Moves for Flow-Spines and Topological Invariants of 3-Manifolds

Ippei ISHII

Keio University

Introduction.

A spine P for a closed 3-manifold M is a 2 -dimensional polyhedron in M such that the complement of the regular neighborhood of P is homeomorphic to the 3-ball. Cutting off a closed 3 -manifold M along its spine P, we get a 3 -ball B^{3} with an identification on its boundary. This is a polyhedral representation of M, which is first considered by M. Dehn in the case of closed surfaces, and introduced by H. Seifert in the 3-dimensional case.

A DS-diagram is a polyhedral representation of a special class, which was first introduced in [3]. A spine corresponding to a DS-diagram forms a closed fake surface (cf. [1], [3]). A spine which forms a closed fake surface is called a standard or a simple spine. As is pointed out in [12], a standard spine is the dual of a singular triangulation.

A flow-spine introduced in [7] is a standard spine of a more special class, which is generated by a pair of a non-singular flow and its local section. It was shown in [4] and [7] that a DS-diagram for a flow-spine has an E-cycle. An E-cycle is a cycle of the graph of a DS-diagram which represents a kind of symmetry of a polyhedral representation. (See $\S 1$ for precise.)

A closed 3-manifold admits infinitely many flow-spines. In this paper, we shall give conditions for two flow-spines to represent the same manifold, that is, it will be shown that any two flow-spines of a 3-manifold can be transformed from one to another by a finite sequence of operations of three types which we call "moves". A flow-spine is completely determined by a data on the E-cycle, which will be called an E-data (cf. §1). An E-data is the one called a singularity-data in [7]. Our moves of flow-spines are described in terms of E-data. For an easy description of moves of E-data, we introduce the graphic representation of an E-data in §1.

An E-data determines not only a 3-manifold M but also a class of non-singular flows on M (see §1). Moves of E-data are divided into two types, moves which do not change the class of non-singular flows and those which change the class. Moves of the first type are called regular moves and discussed in §2. The second type consists of only
one move, called a surgery move, and is exhibited in §3.
As an application, in $\S \S 4,5$ we shall attempt to give topological invariants of 3-manifolds. The invariants obtained in this paper are similar to those in [12] which are called state sum invariants.

In this paper, we consider only orientable cases. Nonorientable case can be treated in a similar way, but E-data for nonorientable manifolds are somewhat complicated (cf. [7]).

§1. DS-diagrams and E-data.

First we shall recall the notion of fake surfaces, DS-diagrams, and DS-diagrams with E-cycle. These concepts were introduced by H. Ikeda in [1]-[4]. For the precise definition, refer to these papers. Let P be a closed fake surface, and $\mathbb{S}_{j}(P)$ be the closure of the j-th singularities of $P(j=1,2,3)$. A continuous map f from the 2 -sphere S^{2} onto a closed fake surface P is said to be an identification map, if there exists a connected 3-regular graph G embedded in S^{2} and satisfying the following conditions:
(i) For any connected component X of $S^{2}-G$ or $G-V(G)(V(G)$ is the set of vertices of $G), f \mid X: X \rightarrow f(X)$ is a homeomorphism.
(ii) $f^{-1}\left(f\left(\mathbb{S}_{3}(P)\right)\right)=V(G)$, and, for each $v \in V(G), f^{-1}(f(v))$ consists of exactly four points.
(iii) $f^{-1}\left(f\left(\Theta_{2}(P)\right)\right)=G$, and $f^{-1}(f(E))$ has exactly three connected components for any component E of $G-V(G)$.
A triple (S^{2}, G, f) as above is called a $D S$-diagram. Considering S^{2} to be the boundary ∂B^{3} of the 3-ball B^{3} and identifying B^{3} by the map f, we get a closed 3-manifold B^{3} / f which has $\partial B^{3} / f$ as its standard spine.

A cycle $e=\left\{E_{1}, E_{2}, \cdots, E_{2 v}\right\}$ of the graph G is said to be an E-cycle of a DS-diagram (S^{2}, G, f) if it satisfies that
(i) the underlying space of e, which we denote by the same letter e, is a simple closed curve on S^{2},
(ii) $f\left(E_{i}\right) \neq f\left(E_{j}\right)$ for $i \neq j$, and
(iii) for a component H^{0} of $S^{2}-e$ (the other component is denoted by H^{1}), $f \mid H^{0}: H^{0} \rightarrow f\left(H^{0}\right)$ is bijective.

Let (S^{2}, G, f) be a DS-diagram with an E-cycle e. Without loss of generality, we may assume that

$$
\begin{aligned}
& B^{3}=\left\{(x, y, z) \in R^{3} ; x^{2}+y^{2}+z^{2} \leqq 1\right\}, \quad S^{2}=\partial B^{3}, \\
& e=S^{2} \cap\{z=0\} \quad \text { (the equator) } \\
& H^{0}=S^{2} \cap\{z>0\}, \quad H^{1}=S^{2} \cap\{z<0\} .
\end{aligned}
$$

A point v on $V(G) \cap e$ satisfies one of the following (0) or (1) (cf. [4]).
(j) $\quad U \cap(G-e) \subset H^{j}$, for sufficiently small neighborhood U of $v(j=0$ or 1$)$.

By V^{j} we denote the set of points on $V(G) \cap e$ which satisfy the above condition (j). Moreover for each $v \in V^{0}$ there exists a point v^{\prime} on V^{1} such that $f\left(v^{\prime}\right)=f(v)$, which we denote by $g(v)$. In the case where the represented manifold $M=B^{3} / f$ is orientable, the points on $V(G) \cap e$ are classified into the following two cases (L) or (R) (cf. [7], and see [3] for the method for indicating the identification map f on a DS-diagram).
(L)

(R)

In what follows, we consider only the case where B^{3} / f is orientable. Hence $V^{j}=V_{i}^{j} \cup V_{r}^{j}$ $(j=0,1), g\left(V_{l}^{0}\right)=V_{l}^{1}$ and $g\left(V_{r}^{0}\right)=V_{r}^{1}$, where V_{l}^{j} is the set of points on V^{j} with the above condition (L) and V_{r}^{j} is the set of those satisfying (R). Considering e as an oriented circle, we call the 6 -tuple ($S^{1} ; V_{l}^{0}, V_{r}^{0}, V_{l}^{1}, V_{r}^{1} ; g$) an E-data, which we called a singularity-data in [7]. Notice that the notation here is slightly different from the one in [7]. Conversely, given an E-data, we can reconstruct a DS-diagram with the given E-data if there is such a DS-diagram (cf. [7]). Furthermore, fixing the orientations on the 3-ball B^{3} and on the equator e, we can regard B^{3} / f as an oriented manifold. In this way we regard an E-data as an oriented 3-manifold, if the E-data corresponds to a DS-diagram.

Two E-data $\Delta_{j}=\left(S^{1} ; V_{l j}^{0}, V_{r j}^{0}, V_{l j}^{1}, V_{r j}^{1} ; g_{j}\right)(j=1,2)$ are identified with each other if there is an orientation preserving homeomorphism h of S^{1} such that $h\left(V_{l 1}^{k}\right)=V_{l 2}^{k}$, $h\left(V_{r 1}^{k}\right)=V_{r 2}^{k}(k=0,1)$ and $h \circ g_{1}=g_{2} \circ h$.

Remark. Recently it is shown by H. Ikeda and M. Kouno that, even if an E-data does not correspond to a DS-diagram, it naturally determines a compact 3-manifold ([6]).

For convenience, we represent an E-data by an oriented and coded graph. Let $\Delta=\left(S^{1} ; V_{l}^{0}, V_{r}^{0}, V_{l}^{1}, V_{r}^{1} ; g\right)$ be an E-data, where the orientation on the circles S^{1} is fixed. The oriented and coded graph $G^{*}=G^{*}(\Delta)$ defined as follows represents the given E-data 4 .
(i) The vertices of G^{*} consist of V_{i}^{j} and $V_{r}^{j}(j=0,1)$,
(ii) The oriented edges $E\left(G^{*}\right)$ consist of three classes of edges E^{l}, E^{r} and E^{x}, the edges coded by l, r and x respectively, where these classes are defined by
(l) $\quad[u, v] \in E^{l}$ iff $u \in V_{l}^{0}$ and $v=g(u)$,
(r) $\quad[u, v] \in E^{r}$ iff $u \in V_{r}^{0}$ and $v=g(u)$, and
(x) $\quad[u, v] \in E^{x}$ iff there is no vertex on the subarc of S^{1} going from u to v in the given orientation.

For example, the graph in Fig. 1 (a) represents an E-data (the code x is not written), and this E-data corresponds to the DS-diagram in Fig. 1 (b).

Figure 1
As is shown in [7] and [8], a DS-diagram with E-cycle is closely related to a non-singular flow on the manifold represented by the given DS-diagram. For a DS-diagram with an E-cycle e (we always assume that the E-cycle coincides with the equator of $\left.B^{3}\right)$, a non-singular flow $\psi: R \times M \rightarrow M\left(M=B^{3} / f\right)$ is defined by

$$
\begin{aligned}
& \psi(t ; f(x, y, z))=f(x, y, z+t) \\
& \left.\quad \text { if }(x, y, z+s) \in B^{3} \quad \text { for } 0 \leqq s \leqq t \text { (or } t \leqq s \leqq 0\right) .
\end{aligned}
$$

This definition of ψ is slightly different from the one in [8], but they are essentially the same. The local section Σ is given by

$$
\Sigma=\left\{(x, y, z) \in B^{3} / f \mid z=0, x^{2}+y^{2} \leqq 1-\delta\right\},
$$

where δ is a sufficiently small positive number. Any orbit of ψ intersects with the interior of Σ, and the graph G of the DS-diagram is given as the image of $\partial \Sigma$ under the Poincaré-map for Σ (cf. [7]). Let Δ be an E-data which determines a closed 3-manifold $M=\boldsymbol{M}(\Delta)$. For this E-data, there is a non-singular flow ψ on M defined as above. This
non-singular flow is not unique, but a class of non-singular flows on M is uniquely determined by Δ in some sense. In order to explain this, we make a definition.

Definition 1.1. Two non-singular flows ψ_{1} and ψ_{2} on an oriented closed manifold \boldsymbol{M} are said to be equivalent, written by $\psi_{1} \sim \psi_{2}$, if there are non-singular flows $\hat{\psi}_{1}$ and $\hat{\psi}_{2}$, and an orientation preserving homeomorphism $h: M \rightarrow M$ such that $h \circ \hat{\psi}_{1}=\hat{\psi}_{2} \circ h$ and $\hat{\psi}_{j}$ can be continuously deformed into ψ_{j} within the set of all non-singular flows on M.

Let Δ be an E-data which represents a closed 3 -manifold M, and $\left(S^{2}, G, f\right)$ be a DS-diagram given by Δ. Since the graph G is determined only up to isotopy, the corresponding non-singular flow ψ which depends on the choice of G is not unique. However the above defined equivalence class of ψ is uniquely determined. We denote by [4] this equivalence class.

§2. Regular moves of E-data.

For an oriented closed 3-manifold M there are infinitely many E-data Δ such that $M(\Delta)$ is homeomorphic to M. In this section, we consider when two E-data give the same manifold. As is stated in the previous section, an E-data, if it represents a closed 3-manifold M, corresponds to a pair of a non-singular flow on M and its local section. In [7] we called this pair a normal pair. Hence, in the case of $\left[\Delta_{1}\right]=\left[\Delta_{2}\right]$, the change from Δ_{1} into Δ_{2} can be described as a continuous deformation of normal pairs, which is quite analogous to the regular Reidemeister moves of knot projections. Refer to [9] (Chap. 4) for the notion of the Reidemeister move of knot projections.

Before giving the precise definition of moves, we shall summarize the relation between an E-data and a non-singular flow. This will give a good explanation for the reason why the moves of E-data is similar to the regular Reidemeister moves. Let M be a closed 3-manifold, and $\psi: \boldsymbol{R} \times M \rightarrow M$ be a non-singular flow. Choose a local section Σ so that the pair (ψ, Σ) forms a normal pair (cf. [7]). Namely any orbit intersects with Σ transversely, and moreover Σ satisfies some generic conditions (see [7] for the precise). Then we can define the Poincaré-map $T: M \rightarrow \Sigma$; i.e., for $x \in M, T(x)$ is the first returning point to Σ along ψ. The set of the discontinuity points of T, denoted by $P_{-}(\psi, \Sigma)$, forms a spine of M, and the DS-diagram induced by this spine has an E-cycle ([7]).

Now we shall explain how the E-data of the DS-diagram is derived from the spine $P_{-}(\psi, \Sigma)$. Let M be oriented, and \boldsymbol{R}^{3} be usually oriented Euclidean space whose coordinate is denoted by (x, y, z). Let U be a neighborhood of Σ, and $h: U \rightarrow \boldsymbol{R}^{3}$ be an orientation preserving embedding such that $h(\Sigma) \subset\{z=0\}$ and $h(x, y, z+t)=\psi(t ; h(x, y, z))$. We settle the orientation on $\partial \Sigma$ so that $h(\Sigma)$ is on the left of $h(\partial \Sigma)$. In this way, for a local section Σ of a flow on an oriented manifold, we can regard the boundary $\partial \Sigma$ as the oriented circle S^{1}. The required E-data ($S^{1} ; V_{l}^{0}, V_{r}^{0}, V_{l}^{1}, V_{r}^{1} ; g$) is given as follows (cf. [7]):

$$
\begin{aligned}
& V^{0}=\{x \in \partial \Sigma \mid T(x) \in \partial \Sigma\}, \quad g=T \mid V^{0}, \\
& V_{l}^{0}=\left\{x \in V^{0}|T| \partial \Sigma \text { is left continuous at } x\right\}, \\
& V_{r}^{0}=\left\{x \in V^{0}|T| \partial \Sigma \text { is right continuous at } x\right\}, \\
& V_{l}^{1}=g\left(V_{l}^{0}\right), \quad V_{r}^{1}=g\left(V_{r}^{1}\right) .
\end{aligned}
$$

This E-data is called the one generated by a normal pair (ψ, Σ), and denoted by $\Delta(\psi, \Sigma)$.

See Fig. 2 (i), and assume that
(a) the flow runs from the back of the sheet to the front,
(b) the curves drown there are parts of $\partial \Sigma$, and
(c) Σ lies on the left of its boundary.

Then the singularities of the spine correspond to the crossings of the figure, and so the E-data for this part is given by Fig. 2 (ii). Deforming the local section, we get the situation as in Fig. 3 (i). In this figure, the crossing points encircled by the dotted circle seems to produce a 3-rd singularity of the spine. However there is the local section attached to the part of the boundary numbered by 2 between the under and over crossings. Hence this crossing produces no discontinuity point of the Poincaré-map. Consequently the E-data corresponding to Fig. 3 (i) is given by Fig. 3 (ii). Obviously

Figure 2

Figure 3
the transformation of E-data from Fig. 2 (ii) into Fig. 3 (ii) does not change the represented manifold. This transformation is one of the moves of E-data. The precise definition of regular moves is as follows, and one more move will be introduced in the
next section.
Definition 2.1. (Regular moves)
(i) The transformation of E-data from Fig. 2 (ii) into Fig. 3 (ii) is called the first regular move, and denoted by R_{1}.
(ii) Each transformation of E-data in Fig. 4(1)-(4) will be called the second regular move, and denoted by $R_{2}-(x)(x=1,2,3$ or 4$)$, or simply by R_{2}.

The inverse of the regular move R_{j} is denoted by R_{j}^{-1}.

(1)

(3)

(2)

(4)

Figure 4
If an E-data Δ^{\prime} is obtained from Δ by applying the move $R_{j}^{ \pm 1}$, then we write $\Delta^{\prime}=R_{j}^{ \pm 1}(\Delta)$. It is easy to see that if an E-data Δ is realized by a normal pair on some closed 3-manifold M, then each one of $R_{1}^{ \pm 1}(\Delta)$ and $R_{2}(\Delta)$ is also realized by a normal pair on M. However for $R_{2}^{-1}(\Delta)$ there might be no closed 3-manifold corresponding to it. By these regular moves we can define equivalence relations.

Definition 2.2. (Regular eqivalence and strongly regular equivalence)
(i) Two E-data Δ_{a} and Δ_{b} are said to be regular equivalent to each other iff there is a sequence of E-data $\Delta_{a}=\Delta_{1}, \Delta_{2}, \cdots, \Delta_{n}=\Delta_{b}$ such that $\Delta_{k+1}=R_{j}^{ \pm 1}\left(\Delta_{k}\right)(j=1$ or 2 , $k=1, \cdots, n-1)$. We denote this equivalence by $\Delta_{a} \stackrel{R}{\sim} \Delta_{b}$.
(ii) Moreover if any $\Delta_{k}(k=1,2, \cdots, n)$ represents a closed 3-manifold, then we say these E-data are strongly regular equivalent to each other, and write $\Delta_{a} \stackrel{s R}{\sim} \Delta_{b}$.

It is not known whether there are two E-data of closed manifolds which are regular equivalent but not strongly regular equivalent.

The purpose of this section is to prove the next theorem.

Theorem 2.3. Let Δ_{1} and Δ_{2} be E-data which correspond to oriented closed 3-manifolds $M\left(\Delta_{1}\right)$ and $M\left(\Delta_{2}\right)$ respectively. Then we have that

$$
M\left(\Delta_{1}\right) \simeq M\left(\Delta_{2}\right) \text { and }\left[\Delta_{1}\right]=\left[\Delta_{2}\right] \text { if and only if } \Delta_{1} \stackrel{s R}{\sim} \Delta_{2},
$$

where $M\left(\Delta_{1}\right) \simeq M\left(\Delta_{2}\right)$ means that there is an orientation preserving homeomorphism $h: M\left(\Delta_{1}\right) \rightarrow M\left(\Delta_{2}\right)$.

Proof. First we shall consider the case where two E-data Δ_{1} and Δ_{2} generated by normal pairs $\left(\psi, \Sigma_{1}\right)$ and $\left(\psi, \Sigma_{2}\right)$ for the same flow ψ and its disjoint local sections Σ_{1} and Σ_{2}. In this case, connecting Σ_{1} and Σ_{2} by a band U, we get a normal pair (ψ, Σ_{*}) for a local section $\Sigma_{*}=\Sigma_{1} \cup \Sigma_{2} \cup U$ which yields an E-data Δ_{*}. Consider a deformation $\Sigma^{t}(-1 \leqq t \leqq 1)$ of local sections such that $\Sigma^{-1}=\Sigma_{1}, \Sigma^{t} \supset \Sigma_{1}$ for $-1 \leqq t \leqq 0, \Sigma^{0}=\Sigma_{*}$, $\Sigma^{t} \supset \Sigma_{2}$ for $0 \leqq t \leqq 1$, and $\Sigma^{1}=\Sigma_{2}$. Then, for any t, Σ^{t} intersects with all orbits of ψ. We may assume that the DS-diagram generated by (ψ, Σ^{t}) changes its isotopy type at finite t 's, where it happens the cases in Fig. 5 (i) or (ii) (in these figures the arcs are the boundary of Σ^{t}, and the flow ψ runs from the back to the front).

Figure 5
The change in Fig. 5 (ii) yields one of the second regular moves of E-data. For the change in Fig. 5 (i), there are several cases about the orientations of the boundary in the figure. However we can easily check that, in any case, the corresponding transformation of E-data is represented as a composition of the moves $\boldsymbol{R}_{\mathbf{1}}$ and $\boldsymbol{R}_{\mathbf{2}}$ (see Fig. 6 for example). This shows that $\Delta\left(\psi, \Sigma_{1}\right)$ and $\Delta\left(\psi, \Sigma_{2}\right)$ are strongly regular equivalent if $\Sigma_{1} \cap \Sigma_{2}=\varnothing$.

Figure 6

In the case of $\Sigma_{1} \cap \Sigma_{2} \neq \varnothing$, taking another local section Σ_{3} such that $\Sigma_{3} \cap \Sigma_{j}=\varnothing$ $(j=1,2)$ and $\left(\psi, \Sigma_{3}\right)$ is also a normal pair, we can see that $\Delta\left(\psi, \Sigma_{1}\right) \stackrel{s R}{\sim} \Delta\left(\psi, \Sigma_{3}\right) \stackrel{s R}{\sim} \Delta\left(\psi, \Sigma_{2}\right)$.

Now consider the general cases. Suppose a flow ψ_{1} can be continuously deformed into ψ_{2} within the set of non-singular flows on a 3 -manifold M. Then we can take a sequence of non-singular flows $\psi_{1}=\psi^{1}, \psi^{2}, \cdots, \psi^{n}=\psi_{2}$ and local sections $\Sigma^{1}, \Sigma^{2}, \cdots$, Σ^{n-1} such that (ψ^{k}, Σ^{k}) and (ψ^{k+1}, Σ^{k}) are normal pairs having the same E-data for each $k=1,2, \cdots, v$. Consequently we get

$$
\begin{aligned}
& \Delta\left(\psi_{1}, \Sigma_{1}\right)=\Delta\left(\psi^{1}, \Sigma^{1}\right)=\Delta\left(\psi^{2}, \Sigma^{1}\right) \stackrel{s R}{\sim} \Delta\left(\psi^{2}, \Sigma^{2}\right)=\Delta\left(\psi^{3}, \Sigma^{2}\right) \stackrel{s R}{\sim} \ldots \\
& \quad=\Delta\left(\psi^{n-1}, \Sigma^{n-2}\right) \stackrel{s R}{\sim} \Delta\left(\psi^{n-1}, \Sigma^{n-1}\right)=\Delta\left(\psi^{n}, \Sigma^{n-1}\right)=\Delta\left(\psi_{2}, \Sigma_{2}\right) .
\end{aligned}
$$

This proves that $\left[\Delta_{1}\right]=\left[\Delta_{2}\right]$ implies the strongly regular equivalence of Δ_{1} and Δ_{2}.
Conversely, recalling the way for constructing a non-singular flow from an E-data, we can easily see that if two E-data are strongly regular equivalent, then the corresponding flows are equivalent.

This completes the proof.

§3. Surgery move of E-data.

In this section, we consider the move of E-data for the case where $M\left(\Delta_{1}\right) \simeq M\left(\Delta_{2}\right)$ and $\left[\Delta_{1}\right] \neq\left[\Delta_{2}\right]$. In order to describe this move, we need the notion of a surgery of a non-singular flow given below. Let ψ be a non-singular flow on a closed 3-manifold M. We denote by X the vector field generating ψ. Suppose that ψ has a periodic orbit C with a regular neighborhood U which is homeomorphic to $D^{2} \times S^{1}$ and invariant under ψ. Let (r, θ) be a polar coordinate on $D^{2}=\{r \leqq 1\}$ and t be a coordinate on $S^{1}=\{\exp (2 \pi \sqrt{-1} t) \mid t \in \boldsymbol{R}\}$. Moreover assume that $X=\partial / \partial t$ on U. For such an X, we define a vector field Y so that
(i) $Y=X$ on $M-U$,
(ii) $Y=a(r) \partial / \partial t+b(r) \partial / \partial r$ on U,
where $a(r)$ and $b(r)$ are smooth functions such that
(iii) $a(r)$ is increasing, $a(1)=1$ and $a(0)=-1$,
(iv) $b(r)$ is non negative, $b(0)=b(1)=0$, and
(v) $a^{2}(r)+b^{2}(r)>0$ for $0 \leqq r \leqq 1$.

We say that Y (or the flow generated by Y) is obtained by a surgery of X (or ψ respectively) along the periodic orbit C.

The next lemma is the key for getting one more move of E-data.
Lemma 3.1. Let M be a closed 3-manifold, and ψ_{a} and ψ_{b} be non-singular flows on M. Then there is a sequence of non-singular flows $\psi_{1}, \psi_{2}, \cdots, \psi_{n}$ such that
(i) $\psi_{1} \sim \psi_{a}$ and $\psi_{n} \sim \psi_{b}$, and
(ii) ψ_{k} is obtained by a surgery of ψ_{k-1} along a periodic orbit.

Proof. Let $T M$ be the tangent bundle of M. It is known that $T M$ is a trivial bundle. Fix a trivialization $\tau_{0}: T M \rightarrow M \times R^{3}$. Then for a vector field X on M there is a function $\tilde{X}: M \rightarrow R^{3}$ such that $\tau_{0}(X(p))=(p, \tilde{X}(p))(p \in M)$.

Let X_{0} be the vector field given by $\widetilde{X}_{0}(p) \equiv(0,0,1)$, and X be an arbitrary non-singular vector field with $\|X(p)\| \equiv 1$. Deforming X slightly if necessary, we may assume that $s=(0,0,-1)$ is a regular value of $\tilde{X}: M \rightarrow S^{2}=\left\{x \in R^{3} \mid\|x\|=1\right\}$. Hence $\tilde{X}^{-1}(s)$ is a finite union of simple closed curves C_{1}, \cdots, C_{n}. Since $S^{2}-\{s\}$ is contractible, we can deform X into X_{1} so that $\tilde{X}_{1}^{-1}(s)=C_{1} \cup C_{2} \cup \cdots \cup C_{n}$ and $X_{1}=X_{0}$ on the outside of a regular neighborhood of $C_{1} \cup C_{2} \cup \cdots \cup C_{n}$. Furthermore we can take a continuous function $A(t, p) \in \operatorname{SO}(3, R)(0 \leqq t \leqq 1, p \in M)$ such that $A(0, p) \equiv \mathrm{id}$, and the vector field X_{0}^{\prime} defined by

$$
\tilde{X}_{0}^{\prime}(p)=(0,0,1) A(1, p)
$$

has closed curves C_{1}, \cdots, C_{n} as its periodic orbits. On the other hand, define a vector field X_{1}^{\prime} by $\widetilde{X}_{1}^{\prime}(p)=\widetilde{X}_{1}(p) A(1, p)$. Making continuous deformations on X_{0}^{\prime} and X_{1}^{\prime} if necessary, we have that $X_{0} \sim X_{0}^{\prime}, X_{1} \sim X_{1}^{\prime}$ and X_{1}^{\prime} can be obtained from X_{0}^{\prime} by applying surgeries along periodic orbits $C_{1}, C_{2}, \cdots, C_{n}$. This completes the proof.

According to this lemma and Theorem 2.3, the move describing a surgery along a periodic orbit together with the regular moves will give the generators of moves of E-data.

Definition 3.2. The transformation of E-data in Fig. 7 is called the surgery move, and denoted by S.

Figure 7
Let Δ_{a} and Δ_{b} be E-data representing closed manifolds $M\left(\Delta_{a}\right)$ and $M\left(\Delta_{b}\right)$ respectively. We define two more equivalence relations as follows.

Definition 3.3.
(i) Δ_{a} and Δ_{b} are said to be equivalent to each other, if there is a sequence of E-data $\Delta_{a}=\Delta_{1}, \Delta_{2}, \cdots, \Delta_{n}=\Delta_{b}$ such that $\Delta_{k+1}=R_{j}^{ \pm 1}\left(\Delta_{k}\right)(j=1,2)$ or $S^{ \pm 1}\left(\Delta_{k}\right)$ for $k=1, \cdots, n-1$. This equivalence is denoted by $\Delta_{a} \sim \Delta_{b}$.
(ii) Δ_{a} and Δ_{b} are said to be strongly equivalent to each other (denoted by $\Delta_{a} \stackrel{s}{\sim} \Delta_{b}$), if any $\Delta_{\boldsymbol{k}}$ in the above definition corresponds to a closed 3-manifold.

Under these definitions, we have the next two theorems.

Theorem 3.4. Let Δ_{1} and Δ_{2} be E-data corresponding to closed 3-manifolds $M\left(\Delta_{1}\right)$ and $M\left(\Delta_{2}\right)$ respectively. Then the fundamental group $\pi_{1}\left(M\left(\Delta_{1}\right)\right)$ is isomorphic to $\pi_{1}\left(M\left(\Delta_{2}\right)\right)$ if $\Delta_{1} \sim \Delta_{2}$.

Theorem 3.5. Under the same assumption as the above theorem, we have that $M\left(\Delta_{1}\right) \simeq M\left(\Delta_{2}\right)$ if and only if $\Delta_{1} \stackrel{S}{\sim} \Delta_{2}$.

Moves for general DS-diagrams (not necessarily with E-cycle) of standard spines (spines which form closed fake surfaces) are proposed in [5], [10] and [11]. Our regular moves are special cases of the moves in those papers and the surgery move can be written as a composition of those moves.

Proof of Theorem 3.4. A presentation of $\pi_{1}(M(\Delta))$ which is given in Theorem 4.1 of [7] is determined only by an E-data Δ. This presentation can be defined for any E-data Δ even if it does not correspond to any closed 3-manifold. We denote by $\Pi(\Delta)$ such a presentation. It can be easily seen that $\Pi\left(R_{j}^{ \pm 1}(\Delta)\right)(j=1,2)$ and $\Pi\left(S^{ \pm 1}(\Delta)\right)$ are all obtained by applying the Tietze transformation on $\Pi(\Delta)$. This implies the consequence of Theorem 3.4.

Proof of Theorem 3.5. According to Theorem 2.3 and Lemma 3.1, it is sufficient to show that the surgery move of E-data describes a surgery of a non-singular flow along a periodic orbit.

By (S^{2}, G_{1}, f_{1}) and (S^{2}, G_{2}, f_{2}) we denote the DS-diagrams which are generated by the E-data in Fig. 7 (i) and (ii) respectively. These DS-diagrams are given by Fig. 8 (i) and (ii) respectively. In each diagram, the parts α, β, and γ of the circle C drown by

Figure 8
broken lines are identified by f_{j} as indicated in the figure. Let D_{0} be a 2 -disk properly embedded in the 3-ball B^{3} and bounding the circle C, and let D_{1} be the disk in ∂B^{3} bounded by C. Then $D_{0} \cup D_{1}$ bounds a 3-ball B in B^{3}. In both cases of Fig. 8 (i) and (ii), B / f_{j} is a solid torus with a meridian curve homologous to $f_{j}(x+y)$, where x and y are closed curves on the boundary of the solid torus given by $x=f_{j}(\alpha+\gamma)$ and $y=f_{j}(\beta+\gamma)$.

Let ψ_{1} and ψ_{2} be the non-singular flows for Fig. 8 (i) and fig. 8 (ii) respectively. By a little careful observation upon the construction of the flows, we can see that ψ_{j} can be taken so that ψ_{1} is periodic in B / f_{1} and ψ_{2} can be continuously deformed into a flow obtained from ψ_{1} by a surgery along a periodic orbit which is the core of B / f_{1}. This proves the theorem.

§4. State sum invariant.

Recall the graphic representation $G^{*}(\Delta)$ of an E-data Δ which is introduced in $\S 1$. Throughout this and the next section, we will fix the notation for $G^{*}(\Delta)$ as follows:

Notation.

1) $E\left(G^{*}(\Delta)\right)=E^{x} \cup E^{l} \cup E^{r}$, and $\nu=\#\left(E^{l} \cup E^{r}\right)$.
2) By $v_{1}, v_{2}, \cdots, v_{v}$, we denote the elements of $E^{l} \cup E^{r}$.
3) By $E_{1}, E_{2}, \cdots, E_{2 v}$, we denote the elements of E^{x}.
4) $c\left(v_{k}\right)(=l$ or $r)$ is the code of v_{k}.
5) The numbering to the elements of $E^{l} \cup E^{r}$ and E^{x} will be fixed once for all.

For an element v_{k} of $E^{l} \cup E^{r}$, we define four edges $E_{k(1)}, E_{k(2)}, E_{k(3)}$ and $E_{k(4)}$ of E^{x} by the following rule.

Definition 4.1. The edges $E_{k(j)}(j=1, \cdots, 4)$ are defined by the first picture in Fig. 9 if $c\left(v_{k}\right)=l$, and by the second if $c\left(v_{k}\right)=r$.

Figure 9
Let $J=\{1,2, \cdots, s\}$ be a finite set, called a set of colors. A coloring of E^{x} by J is a map $\gamma: E^{x} \rightarrow J$. Let W_{l} and W_{r} be complex valued functions on J^{4}. We define a complex number $\Gamma(\Delta)$ for each E -data Δ by the following formula:

$$
\Gamma(\Delta)=\sum_{\gamma} \prod_{k=1}^{v} W_{c\left(v_{k}\right)}\left(\gamma\left(E_{k(1)}\right), \gamma\left(E_{k(2)}\right), \gamma\left(E_{k(3)}\right), \gamma\left(E_{k(4)}\right)\right),
$$

where the sum is taken all over the colorings. If we could define the functions W_{l} and W_{r} so that $\Gamma(\Delta)$ is invariant under the regular moves of E-data, then, according to

Theorem 2.3, $\Gamma(\Delta)$ gives an invariant of the pair of the manifold $M(\Delta)$ and the class [4] of non-singular flows. If it is invariant also under the surgery move, then $\Gamma(\Delta)$ becomes a topological invariant of $M(\Delta)$ by Theorem 3.5. The required conditions on W_{l} and W_{r} are as follows:

$$
\begin{gather*}
\sum_{i, j, k} W_{l}\left(a_{1}, i, b_{1}, k\right) W_{l}\left(k, b_{2}, j, c_{2}\right) W_{l}\left(i, a_{2}, c_{1}, j\right) \tag{4.1}\\
=\sum_{j} W_{l}\left(b_{1}, j, c_{1}, c_{2}\right) W_{l}\left(a_{1}, a_{2}, j, b_{2}\right)
\end{gather*}
$$

$$
\begin{equation*}
\sum_{i, j} W_{l}(a, i, b, j) W_{r}(c, i, d, j)=\delta_{a c} \delta_{b d} \tag{4.2.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i, j} W_{l}(i, a, j, b) W_{r}(i, c, j, d)=\delta_{a c} \delta_{b d}, \tag{4.2.2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i, j} W_{l}(a, i, j, b) W_{r}(c, i, j, d)=\delta_{a c} \delta_{b d}, \tag{4.2.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i, j} W_{l}(i, a, b, j) W_{r}(i, c, d, j)=\delta_{a c} \delta_{b d} \tag{4.2.4}
\end{equation*}
$$

$$
\begin{equation*}
\sum W_{l}\left(j_{1}, j_{2}, j_{5}, j_{6}\right) W_{l}\left(j_{2}, j_{3}, j_{3}, j_{4}\right) W_{l}\left(j_{7}, b, a, j_{1}\right) W_{r}\left(j_{7}, j_{6}, j_{5}, j_{4}\right)=\delta_{a b} \tag{4.3}
\end{equation*}
$$

(the sum is taken over j_{1}, \cdots, j_{7}).
Proposition 4.2.
(i) $\Gamma(\Delta)$ is invariant under the first regular move R_{1} if the condition (4.1) is satisfied.
(ii) $\Gamma(\Delta)$ is invariant under the second regular move R_{2} - (j) if the condition (4.2.j) is satisfied $(j=1, \cdots, 4)$.
(iii) $\Gamma(\Delta)$ is invariant under the surgery move S if the conditions (4.2) and (4.3) are satisfied.

Proof. For Fig. 2 (ii) and Fig. 3 (ii) which indicate the move R_{1}, assume that colors are given to x-coded edges as in Fig. 10. Then it can be easily seen that the condition (4.1) implies the invariance of $\Gamma(\Delta)$ under the move R_{1}.

Figure 10
Similarly, coloring the figures indicating the move R_{2} (Fig. 4) as in Fig. 11, we can see the second statement.

Figure 11
Giving colors to x-coded edges in Fig. 7 as shown in Fig. 12, we can see that if the left-hand side of (4.3) is equal to

$$
\sum_{j} \sum_{i, k} W_{l}(j, k, i, j) W_{r}(b, k, i, a),
$$

then $\Gamma(\Delta)$ is invariant under the surgery move. By (4.2.3), this quantity is equal to $\sum_{j} \delta_{j b} \delta_{j a}=\delta_{a b}$.

Figure 12

§5. Examples of the solutions for (4.1), (4.2.j) and (4.3).

In this section we will give solutions for the equations (4.1) and (4.2.j) in the case of $J=\{1,2\}$ or $\{1,2,3\}$. For convenience, we represent the function W_{l} by a matrix as follows. We denote by $L_{p q}$ an $s \times s$ matrix $\left(s=\# J\right.$) whose (i, j)-element is $W_{l}(q, p, i, j)$, and by L an $s^{2} \times s^{2}$ matrix defined by

$$
L=\left|\begin{array}{cccc}
L_{11} & L_{12} & \cdots \cdots \cdots & L_{1 s} \\
L_{21} & L_{22} & \cdots \cdots \cdots & L_{2 s} \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
L_{s 1} & L_{s 2} & \cdots \cdots \cdots & L_{s s}
\end{array}\right| .
$$

Moreover we define an $s^{2} \times s^{2}$ matrix \hat{L} by

$$
\hat{L}=\left|\begin{array}{cccc}
L_{11} & L_{21} & \cdots \cdots \cdots & L_{s 1} \\
L_{12} & L_{22} & \cdots \cdots \cdots \cdots & L_{s 2} \\
\cdot & \cdot & & \\
\cdot & \cdot & & \cdot \\
\cdot & \cdot & & \cdot \\
L_{1 s} & L_{2 s} & \cdots \cdots \cdots & L_{s s}
\end{array}\right|
$$

Using the function W_{r}, we define $s \times s$ matrices $R_{p q}$ and $s^{2} \times s^{2}$ matrices R and \hat{R} by the same rule as $L_{p q}, L$ and \hat{L}. Then the conditions (4.2.1) and (4.2.2) are equivalent to the condition $R^{-1}=L^{T}$, and the conditions (4.2.3) and (4.2.4) are equivalent to $\hat{R}^{-1}=\hat{L}^{T}$, where L^{T} and \hat{L}^{T} denote the transposed matrices.

In order to get functions W_{l} and W_{r} invariant under the regular moves, we should determine them in the following way. First take an L satisfying the condition (4.1), and put $R^{T}=L^{-1}$. If this R satisfies also $\hat{R}^{T}=\hat{L}^{-1}$, then these L and R give a solution for the equations (4.1) and (4.2.j). Therefore it is most important to solve the equation (4.1). In what follows, in the case $J=\{1,2\}$ or $\{1,2,3\}$, we shall solve this equation under a restricted conditions

$$
\begin{equation*}
W_{l}(q, p, i, j)=0 \quad \text { if } \quad p>q \text { or } i>j \tag{5.1}
\end{equation*}
$$

The case of $J=\{1,2\}$.
By the restriction (5.1) we can put

$$
\begin{array}{ll}
L_{11}=\left|\begin{array}{ll}
u_{1} & x_{1} \\
0 & u_{2}
\end{array}\right|, & L_{12}=\left|\begin{array}{ll}
y_{1} & z \\
0 & y_{2}
\end{array}\right|, \\
L_{21}=0, & L_{22}=\left|\begin{array}{cc}
u_{3} & x_{2} \\
0 & u_{4}
\end{array}\right|,
\end{array}
$$

Solving the equation (4.1) directly, we get two solutions up to the permutation of J :

$$
\begin{array}{llll}
u_{1}=-1, & u_{j}=1(j=2,3,4), & z=1, \quad x_{1} y_{1}=-2, & x_{2}=y_{2}=0 \\
u_{j}=1(j=1,3,4), & u_{2}=-1, & z=-1, \quad x_{1} y_{2}=2, & x_{2}=y_{1}=0 \tag{5.3}
\end{array}
$$

For both of these solutions, defining the matrix R by $R^{T}=L^{-1}$, we have also $\hat{R}^{T}=\hat{L}^{-1}$. Moreover we can check that these solutions satisfy also the equality (4.3). Therefore $\Gamma(\Delta)$ defined by these solutions give topological invariants of $M(\Delta)$.

The case of $J=\{1,2,3\}$.
In this case, as one of solutions of (4.1), we get

$$
\begin{array}{ll}
L_{11}=\left|\begin{array}{ccc}
\omega & -\delta_{1} b & \delta_{1} b^{2} \\
0 & \omega^{2} & -\omega^{2} b \\
0 & 0 & 1
\end{array}\right|, & L_{12}=\left|\begin{array}{ccc}
-\delta_{2} a & 2 \omega^{2} & -\omega^{2} b \\
0 & \delta_{2} a & \delta_{2} \\
0 & 0 & 0
\end{array}\right|, \\
L_{13}=\left|\begin{array}{ccc}
\delta_{2} a^{2} & -\omega^{2} a & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right|, & L_{22}=\left|\begin{array}{ccc}
\omega^{2} & \delta_{1} b & 0 \\
0 & \omega & b \\
0 & 0 & 1
\end{array}\right|, \\
L_{23}=\left|\begin{array}{ccc}
-\omega^{2} a & \delta_{1} & 0 \\
0 & a & 1 \\
0 & 0 & 0
\end{array}\right|, & L_{33}=1 \text { (the identity matrix), }
\end{array}
$$

and $L_{p q}=0$ for $p>q$, where $\omega=\exp (2 \pi \sqrt{-1} / 3)$, and a, b, δ_{1} and δ_{2} are constants satisfying $a b=\omega-1$ and $\delta_{1} \delta_{2}=-1$. We can show that the value $\Gamma(\Delta)$ defined by this solution is invariant under the moves R_{1}, R_{2} and S.

References

[1] H. Ikeda, Acyclic fake surfaces, Topology, 10 (1971), 9-36.
[2] -, Identification maps on S^{2}, Kobe J. Math., 2 (1985), 163-167.
[3] H. Ikeda and Y. Inoue, Invitation to DS-diagrams, Kobe J. Math., 2 (1985), 169-186.
[4] H. Ikeda, DS-diagrams with E-cycle, Kobe J. Math., 3 (1986), 103-112.
[5] H. Ikeda, M. Yamashita and K. Yokoyama, Deformations of DS-diagrams, Topology and Computer Sciences, ed. by S. Suzuki, Kinokuniya (1987), 81-138.
[6] H. Ikeda and M. Kouno, Like a flow-spine, preprint.
[7] I. IshiI, Flows and spines, Tokyo J. Math., 9 (1986), 505-525.
[8] I. IshiI, Combinatorial construction of a non-singular flow on a 3-manifold, Kobe J. Math., 3 (1986), 201-208.
[9] L. H. Kauffman, On Knots, Ann. Math. Studies, 115 (1987), Princeton Univ. press.
[10] S. V. Matveev, Transformations of special spines and the Zeeman conjecture, Math. USSR Izv., 31 (1988), 423-434.
[11] R. Piergallini, Standard moves for standard polyhedra and spines, Rend. Circ. Mat. Palermo (2) Suppl., 18 (1988), 391-414.
[12] V. G. Turaev and O. Y. Viro, State sum invariants of 3 -manifolds and quantum $\mathbf{6 j \text { -symbols, preprint. }}$

Present Address:

Department of Mathematics, Faculty of Science and Technology, Keio University Hiyoshi, Yokohama 223, Japan

