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On the Galois Group of $x^{p}+p^{t}b(x+1)=0$
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1. In [3] we discussed the Galois group of

$x^{p}+ax+a=0$

over the rational number field $Q$, where $p$ is a prime number, and $a\in Z,$ $(p, a)=1$ . The
situation becomes much more complicated when $a$ is divisible by $p$ . In this paper we
deal with three special cases:

1. $a=p^{t}b,$ $0<t<p,$ $(p, b)=1,$ $|(p-1)^{p-1}b+p^{p-t}|$ is not a square;
2. $a=pk^{2},$ $(p, k)=1$ ;
3. $a=p^{2m}b,$ $0<2m<p,$ $(p, b)=1$ .
We begin by proving the following theorem (cf. [3]).

THEOREM 1. Let $a_{0},$ $a_{1},$ $\cdots,$ $a_{n-1}$ be rational integers such that

$f(x)=x^{n}+a_{n-1}x^{n-1}+\cdots+a_{1}x+a_{0}$

is irreducible over the rational numberfield Q. Let $\alpha$ be a root off$(x)=0$, and let

$\delta=f^{\prime}(\alpha)$ , $ D=norm\delta$ (in $Q(\alpha)$) ,

$D/\delta=x_{0}+x_{1}\alpha+\cdots+x_{n-1}\alpha^{n-1}$ , $x_{i}\in Z$ .
Let $D_{1}$ and $D_{2}$ denote any rational integers which satisfy the following conditions:

(1.1) $D=D_{1}D_{2}$ ,

(1.2) $(D_{1}, D_{2})=1$ ,

(1.3) $(D_{2}, x_{0}, x_{1}, \cdots, x_{n-1})=1$ .
Let $G$ denote the Galois group off$(x)=0$ over $Q;G$ is a transitive permutation group on
the set $\{1, 2, \cdots, n\}$ . Then we have:

I. If $|D_{2}|$ is not a square, $G$ contains a transposition.
II. If $|D_{2}|$ is a square, $D_{1}$ is divisible by the discriminant of $Q(\alpha)$ .
$PR\infty F$ . Suppose first that $|D_{2}|$ is not a square. Then there exists a prime number
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$q$ such that $(D_{2})_{q}$ is odd, where the symbol $(D_{2})_{q}$ means the largest integer $M$ such th
$D_{2}$ is divisible by $q^{M}$ (cf. [1]). Since $D_{2}$ is divisible by $q$, it follows from (1.3) that $ q\parallel$

for some $i$. Clearly, $(D)_{q}$ is also odd. Hence, by Theorem 1 of [1], we see that tl
discriminant $d$ of $\alpha\alpha$) is exactly divisible by $q$ . Therefore $G$ contains a transpositi $($

([4]). Suppose next that $|D_{2}|$ is a square. Let $q$ denote a prime factor of $D_{2}$ . Then, 1
(1.3), we see that $qXx_{i}$ for some $i$. Since $(D)_{q}=(D_{2})_{q}$ is even, it follows from Theore
1 of [1] that $d$ is not divisible by $q$ . Hence we obtain $(d, D_{2})=1$ . Since $D$ is divisib
by $d$, we see that $D_{1}$ is divisible by $d$.

2. Now we prove the following theorem.

THEOREM 2. Let $p$ denote an odd prime, and let $t$ and $b$ denote rational intege
such that $0<t<p,$ $(p, b)=1$ . Suppose that $|(p-1)^{p-1}b+p^{p-t}|$ is not a square. Then $t/$

Galois group of
$x^{p}+p^{t}b(x+1)=0$

over $Q$ is the symmetric group $S_{p}$ .
$PR\infty F$ . Since $0<t<p,$ $t$ is not divisible by $p$ . It is easily seen that

$f(x)=x^{p}+p^{t}b(x+1)$

is irreducible over $Q$ ([2], Lemma 1). Let $\alpha$ be a root of $f(x)=0$ , and let $\delta=f^{\prime}(\alpha$

$ D=norm\delta$ (in $\alpha\alpha$)). Then ([1], Theorem 2)

(2.1) $D=(p-1)^{p-1}(p^{t}b)^{p}+p^{p}(p^{t}b)^{p-1}$

$=p^{tp}b^{p-1}\{(p-1)^{p-1}b+p^{p-t}\}$ .
Now let

$D_{1}=p^{tp}b^{p-1}$ , $D_{2}=(p-1)^{p-1}b+p^{p-t}$

Then

$D=D_{1}D_{2}$ , $(D_{1}, D_{2})=1$ .
By Theorem 2 \’of [1] we see that the condition $(1\cdot.3)$ of Theorem 1 is also satisfie $($

Sinoe $p$ is a prime, the Galois group of $f(x)=0$ is primitive. Theorem 1 implies $th^{\tau}$

the Galois group is the symmetric group $S_{p}$ ([5], Theorem 13.3).

3. Consider now the case

$a=pk^{2}$ , $(p, k)=1$ .
From Theorem 2 we obtain
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THEOREM 3. Let $p$ denote a prime number, and $k$ a rational integer such that
$(p, k)=1$ . Then the Galois group of
(3.1) $x^{p}+pk^{2}(x+1)=0$

over $Q$ is the symmetric group $S_{p}$ .

PROOF. We may assume that $p>2,$ $k>0$ . When $p=3$ , the Galois group of (3.1)

is the symmetric group $S_{3}$ , since the discriminant of (3.1) is negative. So we may assume
that

(3.2) $p>3$ , $k>0$ .

Now suppose that

$(p-1)^{p-1}k^{2}+p^{p-1}=c^{2}$ , $c\in Z$ , $c>0$ .

Then we have

(3.3) $p^{p-1}=c^{2}-(p-1)^{p-1}k^{2}$

$=\{c-(p-1)^{\langle p-1)/2}k\}\{c+(p-1)^{\langle p-1)/2}k\}$ .

Clearly,

$c+(p-1)^{\langle p-1)/2}k$

is positive, and prime to

$c-(p-1)^{\langle p-1)/2}k$ .

Hence

$c+(p-1)^{\langle p-1)/2}k=p^{p-1}$ , $c-(p-1)^{\langle p-1)/2}k=1$ .

Therefore
$p^{p-1}-1=2k(p-1)^{\langle p-1)/2}$ ,

and so

(3.4) $k=\frac{p^{p-1}-1}{2(p-1)^{\langle p-1)/2}}$ .

Now let

$\frac{p-1}{2}=B$ ,

so that
$p-1=2B$ , $p=2B+1$ .
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Then (3.4) becomes

(3.5) $k=\frac{(2B+1)^{2B}-1}{2(2B)^{B}}$ .

Since $p>3$ , we have $B\geq 2$ . When $B=2,$ $(3.5)$ gives

$k=\frac{5^{4}.-1}{24^{2}}$ ,

which is not an integer. So we may assume that $B\geq 3$ . Then, by (3.5) we see that

$\frac{(2B+1)^{2B}-1}{(2B)^{3}}$

is an integer. On the other hand,

$(2B+1)^{2B}-1=(2B)^{2B}+\cdots+\frac{(2B)(2B-1)}{2}(2B)^{2}+(2B)(2B)$

$\equiv(2B)^{2}(2B^{2}-B+1)$ $(mod(2B)^{3})$ .
Hence $(2B+1)^{2B}-1$ is not divisible by $(2B)^{3}$ .

A contradiction shows that

$(p-1)^{p-1}k^{2}+p^{p-1}$

is not a square. By Theorem 2 we see that the Galois group of (3.1) over $Q$ is th
symmetric group $S_{p}$ .

As a special case $(k=1)$ of Theorem 3, we obtain
THEOREM 4. For any prime number $p$, the Galois group of

$x^{p}+px+p=0$

over $Q$ is the symmetric group $S_{p}$ .

4. Now we discuss the case
$a=p^{2m}b$ , $0<2m<p$ , $(p, b)=1$ .

THEOREM 5. Let $p(p>3)$ denote a prime number and let $b$ and $m$ denote rationt
integers such that $0<2m<p,$ $(p, b)=1$ . Let $G$ denote the Galois group of the equation

$x^{p}+p^{2m}b(x+1)=0$

over $Q$ .
1. If $p\equiv 3$ or 5 or 7 (mod8), then $G$ is the symmetric group $S_{p}$ .
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2. Suppose that $p\equiv 1(mod 8)$ . Then $G=S_{p}$ ifand only if $(p-1)^{p-1}b+p^{p-}$ is not
a square. If $(p-1)^{p-1}b+p^{p-2m}$ is a square, then $G$ is contained in the alternating group
$A_{p}$ , where $G$ is regarded as a permutation group on $\{1, 2, \cdots,p\}$ .

$PR\infty F$ . We have

(4.1) $p^{p-2m}\equiv p$ $(mod 8)$ .

Also, for every prime factor $q$ of $p-1$ ,

(4.2) $p^{p-2m}\equiv 1$ $(mod q)$ .
If $p\equiv 3$ or 5 or 7 (mod8), then

$|(p-1)^{p-1}b+p^{p-2m}|$

is not a square ([3], the proof of Theorem 1), and so $G=S_{p}$ (Theorem 2).
Now suppose that $p\equiv 1$ (mod8). It follows from (4.1) that $-\{(p-1)^{p-1}b+p^{p-2m}\}$

is not a square. Hence, if $(p-1)^{p-1}b+p^{p-2m}$ is not a square, then $G=S_{p}$ (Theorem 2).

Suppose further that $(p-1)^{p-1}b+p^{p-2m}$ is a square. Let $\alpha_{1},$ $\alpha_{2},$ $\cdots,$ $\alpha_{p}$ denote the roots
of

$f(x)=x^{p}+p^{2m}b(x+1)=0$ ,

and let $\delta=f^{\prime}(\alpha_{1}),$ $ D=norm\delta$ (in $Q(\alpha_{1})$). Then, by (2.1) we see that $D$ is also a square.
Now let $A$ denote the following matrix:

$A=(a_{ij})$ , $a_{ij}=\alpha_{i}^{j-1}(1\leq i\leq p;1\leq j\leq p)$ .

Then we have

$(\det A)^{2}=(-1)^{p\langle p-1)/2}D=D$ .

Hence det $A$ is a rational integer. If $g\in G$ is an odd permutation, then

$(\det A)^{g}=-(\det A)$ ,

which is impossible. Hence $G$ is contained in $A_{p}$ .

Finally we prove

THEOREM 6. For any prime number $p\equiv 1$ (mod8) and any rational integer $m$ with
$0<2m<p$ , there exist infinitely many rational integers $b$ satisfying thefollowing conditions:

1. $(p, b)=1$ ;
2. $(p-1)^{p-1}b+p^{p-2m}$ is a square.
$PR\infty F$ . The congruence

(4.3) $x^{2}\equiv p^{p-2m}$ $(mod(p-1)^{p-1})$

has a solution $x((4.1), (4.2))$ . We may assume that $x$ is not divisible by $p$ , since
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$x+(p-1)^{p-1}$ is also a solution of (4.3). Now let

$x^{2}-p^{p-2m}=y(p-1)^{p-1}$

Then $y$ is not divisible by $p$ . For every $n\in Z$,

$b=y+2xnp+n^{2}p^{2}(p-1)^{p-1}$

satisfies the conditions of Theorem 6, since

$(p-1)^{p-1}b+p^{p-2m}=(x+np(p-1)^{p-1})^{2}$
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