1)\}.$$

MAKOTO SAKAKI

Set
$$M_1 = \{x \in M ; A_2^c > 0\}$$
. By (1), (4) and (5),
(6) $A_3^c = A_2^c [\Delta \log(c - K) + \Delta \log\{(a - 2)K - c(a - 1)\} + 2\{(a - 2)K - c(a - 1)\} - 6K]$
 $= A_2^c [\Delta \log\{(a - 2)K - c(a - 1)\} + 2\{2(a - 2)K - c(2a - 1)\}]$

on M_1 .

Now suppose that M lies fully in $X^{N}(c)$ where $3 \le N \le 6$. When N=3, by Theorem A and the lemma in Section 3 of [5],

(7)
$$\Delta \log(c-K) = 4K.$$

By (4) and (7), we can see that K is constant. When N=4, $A_2^c=0$ identically by Theorem A of [5]. Then by (5), we can see that K is constant.

When N=5, by Theorem A of [5], M_1 is M minus isolated points and the metric $(A_2^c)^{1/3} ds^2$ is flat on M_1 . Using the lemma in Section 3 of [5], the equations (4) and (5), we have

(8)

$$0 = \Delta \log(A_2^c) - 6K$$

$$= \Delta \log(c - K) + \Delta \log\{(a - 2)K - c(a - 1)\} - 6K$$

$$= \Delta \log\{(a - 2)K - c(a - 1)\} + 2\{(a - 2)K - ca\}$$

on M_1 . By (8) we can see that $a \neq 2$. By (4) and (8), we have

$$\Delta K = F(K) = b_0 + b_1 K + b_2 K^2 + b_3 K^3$$

and

$$|\nabla K|^2 = G(K) = b_4 + b_5 K + b_6 K^2 + b_7 K^3 + b_3 K^4$$

on M_1 and, by continuity, on M, where

$$b_{0} = -\frac{2c^{2}a(2a^{2}-6a+5)}{a-2}, \qquad b_{1} = 2c(6a^{2}-9a-1),$$

$$b_{2} = -12a(a-2), \qquad b_{3} = \frac{2(a-2)(2a-1)}{c},$$

$$b_{4} = \frac{2c^{3}a(a-1)(2a-3)}{a-2}, \qquad b_{5} = -\frac{2c^{2}a(8a^{2}-24a+17)}{a-2},$$

$$b_{6} = 2c(12a^{2}-18a+1), \qquad b_{7} = -2(8a^{2}-16a+3).$$

If K is not constant, then

(9)
$$GK + (F - G')\left(F - \frac{1}{2}G'\right) + G\left(F' - \frac{1}{2}G''\right) = 0,$$

386

where the prime denotes the differentiation with respect to K (see for example [6, p. 136]). The left-hand side of (9) is a polynomial of K such that the coefficient of K^5 is -16(a-2)(2a-1)/c and the constant term is $-8c^4a(a-1)(5a-3)/(a-2)$. So it is a nontrivial polynomial. Thus K must be constant, which is a contradiction. Therefore, K is constant.

When N=6, by Theorem A of [5], M_1 is M minus isolated points and $A_3^c=0$ identically. By (6) we have

(10)
$$\Delta \log\{(a-2)K - c(a-1)\} + 2\{2(a-2)K - c(2a-1)\} = 0$$

on M_1 . By (10) we can see that $a \neq 2$. By (4) and (10), we have

$$K = P(K) = d_0 + d_1 K + d_2 K^2 + d_3 K^3$$

and

$$|\nabla K|^2 = Q(K) = d_4 + d_5 K + d_6 K^2 + d_7 K^3 + d_3 K^4$$

on M_1 and, by continuity, on M, where

$$\begin{aligned} d_0 &= -\frac{2c^2(3a^3 - 9a^2 + 8a - 1)}{a - 2}, \qquad d_1 = 2c(9a^2 - 15a + 2), \\ d_2 &= -6(a - 2)(3a - 1), \qquad d_3 = \frac{6(a - 1)(a - 2)}{c}, \\ d_4 &= \frac{2c^3(a - 1)(3a^2 - 5a + 1)}{a - 2}, \qquad d_5 = -\frac{2c^2(12a^3 - 39a^2 + 35a - 7)}{a - 2}, \\ d_6 &= 2c(18a^2 - 33a + 10), \qquad d_7 = -2(12a^2 - 29a + 13). \end{aligned}$$

If K is not constant, then

(11)
$$QK + (P - Q')\left(P - \frac{1}{2}Q'\right) + Q\left(P' - \frac{1}{2}Q''\right) = 0$$

(similar to (9)). The left-hand side of (11) is a polynomial of K such that the coefficient of K^5 is 6(a-1)(a-2)(3a-14)/c and the constant term is $-2c^4(a-1)(9a^3+12a^2-14a+1)/(a-2)$. When a=1, the coefficient of K is $16c^3 \neq 0$. So the left-hand side of (11) is a nontrivial polynomial. Thus K must be constant, which is a contradiction. Therefore, K is constant. Q.E.D.

Minimal 2-spheres in $X^{N}(c)$, where c > 0, are always exceptional (see [5] and [2]). So, by Theorem 2, we have the following:

COROLLARY. Let M be a minimal 2-sphere in $X^6(c)$ with constant \hat{K}_c , where c > 0. Then M has constant curvature c/3 or c/6.

ΜΑΚΟΤΟ SAKAKI

References

- [1] R. BRYANT, Minimal surfaces of constant curvature in S", Trans. Amer. Math. Soc., 290 (1985), 259-271.
- [2] S. S. CHERN, On the minimal immersions of the two-sphere in a space of constant curvature, *Problems in Analysis*, Princeton Univ. Press, 1970, pp. 27–40.
- [3] M. FUJIKI, On the Gauss map of minimal surfaces immersed in **R**ⁿ, Kodai Math. J., 9(1986), 44-49.
- [4] D. HOFFMAN and R. OSSERMAN, The Geometry of the Generalized Gauss Map, Mem. Amer. Math. Soc., 236 (1980).
- [5] G. D. JOHNSON, An intrinsic characterization of a class of minimal surfaces in constant curvature manifolds, Pacific J. Math., 149 (1991), 113-125.
- [6] K. KENMOTSU, Minimal surfaces with constant curvature in 4-dimensional space forms, Proc. Amer. Math. Soc., 89 (1983), 133-138.
- [7] H. B. LAWSON, Some intrinsic characterizations of minimal surfaces, J. Analyse Math., 24 (1971), 151-161.
- [8] M. OBATA, The Gauss map of immersions of Riemannian manifolds in spaces of constant curvature, J. Diff. Geom., 2 (1968), 217-223.
- [9] M. SAKAKI, Exceptional minimal surfaces with the Ricci condition, Tsukuba J. Math., 16 (1992), 161-167.

Present Address: Department of Mathematics, Faculty of Science, Hirosaki University Hirosaki 036, Japan