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Abstract. Let f be a density function with respect to Lebesgue measure. We suppose that f(x)>0 on
(0, B), where 0 << + o0, and f is uniformly continuous on (0, 8). Moreover, let f'(x)—a as x— +0 exist,
where 0 <a < + oco. We consider a non-regular model defined by f(x, )= f(x—0), 6, xe R. In the present
paper, under some conditions, it is shown that when 0 is regarded as a random variable with a prior density

function with respect to Lebesgue measure, there exist asymptotic expansions of centered and scaled posterior
distributions of 6.

1. Introduction

Let f(x) be a uniformly continuous density function with respect to Lebesgue
measure with its support (0, f), 0 < =< + o0, and satisfy f'(x)—»a, 0 <a< o0, as x— +0.
And let {f(x, 0) : 6€ R} be a family of density functions with one parameter defined by
f(x,0)= f(x—0). Moreover, let x,;,x,, -+, x, be real-valued random variables
independently and identically distributed in accordance with f(x, 6,). On the occasion
of considering the posterior distribution of 6§ when observations x,, - - -, x, are given,
we suppose that the prior distribution has the density function p(-) with respect to
Lebesgue measure.

The purpose of this paper is to show that, in this non-regular model, we can obtain
an asymptotic expansions of the centered and scaled posterior distributions of 6 under
Py, :
Woodroofe [7] has shown the asymptotic normality of a,(0—6,) with respect to
the marginal distribution of (x;, ---, x,) in the same non-regular model, where
a2=(a/2)nlogn, n=1 and 6,=0,(x,, - - -, x,) is the maximum likelihood estimator of
0,. In a regular model, Johnson [2] has shown that there exist asymptotic expansions
of the centered and scaled posterior distributions with probability one. In comparison
with that result, ours is concluded in a weaker sense.
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2. Conditions and main theorems.

We shall impose the following conditions. Throughout this paper, let K be any
non-negative integer.

(Cy)) supp.f={x:f(x)>0}=(0, ), 0<B=< + 0. f is a uniformly continuous density
function on its support and satisfies lim,_,;_, f(x)=0. Moreover, let f(x, )= f(x—0)
for every O e R.

(C;) fis K+ 3 times continuously differentiable on (0, f), and

lim fMD(x)=a(0<a<+o0), Lm xi7!fO(x)=0 for j=2,3,---,K+3,
x—=+0

x—=++0
where /@ denotes the jth derivative of f.
Let g(x)=logf(x) and g¥(x)=(d’/dx’)log f(x) for 0<x<§p.
(C;) For every d (0<d< p), there exist 7>0 and 0<d <min{d, t} such that

B—t
I sup |gP(x—1)[f(x)dx<oo  for j=2,3,---,K+3,
lti<é

d

where f—t=+ 0 if f= + c0.

- (C,) For every 6>0, Jw {gP(x)}?f(x)dx < + co.

B
(Cs) f {—9()}f(x)dx < + o0.
0

(C¢) Let 0, be fixed. And let p be a prior density function of 0 with respect to Lebesgue
measure satisfying p(6,)>0. p is K+1 times continuously differentiable in a
neighborhood of @,

(C,) If B< + o0, then limsup, ;-9 (x)< + co (may be —o0) for j=2,3, ---, K+3.
And there are 1>0, 0<v<1, and a sequence of increasing functions {A;} =’ on (0,
v~ 1) for which

g9x)zhy(B—x), B—r<x<p, for j=2,3,---,K+3,
B

f h;(v(B—x))f(x)dx> — o0, for j=2,3,---,K+3.
B—t

(Cg) If B<+ o0, then, for j=0,1, -, K+2, f@ is absolutely continuous in a
neighborhood of 8 on (0, f).

For example, the density function of Gamma(2, g), where g > 0 is a scale parameter,
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satisfies (C,), (C,), (C,), (C,) and (Cs). As to the case when < + oo, we will prove a
lemma which gives sufficient conditions to satisfy (C,).

Conditions required in Woodroofe [7] are derived from those above. Therefore
we can make use of the results in it. In addition, note that these conditions yield the
strong consistency of §,, that is, 6,—0, with probability one as n—co (See Wald [5]).

b=5000-0).  bG)= 573

Let
a 1/2
i=1 00 e=6,.:| ’

where a2 =(a/2)nlogn, n=1. We often use a notation b instead of b(8,) for simplicity.
Denote the posterior distribution function of a,$ by F,. We consider asymptotic
expansions of F, under P, . Our final aim is to show the theorems below. In the following
description, when we use “probability”, it means P, -probability.

THEOREM 1. Let (C)), (C,), (Cs), (Cy), (Cs), (C¢) hold, and (C,), (Cs) be satisfied
also if B< + . Then, for any ¢>0 and 0<p <1/2, there exist a constant D, =D, (e, K)
>0 and an integer N=N(g, p, K) >0 such that

2

—logf(x; 0)

K
|F&) = @@= ¥ 9,6 Xy Dy(logm)~* 20277,
J-—‘

with probability greater than 1—¢ for n> N, where ®(&) is the standard normal distribu-
tion function, X=(x,, - * -, x,), and for each j=1, y;(¢, X) is a polynomial in £ with
stochastically bounded coefficients multiplied by the standard normal density function ¢(<).

In more detail, the asymptotic expansion of F,(£) can be expressed as follows.

THEOREM 2. Under the same assumptions as Theorem 1, for any e>0and0<p<1/2,
there exist a constant D, = D,(e, K) >0 and an integer N= N(¢, p, K)>0 such that

(K+1)/2 m
Fn(f)—¢(§)+<p(£)[ Z {(IOSn)-(2m+1)/2 Z Bzm+12152'}
m=1 =0
(K+1)/2 m
+ Z {(108”)—"' Z Bzmzz—1521—1}]IéDz(IOg”)—(KJrs)/zﬂu )
m=2 =1
with probability greater than 1 —¢ for n> N, if K is an odd number,
K/2 m
Fn(é)—¢(5)+¢(§)[ ) {(logn)“‘z"”””2 IZ Bzm+1zz€2'}
m=1 =0
(K+2)/2 m
+ Z {(108”)—"' Z Bzm21—1521—1}:||§D2(1°gn)—(x+3)/2+p’
m=2 =1

with probability greater than 1 —¢ for n> N, if K is an even number,
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| F(§)— (&) | = D,(logn)~>2*7,

with probability greater than 1 —¢ for n> N, if K=0,
where every B, = O,(1) with respect to Py as n— 0.

3. Auxiliary lemmas.

We will prove a series of lemmas beforehand. The first thing, we quote the following
Lemma 1, Lemma 2 and Lemma 3 without proofs.

LEMMA 1 (cf. [7; Lemma 2.1]). Suppose that (C,) and (C,) are satisfied. Then,

lim Py {n'/*(M,—0,)>t}=exp(—at?/2), forall >0,

where M,=min{x,, x,, - *, X,}.

From this lemma and Theorems 2.1, 2.2 in [ 7], we can show that M.L.E. converges
to 0, strictly faster than M,,.

LeMMA 2 (cf. [7; Lemma 2.2]). Let B< + oo and suppose that (C,), (C,) and (Cg)
are satisfied. Then,

lim Py {n'?(B—N,+0o)>t}=1,  forall t>0,

where N,=max{x,, x5, * ", X,}.
Let
n aj )
G,()=log [] f(x;,t) and G,‘,”(t)=WG,,(t) for j=1.
i=1
And put

r (0, k)= I slup la, " 2G2(O+ ter,” )+ 1], where k,=o( /logn) .
t|Skn
.LEMMA 3 (cf. [7; Lemma 4.1] and [6; Appendix]). Let (C,), (C,), (C;) and (C,)
hold, and (C,), (Cg) be satisfied also if f< + co. Then
r.0,, k)0, in probability as n—oo .

Since 6, is a location parameter, we will prove lemmas mentioned below on the
assumption that 8,=0 as long as there is not notice in particular.

LemMmAa 4. Let (C,), (C,), (C5) and (C,) hold, and (C,), (Cg) be satisfied also if
B< + 0. Then
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1//2 <b(,)</3/2, in probability as n— oo .

PrOOF. By definitions, b(6,)=[—a,;2G?®(@,)]'/*>. Therefore, by Lemma 3,
[1—8%|=|140a;2G?@,)|-0, in probability as n—oo. This immediately gives the
result.

LemMA 5. Let (C,), (C,), (C3) and (C,) hold, and (C,), (Cg) be satisfied also if
B<+ 0. Then '

_ n 0, + b~ 1) —¢? k

21 f(xl n J S < n ,

OB <Hl fonby )= Te IRy
in probability as n— oo ,

where c,=./nlogn.
PROOF.
-2 . f(xia6n+¢b—1))_ P aretnz. 2 07
o log(il;ll f(x;, 0,) =27 (9b ), i;1 062

where IOA,,—Hi |<| b~ 1. Since | ¢|<k,/c,, together with Lemma 4, we obtain that
16,—0, 1=/ 2 k,/c,. The lemma follows from Lemma 3.

LeMMA 6. Let (C,), (C,), (Cs,), (C,) and (Cs) hold, then for any 6, >0, there exists
€, >0 such that ’

n L0 +obt
a;210g<‘1=—[1 f(x:f(x"'eiﬁ) )

in probability as n—o0 .

logf(xi: 9) Io-_-o,, ’

)é—al Jor |26y,

This lemma is shown in the same way as Lemma 2.3 in Johnson [2]. Therefore,
we omit the proof. _
Before going to the next step, note that it is obtained from (C,) that

f()~ax and gPX)~(—1)"'G-DIx7/ (j=1) as x> +0.
LeMMA 7. Let 0<d<p, and define
x, 1 0<x;<é
Zi={0 1x; 20

Then, for j=3, for any >0, there exist a constant Ly=L(¢g, j)>0 and an integer
N=NC(e, j)>O0 such that

|n=92 % zJ|<L,, with probability greater than 1 —¢ for n> N .
i=1
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PROOF. Put s=2z/. Since x has the density function f, the density function u of s
is given by

—G+ ) (=110 B
u(s)= s _f(s ) on (67/, ) and Po(s=0)=j f(t)dr .
é
Let u(y)={"_,(z%)*dP,, y>0. Then, for any &¢'>0, we can choose y so large and é so
small that

s 5
H(y)= 172 f()dt<a(1+¢") -2+ gy
y-1/i y- 13
a(l+¢’) 2-2/]
=Y +0(Q1).
2-1)
Similarly,
a(l—e) _,.
p( 22— y*" 2+ 0Q1).
2G-1
Therefore

o .
HO)~———y>"? as y>+o  for j23.
2-1

Then, by Theorem 2 of [1], page 580, n~#23%'7__ 2z has an asymptotic stable distri-
bution. The lemma follows.

We define

ri0, k)= sup |n"PGPO+1a, )|
l¢]Skn

for j=3.

LEMMA 8. Let B= + o0 and j=3. If (C,), (C,) and (C,) are satisfied, then, for any
£>0, there exist a constant L, = L,(¢, j))>0 and an integer N= N(e, j, k,) >0 such that

rdO0,k)<L,, with probability greater than 1 —¢ for n> N .

Proor. This will be proved similarly to Lemma 3.4 in Woodroofe [7]. Let0<¢’ < 1
be given and d>0 be so small that

(1)~ 'xg0x)
G—D!

And put g,=k,x,'. By Lemma 1, M,>gq,/¢’ is satisfied in probability as n—oo.
Therefore, for || <k, and ¢,<d, if j is an odd number, we obtain that

l|<e¢’ for 0<x<2d.
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d o0
nIPGP(tay N2 —(1+e)—DIn Y (x—tay )T —nI2 Y sup |gP(x;—1)]
0 d |t1San

d
= —(1+&)1—&) G- Y x, 7 +0,(1) as n—o,
0
where Z: denotes a summation over all i=1,2, - - -, n for which s<x;<?. And
) _
n~IPGEP(ta, NS —(1—e)Y1+&e) G-I Y x7 i +0,(1) as n—ocwo.
0

The application of Lemma. 7 establishes the existence of lower and upper bounds.
Similarly, we can obtain bounds for an even number j. This completes the proof.

LEMMA 9. Let B<+ o0 and j=3. If (C)), (C,), (Cs), (C;) and (Cg) are satisfied,

then, for any >0, there exist a constant L, = L,(¢, j)> 0 and an integer N= N(g, j, k,)>0
such that

r9%O0,k,)<L,, with probability greater than 1 —¢ for n>N .

ProoF. Let 0<e’<1 be given, let v, 7 and h; be as in the condition (C,), let
10=1/2, and d and ¢, be as in Lemma 8. Then, in the same way as the previous lemma,
for | t| <k, and g,<min{d, t,}, if j is an odd number, we obtain that

d
n~2GP(tay ) S —(1—&)(1+8) G- D2 Y x4+ 0,(1)
(0]

. &
—n7i2 Y g(x;—ta,”Y), as n—oo,
B—10

d
n_j/ZGslj)(ta;l)g _(1 +8,)(1 _8/)°j(j__ 1)!’1"}/2 in"f+op(1)
0

]
—n7i2 Y gO(x;—ta; ), as n—ooo.
B—10
Lemma 2 ensures that if |¢|<k,, then B—t<x;—ta,'<f and O<v(f—x)<f—
X;—q,<P—x;+ta,; ! <tv~! in probability as n— oo, for f—14,<x;<p. Choose 7>0 so
small, then by (C,), there exists a constant 4 >0 such that 4 =gP(x;—ra, ) 2 h;(f—x;+
to,” 1)Y= h;(v(B— x,)) in probability as n— oo, for B—1, < x; <. Consequently, it follows

from Lemma 7 that the bounds exist. In the same way, we can show the case when j
is an even number.

LEMMA 10. Letj=3. Let (C)), (C,), (C,), (C,) hold, and (C,), (Cy) be satisfied

also if B< + 0. Then, for any £>0, there exist a constant L, = L,(¢g, j)>0 and an integer
N=NC(e, j, k,)>0 such that
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r9@,, k)<L,, with probabiliiy greater than 1—¢ for n>N .

We omit this proof since it is shown in just the same way as Lemma 4.1 in [7].
Put

1 (87/069)1 is
au®=a;? 3 O CD gy 5, ka3,

J!
p¥(6,)6—6,)
k!

PO =p@B)+pVO)O—-0)+ -+

>

where p? denotes jth derivative of p.

LEMMA 11. Let j23. Let (C,), (C,), (C5), (C,), (Cs), (Cg) hold, and (C,), (Cg)
be satisfied also if B< + o0. Then, for any £¢>0, there exist a constant Ly = L,(e, K)>0
and an integer N= N(g, k,, K) >0 such that

£¢ | <knfcn

exp (a,% S a6 b 1),-) px(0,+$b~Y)

ji=2

_ & f(xi’én+¢b_l) A -1
= pOutdb™)

§L3(an—(x+2)+an—(K+4)n(K+3)/2) ,

do

with probability greater than 1 —¢ for n> N.
Proor. The integrand of the left hand side is bounded by

JKE3 -1 J.)_ SO 0,4 957Y)
exp (oz,, jgz a jn(en)(¢b ) il=_11 f (xi, é,,)

[T L0l 800N, 6t 05— 0,407 .
i=1 S(x:,0,)
By Lemma 5 the second term has its bounds of the form
exp(—az¢?/6) ¢~ |+ 1| p**10,)|
(K+1)! ’

where | §,— 0,1=|db~'|. Now we consider the upper bound of the first term. By Lemma
5, it is bounded by

| px(Bn+ b1

+

exp(—az¢?/6)

exp [a,z. Kis EICAIC Y

i=2

- é..+¢b-1))]_
~los (H 70ce 8 :

| px(0,+ b~ 1)
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In the meanwhile, Lemma 10 and Lemma 4 yield an inequality that

n ) -1 K+3 . ]
o 122542 E st

<| b~ 1 [K*+3pK+3)2 |n

-(K+3)/2G$,K+3)(0*) | + l n“K+3’/2G§K+3)(én) ’
(K+3)!

én(x+3)/2L,3|¢IK+3 ,

for some L} >0, where |§,—0*|<|¢b~1|. Therefore, since | ¢ | <k,/c,, the first term is
bounded by :

Lin®* 32 exp(—al¢?/6)| ¢ 1+ px(f,+ db~ M1,

for some L5>0 as n—oo. Together with Lemma 4, it follows from the continuity of
pY for j=0,1, - -+, K+1 and the consistency of §, that the integrand is bounded by

Lyexp(—ai¢?/6){| [T +n®*I12| ¢ [K+3}
for | ¢ | <k,/c, and some L;>0. Finally, we have only to change variable y=a,¢.
We quote the following lemma which will be used later.

LeEmMMA 12 (cf. [4; Lemma 9] and [3; Lemma 1]). Let = +o0. If (C,), (C,)
and (C,) are satisfied, then for sufficiently small 5,>0, :
sup n lG¥(H< -1, in probability as n— o .
=8, St<M,

For the sake of the case when < + oo, we will prove the following lemma, which
is similar to Lemma 12.

LemMA 13. Let f< + 0. If (C,), (C,), (C,) and (C,) are satisfied, then there exists
0<d3<1 such that

sup n 1GP()< -1, in probability as n— oo .
© (Na=B)ds<t<M, ‘

Proor. Let v, T and A, be as in the condition (C,), and let t,=1/2 and d>0 be
so small that g®(x)=x~3 for 0<x<2d. Suppose that M,<§, and f—N,<J, for
8, <min{d, 74}, which are satisfied in probability as n—oo. If (N,— f)d; <t<M,, then
we obtain

—10

d B
nTIGPMS—n"tY (+8) 3 +n"t Y, sup [g¥(x—1)|
1) d lt|séz

8
—n~t )Y g®x;—t) as n—»co.
B—ro

The second term of the right hand side converges as n—>o0 by (C;). And choosing
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d3=1—v, it follows from (C,) that
gP(x;— ) 2 hy(B—x;+ 1) 2 hy(v(B—x;)) for B—to<x<§.

On the other hand, the first term converges to —j‘(’) (x+6,) "3 f(x)dx as n— oo, which
diverges to — oo as §,—0. The lemma follows.

LEMMA 14. Let B= + c0. Suppose that (C,), (C,), (C,), (C,) and (Cs) are satisfied.
Then, for any ¢ >0 and sufficiently small 6, >0, there exist a constant c> 0 and an integer
N=NC(e, d,, k,)>0 such that

log< A "”*f’”"l))g —ck?  for kije,<|él<dy,
i=1 S(x:, 6,)

with probability greater than 1 —¢ for n> N.
PrROOF. Let ¢>0 be fixed. Put 1=0,+¢b ™! and q,=k,x, !. Then,

6,—b 16, <t<0,— /aj2b" 1q, if —6,<¢p=—k,lcn,
0,+/o/2b 'q,<t<0,+b" 16, if kjc,<¢<9,.

It follows from Theorem 2.1 in [7] and Lemma 1 that
—(1+./2)8,<8,-b716,<0,— /a2 1q,<8,
<6+ /a)2b"'q,<M,<08,+b" 15, ,
with probability greater than 1 —¢ as n—oc0. By Lemma 3.1 in [7] and Lemma 12,
sup G ()= sup G, (1)
Op+Va/2b—1gpst<0,+51b-1 0p+Jaj2b~ 1ga<t<M,
<G,(0,+/a2b72¢,)<G,(0,)+4 " 'ab™2q2GP6,)  as n>oo,
sup G (DG, (0,)+4 tab~2q2GP(0,—/22b™q,) as n—w.
Op—81b—1<1<0,— yaj2b~ 1qn
Since /2/3<b*(f,)<./ 2 as n—oo, the application of Lemma 3 yields that
G()—G,(B)< —ck2  for k,Jc,S|p|<by,
with probability greater than 1 —¢ as n— oo for some ¢>0.

LEMMA 15. Let B< + 00. Suppose that (C,), (C,), (C5), (C,), (C;) and (Cg) are
satisfied. Then, for any ¢>0, a>0 and §,>0, there exist a constant ¢c>0 and an integer
N=NC(e, a, d,4, k,) >0 such that

< f(xi$én+¢b—1) . 2
og( [ e )s-e
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k (logn)® a
P <p<—"L - <
: Jn TR eE

with probability greater than 1 —¢ for n> N.

PROOF. Let £>0 be fixed and 0<d, <1 that of Lemma 13. Put t=6,+¢b~! and
q4.=k,o, !. Then,

~ ab™?

0

<t£6,—/a/2b g, if ——2 <¢p<— Fen
n .
-1 04 o4
8, +/a2b g, <1<f,+ 208" o Ky, (ogmt
/R Ca VAR (]

Theorem 2.2 in [7], Lemma 1 and Lemma 2 imply that

ab™t _ ,.
<0,—/a/2b"'q,<0,
n

(Nn—ﬂ)63<én—

i . logn)®
<0+ Ja2b-q, < M, <0, +p-1.908"

NG

with probability greater than 1 —¢ as n—o00. By Lemma 3.1 in [7] and Lemma 13,

sup G,(1)

gn_ab_ll‘/;<t§0n—‘/;/—2b_l‘1n
<G,0,)+4 'ab™2q2GP(0,—\/a/2b"'q,)  as n—>oo,

sup G, ()= sup G,(?)

On+vaj2b-1g,<t<B,+b- 1(lognd4/vn On+yaj2b-1g,st<M,,
<G,0,)+4 'ab~2¢2G®@,) as n—>w.
The application of Lemma 3 immediately yields the result.

LEMMA 16. Let =+ 0. If (C,), (C,), (Cs), (Cs) and (C,) are satisfied, then for
any £>0, 65>0, sufficiently small 6,>0 and every k>0, there exist a constant
ao=ay(k)>0 and an integer N= N(g, J,, 85, k) >0 such that '

n ) -1 ds
[ LCbatb™ _ . aollogn)

i=1 f(xis én) =" \/;

with probability greater than 1 —e¢ for n> N.

<|¢|<d,,

PROOF. Let ¢>0 be fixed and a,>0 some constant. Put t=0,+¢b~! and ¢,=
(logn)®s// n . It follows from Theorem 2.1 in [7] and Lemma 1 that §,+a,b~1q,> M,
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with probability greater than 1—¢ as n—oo. Therefore, if ao(logn)"’/\/7§ ¢P<d,,
then M, <t with probability greater than 1 —¢ as n—oc0. Consequently, all we have to
do is show the case when —6; <¢ = —ao(logn)"s/\/ n . Since

—(1+/2)5,<6,-b"16,<0,—axhb " 'q,<b6,<M,

with probability greater than 1 —¢ as n— o0, as in the previous lemma,

sup G()<G(0,)+27a%b™2q2GP(0,—aoh™ 'q,)
é,.—&;b“<t§5,.—aoq,.b‘1
a2
< <G,6,)- 120 logn as n—oo.

We have used Lemma 3 in the second inequality. Let k>0 be fixed and define a,>0
so as to satisfy aa3/12=k. The lemma follows easily.

LEMMA 17. Let B< + o0. If (C)), (C,), (C5), (C,), (Cs), (C,) and (Cg) are satisfied,
then for any ¢>0, 6, >0 and every k>0, there exist a constant ap,=ay(k)>0 and an
integer N= N(g, 6,, k) >0 such that

fO 04007 _ ay
H by o Jor _51<¢§—ﬁ’

with probability greater than 1—¢ for n> N.

PrROOF. Lete>0befixed and 0 <, <1 that of Lemma 13. It follows from Theorem
2.2 in [7], Lemma 2 and the consistency of §, that §,—8,b"1<N,—B<(N,— p)d; <

6,—agh” 1/\/ n with probability greater than 1 —¢ as n— oo for a,>0. By Lemma 3.1
in [7] and Lemma 13,

sup G.(t)= sup G()SG (b, —ach™//n)

Op—81b-1<t<0,—ach~/Vn Nn—B<t<Op—acb—1/vn
<G (0)+02n) 'a2b~2GP@,—ab~ 1/ /n) as n—o.
Then, we can prove this lemma analogously to Lemma 16.

Now that we have finished proving Lemmas for the sake of main theorems, we
will approach the establishment of those conclusions.

4. Proofs of main theorems

Define a function y,(z) for each K and n by

K+3

'/’Kn(z) = Z b_jaj,.(é,.)zj -3,
i=3

Recalling that b2 = —2a,,(0,), we write
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K+3 .
exp (az Y au(B) b ‘)f)px(e,, +gb™1)

j=2
=exp(— a2 ?/2)[px(0,+ ¢b~ ") exp{aid Y, ($)}] .
Let Py(w, z, X)=pg(0, + zb~ 1) exp{wix,(2)}, then

PK(W, Z, X) = Z clm(X)wlzm ’
i,m )

where ¢, (X)=(!m!)~1(0'*™/ow'0z™)Px(W, z, X)|y=0,2=0- And put Pk(w,z, X)=
Yiim <kCim(X Yw'z™. The detailed expression of ¢, (X) is given in Appendix. The following
lemma gives the evaluation of ¢, (X).

LemMma 18. Let (Cy), (C,), (C3), (C,), (Cs), (Cy) hold, and (C,), (Cs) be satisfied
also if p< + . Then, for any ¢>0 and every =1, there exist constants L,= L,(K)>0,
Ly=Ls(e, K)>0 and an integer N= N(e, K) >0 such that

|0 lQognyn= ™2 < (/7 )"L4{32a 2 )3L5(K+1)}' for 0smsK,

=7

|cb..(X)l(logn)'n"'*'"”2< (\/— XL {;a 2 K+3L5(K+1)}l

Sfor K+1=m=(+1K,
with probability greater than 1 —¢ for n> N.

ProoF. We prove the case where 0 <m< K with /=3. The other cases can be
shown similarly. First of all, by (Cs) and the consistency of §,, note that there is a
constant L, = L,(K)> 0 such that | p™~"(8,)| < L,, in probability as n—co for 0<r<m,
0=m=K. Then, from the expression of ¢,(X) (see Appendix), together with Lemma 4,

r (1) «2)

|cm(X)|(logn)'n=¢+miz<_—_ (\/’ L, Sy Y

_l' r=0i;=0 i2=0 i3=0

I
. (m— r)l H |, + 13x(0,) |(logn)'n=¢+n12 |
i1-1=0 ol

il—2)

where i(s) and i, are as in Appendix. Let ¢>0 be fixed. Since r=Z:= i and
a;(0,)=a, 2GP(8,)/j!, application of Lemma 10 gives that there exists Ls=Ls(e, K)>0

such that
ﬁ (6,) I(logn)'n=0+2 H n- G+ 2GU+ 3 ) <<2L5 !
s=1 HeranC & s=1 a(z+3)l n =2\ 37,

with probability greater than 1—¢ as n—oo0. Taking the range of m, r,i,,i,, -, i,
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into account, we obtain the result.

Now, since k,//logn—0 as n— oo,

Y am(X)@293) o™

l+mzK+1

4.1) J exp(—az¢?/2) d¢
¢l <knfcn

gf exp(—a;$?/2) %, (i)l' cim(X) | (logr) =42
|9 <kn/cn 2

I+mzK+1
k 21+ +m)
x( " ) do

\/ logn
k K+1 - (a)l
- 2 *
( logn) qun/cnexp( oz,.qﬁ/)ng,K+1 5 ) 1m0

21
X (logn)'n“”"‘”z( L) do .
‘ \/ logn

Noting that ¢;,,(X)=0 for m=(l+1)K+1, /=0, 1, - - - (see Appendix), we obtain

) (1)'|c, (X)I(logn)’n“('+m)/2( k )2'
1+mzKk+1\ 2 " \/Tgn

0 K 1 l L~ my2 kn )21
X mgo( 2) | cun(X) (logm)'m ( Tiean

i (Hf,)x (a 1 , L —aemy2 k 21
+ — ) lCim ogn)n~(+miz{ 7
PIE 2)I m(X) |(logn) ( '_—logn>

2 © K ]
g( aL )[Z Z(—g—) | 1w (X) I(logn)'n =+

o (I+1)K a 1
+3 3 (7) | cumlX) |(logn)'n-<'+"'>/2]

IIA

lIA

I=1 m=K+1
k, \? . 2 X {(/2)Ly(K+1)/31}
é(\/m) (ﬁ) L4[1§1 m=0 n

I=1 m=K+1 4

S Nl (VD e 7S 1)/3!}']

with probability greater than 1 —¢ for any fixed ¢>0 as n— o0, where we have used
Lemma 18 in the final step. Since the summations in the final brackets converge, by
changing variable ¢r=a,¢, there exist a constant Lg=Lg(e, K)>0 and an integer

N=N(e, K, k,)>0 such that (4.1) is bounded by
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L/6n~ 1/2(10gn)—(k+4)/2an+ 3

with probability greater than 1—¢ for n> N. Moreover, for any fixed pe(0, 1/2), put
s=2p/(K+3) and define k,=(logn)*'?. Then, k,=o(,/logn) as n— oo, and there exist a
constant Ly =L¢(e, K)>0 and an integer N=N(g, p, K)>0 such that (4.1) is bounded
by

L6n—1/2(logn)—(K+4)/2+p

with probability greater than 1—¢ for n> N.
Similarly, by changing variable t=0a,¢ and using Lemma 18, there exist a constant
L,=L,(¢, K)>0 and an integer N= N(g, K)>0 such that

(4.2) J exp(—az$?/2)| Px(ard?, ¢, X)|do
1612 knien

<2a;' Y |om(X)|(logn)'n™ ™2

l+msK

o\~ @+m)/2 ©
x (*> (logn)~G1+mi2 f exp(—12/2)t31*mdt
2 vVaj2kn

<27t Y (J2) L 2/ 2)°Ls(K+ 1)/(3!0)}*

1+m=K I

o -({A+m)/2 oo
x <7> (logn)~G!+m/2 exp(—ak2/8) exp(—t2/4)t3tmdt
va[2kn
< Lo, ' exp(—akz/8)
with probability greater than 1 —¢ for n> N.
If B< + o0, then, Lemma 1, Lemma 4 and Theorem 2.2 in [7] lead us to inequalities

that M,<6,+ ¢b~1 for (logn)**/\/ n <¢, ,>0 and B<N,—(0,+¢b™*) for —8,2> ¢,
6, >0 with probability greater than 1 —¢ as n—»>o00. When f< + o0,

J“" b Ot b

oG+ db~H 1L —exp(—a2g?DPYZ4’, 6, X)|db
< f R N EAC L L P

i=1 f(xi’ én)

kn/cn i=1 f(xi9 én)
Tholen 5 G Oyt $57Y)
+ 0,+¢b™ 1 o d
J\—ao/\/; p( ¢ )'l=—[1 f(xis 0») ¢

oo s 1 S Gt DY)
0 b~! . d
+J‘—61 p( "+¢ )'l':[l f(xi, 0") ¢
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+ J exp(—a2$?/2)| Pi(a2d?, b, X)|dd
| @1 Zkn/cn

+f
|¢| <knfcn

S(xp 0, +9b7")
0, +¢b~1
p( * ¢ ) 'l=—[1 f(xb én)

—exp(—ajp?*/2)Py(aid?, ¢, X) ‘d¢

2 amX)@ie®) o™

l+m2K+1

@.

+f exp(—aq¢%/2)
161 <knfen

Therefore, it follows from Lemmas 11, 15, 17, the evaluation of (4.1) and (4.2), the
continuity of p and the consistency of 8, that for any ¢>0, 0<p<1/2, there exist a
constant B, = B, (¢, K)>0 and an integer N= N(g, p, K) >0 such that

1 f(xis 0 +¢b 1)
p(g +¢b )ll;!l f( Xis én)

éBln 1/2(10gn)—(x+4)/2 +p

—exp(—ard?/2)Pi(aid>, ¢, X)ld¢

with probability greater than 1 —¢ for n> N.
When = + o0, we divide the integration of

& SO, +9b™Y
p(6,+ b~ ),;1 T B
in the range |¢|2k,/c, into three parts, that in the range |¢|=6,, 6,>|¢|=
ao(logn)**// n and ay,(logn)®s/\/ n >| |2 k,/c,. Then, by the application of Lemmas 6,
14 and 16 instead of Lemmas 15 and 17, we obtain (4.3) in this case, too.
In the same way, there exist a constant B,=B,(¢, K)>0 and an integer
N=NC(e, p, K)>0 such that

Ean !
4.4) J.

with probability greater than 1 —¢ for n> N, where (4.4) is uniform in &. Put

S, 0,+¢b™1)
() b1
p( +¢ )‘I—:ll f( Xis n)

éan 1/2(10gn) (k+4)/2+p

—exp(—a;¢?/2)Pi(aid>, ¢, X)|db

14
n,-(é,X)=§ocu-z(X)J exp(—y?/2)y**idy and BX)=n;(0, X)
for j=0, 1, - - -, K. (4.3) and (4.4) imply that |

® 1 K
[* o opn 1100 D 4y § 0000
- i=1 f( Xis 0,,) ji=0

§Bln 1/2(logn)-(k+4)/2+p ,

4.5)
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gt x,,B +ob 1 K .
4.6) f p@,+¢b~ ) [TZ50 07D 4y S e, Xy 0D
) i=1 f( Xis 0,,) j=0
éan— 1/2(logn) (K+4)/2+p ,
respectively.

The result of Theorem 1 in the case when K= 0is derived easily from (4.5) and (4.6).
Define a sequence of functions {y;(£, X)} =, so as to satisfy y4(¢, X)=0 and

A& X)=Bo(X)y;(&, X)+ l; ¥,-& X)B(X)+ B;(X)B(E)  for j=1,2,---, K.

It follows from n4(&, X)=./27 p(8,)®(£) and Bo(X)=./27 p(f,) that

K , -J K
ZioC 0% _ )+ 2116 X005

f=oﬂj(X)05,._’
_ Lj= K+1{zl j-kVi- 1€, X)ﬁt(X)}Ol—’
| Yo By '

We will prove the followmg lemmas regarding the evaluation of 7;(¢, X), B;(X)
and 7,2, X).

LeMMA 19.  Let (Cy), (C2), (C3), (Cy), (Cs), (C¢) hold, and (Cs), (Cs) be satisfied
also if B<co. Then, for any ¢>0 and 1 <j< K, there exist constants Lg= Lg(¢e, K)>0,
Lg=Ly(e, K)>0 and an integer N= N(g, K)>0 such that

Ir’j(ga X) 'n—j/Z lognéLg uniformly in é s
with probability greater than 1 —¢ for n> N, and
|B;(X)In""*logn= Ly

with probability greater than 1 —¢ for n> N.

@.7)

PROOF.

IB0OIS Y, Loy f " exp(—y2)|y P Hidy

Since ¢y (X) = pP(0,)b77/j!, by (Cs) and Lemma 4, there exists a constant Ly >0 such
that | ¢o;(X) | < Ly in probability as n— oo for 1 <j<K. In addition, Lemma 18 implies
that

ey i 1S~ (/2 )"L4{ 32

=7 — (/2 Ls(K+ 1)}’<logn)-'nﬂ2

for some L,=L,(K)>0, Ls=L(e, K)>0 with probability greater than 1 —¢ as n— oo,
for 1 </<jand 1 £j< K. The lemma follows easily. Similarly, we can show the inequality
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for n;(¢, X).

LEMMA 20. Let (C,), (Cy), (C3), (Cl), (Cs), (Cy) hold, and (C,), (Cs) be satisfied
also if B< + oo. Then, for any e>0 and 1 £j< K, there exist a constant L;,=L, (¢, K)>0
and an integer N= N(g, K)>0 such that

7,6 X)In~logn<Lyo  uniformly in £,

with probability greater than 1 —¢ for n> N.

ProoF. When j=1, |7,(¢ X)|=|n:(& X)I/|Bo(X)|. Since Bo(X)=</27 p(6,),

Bo(X)>¢' for some &' >0, in probability as n— oo by (Cg). The application of Lemma
19 yields the result in this case. Then we use induction. Suppose that the assertion holds
until j. y;,,(&, X) is expressed in the form

Yi+ 1(&, X)={'7j+ (&, X)—jgl Yi+1 —i(&, X)ﬂl(X)_ﬂj+ 1(X)¢(€)}/ﬂo(x) .

The assumption and Lemma 19 immediately give the desired result.

By Lemma 19, we can show that Zf; oM;(& X))o, and Z;i o Bi(X)a,; / are bounded.
Therefore it follows from (4.5), (4.6) that for any ¢>0 and 0<p<1/2, there exist a
constant D', =D’,(¢, K)>0 and an integer N= N(g, p, K) >0 such that

K ony(E, X
=0 B Xy
with probability greater than 1 —¢ for n>N. And by (4.7),

< D'y (logn)~ K+ 32+,

F(&)—

<D (logn)~K+312+»

F (&) —9(¢)— ‘; 73 X)og !

e (20 o1& DB
f=o Bi(X)a,

with probability greater than 1 —¢ for n> N. The second term of the right hand side is
bounded by D7(logn)~k*3/2 for some D= D’/(e, K)>0 with probability greater than
1—¢& as n—o0. This completes the proof of Theorem 1.

b

+l

We will prove the following lemma to establish Theorem 2.

LEMMA 21. Let (Cy), (Cy), (Cj), (Cy), (Cs), (Cg) hold, and (C,), (Cg) be satisfied
also if B<+oo. Then, for any €¢>0, L>0 and 1<j<K, there exists an integer
N=N(g, K)>0 such that '

(G—1+2m)/2

7 X I= =) 3 {(logn)—o‘“m"z ) B&’iz,.z,cz'}+o,((logn)*)

1=0

with probability greater than 1 —¢ for n> N, if j is an odd number,
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and

J+2m)/2

(&, X)a, I = — (&) 2 {(logn) Ur2miz Z BJ+2m21 &3 1}+0p((108”) )

m=1

with probability greater than 1—¢ for n> N, if j is an even number,

where BY = 0 ,(1) with respect to P, for every j as n— oo and (&) is the standard normal
density function.

Proor. We prove the case where j is an even number. For simplicity, denote

n;(&, X), By(X), y;(¢, X), c;(X) by n;, Bj, vj, c;; respectively. Since co;=pP(6,)b~7/j! for
0<j=K,

| cojloty i=0,((logn)™%) forany L>0 as n—co.
And by Lemma 18, for any ¢>0, 1 </<j and 1 <j=<XK, there exist B,;>0 such that
| cyy—1loty ¥ < By(logn) ~ @1+ N2
with probability greater than 1 —¢& as n—o00. Let j=2. Since

V2= —@(E){c20(E% + 583 + 156)‘*“-‘11(53+3§)+Cozé}/l’(én) s

from what mentioned above, the lemma follows easily in this case.
General cases can be proved inductively. Suppose that the conclusion hold until
j. When j+2,

) . jt2 _ :
7j+2°‘n_(1+2)={nj+z‘"ﬁj+2‘p(f)}°‘n_(l+2)/ﬁo_IZI Vi+2-iBio, U*2/B, .
The first term of the right hand side is equal to

__¢(§)Jiz Cijs2-10% u+2)|:€21+1+1+1+2”2 ﬁ {2(1—1)+J+3}52“ s)+j+1:|/p(é,,),

s=1 i=

which is expressed in the form

j+2 ) ' G+21+2)/2
—(P(é)lz1 {(108")—U+2H2)/2 Z Bj+2t+22s—1523_1}4'0;,((108")_1')
= s=1

for some B, ;42,1 =0,(1) and any L >0 with probability greater than 1 —¢ as n— 0.
Now we consider the second term. Since §,=0 if / is an odd number, by the assumption
of induction, the second term is written in the form

Jjj2 [ ji—21+2 . (G—214+2m+2)/2
—(&) X l: > {(lOg")~U—21+2m+2)/2 ) Bj—21+2m+22s—1fzs_1}
1=1

m=1 s=1

+0,((logn)™ "):I B2ty *
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for some B;_ ;4 2m+225-1=0p(1) as n—c0. Moreover, since
21
By ¥ = Z.l By(logn)~*9 40, ((logn)™ "),

for some B as n— o0, the second term is written in the form

'2[]—21+2 21 (G—-21+2m+2)/2

-(P(f)l ) 21 21(108")-U+2m+2’+2)/2 Bj+2m+2:+22k—1€2k_1]
= m=1 s=

k=1
+0,((logn)~%)

for some Bj, 5,425+ 2 2k—1 = O,(1) with probability greater than 1—¢ as n—o0. Both of
terms are polynomials in £ with only odd degrees multiplied by the standard normal
density function. Consequently, by putting together terms with the same order of
(logn)~"2, i=j+4, j+6, - - -, 3j+6, the conclusion holds for j+2, too.

The case when j is an odd number is shown similarly.

In Lemma 21, we can see that each y;(£, X)«, ’is a polynomial in & with stochastically
bounded coefficients BY, multiplied by (logn)~¥2, i=3,4, - --, 3j, and the standard
normal density function ¢(£). In an expansion

K
F(©)—2@&)— X 7,6 X)a; /| D, (logn)~ K *3¥2*7,
j=1
polynomials in ¢ multiplied by (logn)~¥2, i=3,4, ---, K+2, are essentially needed.
From this point of view, we obtain the conclusion of Theorem 2.

The following lemma gives sufficient conditions to satisfy (C,).

LEMMA 22. Let B< + o0 and f satisfy (C,), (C,) and (Cy). If

lim fO(x)=0 for j=0,1, ---,K+2,

x—=+p—-0
and
FEINx)=(B—x)’L(B—x)

where y> — 1 and L(x) satisfies L(tx)/L(t)—1 as t—0 for every fixed x>0, then (C,)
holds.

PrROOF. We can show this lemma analogously to Lemma 3.6 in [7]. It follows
from Theorem 1 in [1], page 281, that

t
t’“L(t)/f yL(p)dy - y+1 as t—»0 for y>—1.
0

By making use of this fact, we can show inductively that
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(= )B—x)"L(B—)
=1y +0)

SEF3I=N(x)~ as x—»pf—0, for j=1,---,K+3.

Therefore

_ (G=-DI(y+K+3)
B—x)!

This implies that limsup,.;_og?(x)<0 for j=2,---,K+3. Moreover, define

hi(x)= —c/x’ for fixed ¢>0 for j=2, - - -, K+3. Clearly h;(x) is an increasing function

on x>0, and satisfies g¥(x)=h;(f—x) for B—1<x<p for sufficiently large ¢ and
sufficiently small 7. Finally, note that

gP(x)~ as x»pf—0, for j=2, -, K+3.

P B
J hy(v(B—x)) f(x)dx=—cv™I (B—x) " f(x)dx .
p—c p—t
By adjusting the lemma in [ 1], page 280, to this case, we can show that the last expression
is finite for all 0<v<1.
Take the density function of Beta(2, q), > K+ 3, for instance. In fact, it satisfies
not only (C,), (C,) and (C;) but also conditions required in Lemma 22.

5. Examples of expansions.

As a matter of fact, it is too difficult to calculate stochastically bounded coeffi-
cients BY specifically in general cases. But it is possible if K is not so large. Put
A;=(an/2)"2b(8,) G, 98,)/j!. Then the expansions for K=1,2, - - -, 6 are given as
follows.

(i) K=1
| F(&)— ®(E) + p(&)(logn) 32 A4,(£% +2) | £ D, (logn) 2P .
(ii) K=2
| F() — D(&) + (&){(logn) ™32 45(£> +2)
+(logn) "2A44(£%+3¢)} | £ D,,(logn) ™ 32+p.
(i) K=3
| Fo(£) — D(E) + o(E){(logn) ™32 45(E2 +2) + (logn) "2 A,(£3 +3¢)
+ (logn) ~5/%(A5/2)(E* +4E2 +8)} | S D,s(logn) 377
(iv) K=4

| Fy(&)— B(&) + o(&){(logn) =24 (E% +2)
+(logn)~2A(E3 +38) + (logn)~ 2(A/2)(E4 + 4E2 +8)
+(logn) ™ 3(Ae+ A3/2)(E5 + 583 +158)} | S D, 4(logn)~ 7127 P,
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(v) K=5
| F(8)— 2(&) + p(£)[(logn) ~*2A43(E% +2) + (logn) "2 A44(E3 + 3¢)
+(logn) ™ *%(A45/2)(E* +4L% +8) + (logn) ™ 3(As + A3/2)(E° + 5E3 +15¢)
+(logn) ™ 72{(A;+ A3 A)ES+6(A, + A3 ANE* + (2445 + 2T A4 A,)E?
+48A4,+544,A4,}1| S D,s(logn)~4+7 .
(iv) K=6
| Fu(&)— 2(8) + @(£)[(logn) ™ > 43(£% +2) + (logn) 2 4,4(&> + 3¢)
+(logn)~%2(A5/2)(8* + 48> +8) + (logn) (A6 + A3/2)(E° + 5E3 +15¢)
+(logn) " "2{(A7+ A3 ADEC +6(A, + A3 A,)E*
+(24A4,+27A43A4,)E% +484,+544,4,)
+(logn) *{(Ag+ AsA3+ A[2D)ET+T(Ag+ As A3+ A2[2)ES
+(35(Ag+AsAs+ A2/2)+ 3423
+(105(dg + Asd3+A3/2) +9A43)E}] | < Dye(logn) =2+ 2 .
ACKNOWLEDGMENT. I would like to thank the referee for his careful reading of

the paper and useful comments. And I am also grateful to Professor Takeru Suzuki
for his helpful proposal and proper advice.

Appendix.

In the proof of some lemmas, it is required to know the detailed expressions of
¢;m(X) defined in section 4. They are given as follows.

f 1 (m) A —
—p™@O )™ 0=m=
ooty | 7 PO ©0=m<K)
L 0 (K+1<m)
(b Y L pm-nga . 6) ©0<m<K)
r=0 (m—r)!
K-1 1 “ A
clm(A,)=1 b=m+d z _——-p(K—r)(on)ar+m—-K+3n(0n)1(rIr+m§2K)
r=0 (K—r)!
(K+15m<2K)

Lo QK+1=<m)
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1 m r . . A
_2_b-(m+6) Z Z )' (m_r)(en)ar—s+3n(en)as+3n(9n) (OéméK)
r=0s=0 (M—r
L p-tmro 3" sﬁ’ ®K-n(6 63, + 3.(0,)
Py " o Nt o ) +m—K—s+3n\Un)Qs+ 32U
Com(X)=1 2 S 50 (K—n)! P 0)a s m-x-s+3 +3
- xI((r,s) | r+m—s5s=52K),
where s(0)=min{K, r+m—K} (K+1=m=<3K)
) GBK+1=m)
r 1 m r i(1) i(2) il—-2) 1 "
— p~(m+3)y Z Z Z Z Z p(m—r)(gn)
I r=0i;=0 iz=0 i3=0 i i1=0 (m—r)!
X ai;+3n(én)ail 1+3n(é ) XX ai2+3n(é )ai1+3n(én)
where l(l)—r—ll, 1(2)_r_11 N l(l 2)_',_21_ i,
=r—Y'71, O0=msK)
— b~ (m+30) i mf) mf) m(ZZ) M(EZ) 1 (K—r)(é)
l r=0i;=0 i2=0 i3=0 ii_1=0 (K—r)! p "
CIM(X)= ) X ai;+m—K+3n(én)ai1_1+3n(én) XX ai2+3n(én)ai1+3n(én)
-1
(123) xl((r,il, i25 "':il-l) r4+m— Z is§2K>,
s=1

where m(0)=min{K, r+m—K}, m(1)=min{K, r+m—K—i,},
m2)=min{K,r+m—K —i, —i,},
m(I—2)=min{K, r+m—K—-Y'_%i}
B=r—Y'2114 K+1=m=(+ 1K)
L 0 (+DK+1=m)
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