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Abstract. We twist a knot by twisting some solid tori, each of which contains the knot, one by one to
the meridional direction. Suppose the solid tori have mutually disjoint essential toral boundaries in the knot
exterior.

M. Kouno, K. Motegi and T. Shibuya have shown that, by twisting a knot along one or two solid tori
in an inclusion relation, the resulting knot type is different from the original one (see [5] and [6]). In this
paper, we investigate whether twisting along various solid tori also produces a different knot type or not.

§1. Introduction.

Let K, and K, be unoriented knots in the oriented sphere S3. If there exists an
orientation preserving homeomorphism of S> carrying K, to K,, then we write
K, ~K,. This is equivalent to saying that K, and K, are ambient isotopic in S3.

Let K be a knot in S3, and V a solid torus with a preferred framing such that
KcintV. The wrapping number of K in V, denoted by w(K), is the minimal geometric
intersection number of K and a meridian disk of V. Suppose 0V is oriented. Let
S™:8%>S3 be a map, which may be discontinuous on 7, such that f®|ss_, is the
identity, and ™|, is an orientation preserving self-homeomorphism of V satisfying

M(m)=m and f(I)=1+nm, where f" : H,(0V)—H,(0V) is an isomorphism induced
by /™, m and ! are homology classes of a meridian and a preferred longitude of oV
with the intersection number m-/=1 respectively. /™ is not homeomorphic on S?3, but
it gives the orientation preserving self-homeomorphisms of S*—¥ and V. Note that
for a given knot K, a solid torus V, an orientation of dV and an integer n determine
the unique knot type f™(K). We call f™ an n-twist along V. ‘

Suppose K is fixed by an orientation preserving homeomorphism ¢ of S3 of order
n>1. When ¢ is a rotation about an unknotted circle disjoint from K, we say K has a
semifree period. When ¢ has no fixed point set, we say K has a free period.

- Let ¥, and ¥V, be arbitrary solid tori containing K with mutually disjoint
boundaries, and f™ an n-twist along V,. Since f{"? gives a homeomorphism either on
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V, or on S*—V,, Vi=f{")(V,) is a solid torus bounded by f{*(T,). We do not
distinguish notationally between f{** and n,-twist along V;. Similarly f{*? also denotes
the n,-twist along f"(V,). So we have f{")o fi*) = fi")o f{m) yp to isotopies on S3.
When w,(K) <1, knot type K is invariant under any twisting along V. So in this
paper, we consider a solid torus V, to carry out a twisting of X, is always knotted and
satisfies wy,(K)>2. Note that 0V is essential in the exterior of K.
The following theorem was shown by M. Kouno, K. Motegi and T. Shibuya.

THEOREM 1 ([5]). Let K be a knot in S3, V a knotted solid torus containing K
with wy(K)>2, and f™ an n-twist along V. For any non-zero integer n, f™(K) %K.

They showed the following theorem in their succeeding paper.

THEOREM 2 ([6]). Let K be a knot in S3, V; a knotted solid torus containing K,
and f® an n-twist along V, (i=1, 2). Suppose that VicintV,, wy (coreV,)>2 where
coreV, denotes a core of V,, and wy (K)=2. Then fI™(K)% ff™(K) for any pair
(m, n) #(0, 0).

In Theorem 2, either m=0 or n=0 implies Theorem 1.

Throughout this paper, intX and N(X, Y) denotes the interior of X and the
neighbourhood of X in Y respectively.

This paper was written while the author was studying at University of Tokyo.
The author would like to express his gratitude to Prof. Yukio Matsumoto for his
helpful advices and encouragement.

§2. Main results.

Let K be a non-trivial knot in S3. Consider the torus decomposition of
E=S>—intN(K, S?) (see [3] and [4]). By a finite set 7'={Ty, - - -, T3} of mutually
disjoint, non-parallel, essential tori imbedded in E, we can decompose E uniquely into
the pieces each of which is Seifert fibered or admits a complete hyperbolic structure of
finite volume in its interior (see [10]). Moreover each Seifert piece is one of a torus
knot space, a cable space and a composing space (see [3]).

Let V] be the solid torus bounded by 7;. Define a subset J of ' by I =
{TieJT'; wy(K)=2}. Let 7 ={T,, ---, T;} and V; the solid torus bounded by T
Suppose T; has an orientation decided by that of S® and a normal of T; oriented
to the exterior of V. Note that if there is an orientation preserving homeomorphism
of §3 carrying T; to T, it induces an orientation preserving homeomorphism from T;
to T;.

We consider the composition of the twisting along V,, - - -, ¥}, and show the
following theorem.

THEOREM 3. IfY_, m#O0, then f{™o - o fPN(K)%K.
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Here f{™o -+ - o f;# : §3 583 may be discontinuous on T, - - -, T;, but it induces
an orientation preserving homeomorphism on the interior of each decomposing piece.

The following corollary of Theorem 3 answers all the case of knotted solid tori to
carry out the twisting of K.

COROLLARY 4. Let V! (1<i<k) be knotted solid tori containing K, and g{ an
n-twist along V|. Suppose 0V are mutually disjoint and wy(K)=2. If Z, ,m#0, then
g(nx) .. og("")(K).,i_K.

When k=1, Corollary 4 is the same as Theorem 1.

Next, we consider two knotted solid tori ¥ and V3, with mutually disjoint
boundaries, containing a knot K in their interiors. By [8, Satz 1], we may assume
one of the following occurs:

(1) VicVior VycVi.

Q2 ViuV;=S3.

(3) There exists a solid torus WecintVinintV; such that wy.(coreW)=

wy,(coreW)=1.
Theorem 2 corresponds to the case (1), and the following corollary of Theorem 3
corresponds to the case (2).

COROLLARY 5. Let V! (i=1, 2) be in the case (2), and g\ an n-twist along V{. If
ny +n,#0, then g0 o g$(K) £ K.

In a special case when all the solid tori to twist are in an inclusion relation, we get
the following theorem, which is a generalization of Theorem 1 and 2.

THEOREM 6. Let K be a knot in S3, V} (1<i<k) knotted solid tori such that:

(1) KcintVy and wy(K)=2.

(@) VicintV{,, and wy,, (coreV;)=2 for 1<i<k-1.
Let g™ be an n-twist along V|. Then g7V ---o gm(K)£K for any (ny, -, m)#
©, -- -, 0).

Theorem 3 requires the condition Z . m;#0. The next problem is what kind of
knot admits both (n,, - -+, n)#(0, - - -, 0), Z;= n;=0 and f{™o - o f(K)=K. We
give a partial answer of this problem in the following theorem.

THEOREM 7. Suppose (ny, - ,n)#(0, ---,0) and Z' n;=0. If there is an
orientation preserving perzodzc homeomorphzsm p: 8383 carrymg [l . ooo fM(K)
10 K, then for some (n, -+, m)#(0, - - -, 0), f{o -0 f)K) is a pertodzc knot.

Here a periodic knot means a knot with a free or semifree period.

§3. Twisting of K.

Let m, and /; be the homology classes of a meridian and a preferred longitude of
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T; with m;-[;=1 respectively.
First we give a lemma for the decomposing piece M; attaching 7, in V;. In the
statement and the proof of the following lemma, double signs are in the same order.

LEMMA 8. Let F;: M;— M, be an orientation preserving homeomorphism carrying
T;to T, F,, : H(T)—H(T) an isomorphism induced by F,. If M, is not a composing
space and F; (m))= +m,, then F, (I)= +1I,.

PrOOF. We have F,(I})= +(l;+am,) for some a. Since dM; contains T; and a
torus separating T; and K, M, is either a hyperbolic piece or a cable space.

Assume M; is a hyperbolic piece. By Mostow’s rigidity theorem ([10, 5.7.4),
Isom(intM;) = Out(n,(intM})) is a finite group. So Fili,,,Mi is homotopic to a unique
isometry G; of M; and G} is the identity for some integer N >0. Then F} is homotopic
to the identity. So we get FlL(/)=(+ D (,+ Nam)=1I. Hence we get a=0 and
Fi()= %1,

Assume M, is a cable space. Since the Seifert fibering of M, is unique [2,
Lemma VI.17], F; is isotopic to a fiber preserving homeomorphism. Then we have
F(pm;+ql)= +(pm;+ql;), where pm;+ql;e H\(T) is a class of a regular fiber on
T;. Here p and g are coprime non-zero integers such that g#1. So we get
+ (pm;+q(l;+ am;)) = + (pm;+ ql;). Hence we get a=0 and F, (I)=%1,. O

LEMMA 9. Let M; be a composing space, T;—dM; a torus separating T; and K, T
an essential torus in intM;, V a solid torus bounded by T, and f™ an n-twist along V.
Then we have f"(K)= f{"™(K)= f™(K).

Proor. By [1, Proposition 13], coreV;, which is a .companion of K, is a
composite knot. Since wy (coreV;)=1, f™ twists V; n times to the meridional direc-
tion and f"(coreV;) is ambient isotopic to coreV; in V. So we get f"(K)= S(K).
Other cases are similar. 0O

By Lemma 9, £;, ™ and /™ are mutually replaceable.

PrROOF OF THEOREM 3. When f{"Vo - o f™(K)xK for some (n,, - - -, n)), there
is an orientation preserving homeomorphism ¢ : S3—S? carrying f{*o - - - o f")(K)
to K. Each torus @o f{"o --- o f;™(T)) is essential in E and the bounded solid torus
Vi satisfies wy,(K)>2. Modify ¢ so as to carry | J;_, f{*o -+ o ffm)(T) to Ua.

Assume M; with n;#0 is a composing space for some i. Let T;=0M; be a torus
separating 7T; and K. By the condition of the torus decomposition of E, M j i1s not a
composing space. Change f* for (" by Lemma 9. Then we can assume M, with
n;#0 is not a composing space for any i. ' :

For convenience, we write @,=¢@o f{" oo f® where u=(n,, ---,n). Then
¢,: S>—>S83, which may be discontinuous, fixes | ] 7 and induces an orientation
preserving homeomorphism on the interior of each decomposing piece. Then ¢,
induces a permutation on a finite set 7. Since the degree of the permutation is finite,
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there is an integer N >0 such that ¢Y(T)=T for any TeJ . Let TeJ, and Np>0 a
minimal integer such that ¢ ™(T)=T. We call the set {T, o (T), - -, oh* " (T)}cT
the orbit of T under ¢,. Next, we show the following lemma.

LemMa 10. Suppose f{™o -+ o oK)= K and ¢, is as above, and any M; with
n,#0 is not a composing space. Let T;={T i1y Tpi2p ** "> Tpangy (1<I<r) be the
orbits under ¢,, which are mutually szJomt and satisfy U 7=, 0(Tpujz)=
Tpij+1) Jor 1<j<N;—1 and ¢ (Tpuny)=Tpi,1)- Then we have v ‘Z, L Mp.jy=0 for
any i.

Since Yi_, m=Y"_, v, Lemma 10 completes the proof of Theorem 3.

Proor. Let N=LCM{N,, ---,N,} and v;=v,N/N;, We calculate @) in the
following. First we calculate it in the case when r=1 and N=N,; =/, Since

f,f(”{ j)°¢u=¢u°fp(g g-n for 2<j<N, and f),1)° @u=0u° f5il.p, We have

f;(”f(li)n) fp((nlmzx)z)) fp(("f(ll) x))o(pL—l

=ogue fyry” e f‘:'f‘;f” c o flan) o gl
2, ;:f(ll)l)+"’(l’2’)Of;(""("z’+""“'3’)° f;f:f(zl) n+np(,,1,)°¢“
fp(("lp(ll)‘)+"PU:1)+"P(1.3)) f;;'l”‘;)z’+""“'3’+""“"")o . fp(?f(ll) "+"”“"’+"P“'2’)o¢:"3
@'o Rty e St o o Syl -

Similarly, in the general case, we have

¢ —(P {fp(l 1)° fp(l,N1) {fp(r 1° " "’ °fp( N,)}

The pieces M, ; (1< j<N,) are mutually homeomorphic. So we have vi=v,=0 if
M ;. 1) is a composing space.

Assume that M, ;, is not a composing space. We have O8N (Tpi,1)) = Tpa,1) and
@Y induces an orientation preserving self- homeomorphism of M,;;, Note that
when V,;,,cintV; for some j, V,; i can be automatically twisted by ;. So
@) induces an isomorphism of H (T, 1)) carrying myq,y to t£mpyu ) and [,; ) to
+ (L1 + (Vi+a)myg 1)). Here a; depends on the twisting along the solid tori which
contain ¥, ;). Applying Lemma 8 to ¢, | Mpa1y W€ get vi+o;=0. If either there is no
solid torus containing ¥, ;, or any of the twisting along the solid tori containing
Vi1 is O-twist, then we have a;=0. So we get o;=v;=0 in order of the inclusion
relation of the solid tori. Then we get v;=0 for any i. This completes the proof of
Lemma 10 and Theorem 3. O

PrROOF OF COROLLARY 4. Let T}, ¥; and f™ (1<j</) be as above. Note that
OV} is an essential torus in E, and each T; represents an isotopy class of essential tori
in E. If the class of dV] is represented by some T, change g{™ for f*?. Otherwise, it is
represented by an essential torus in a composing space (see [1]). Then by Lemma 9,
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we can change g{™ for some f*). Hence the result holds by Theorem 3. 0O

PROOF OF THEOREM 6. As in the proof of Corollary 4, change V; for some V.,
and g{™ for ™. By Lemma 9, we can assume that T,, does not bound a composing
space for 1<i<k. New solid tori V,, (1<i<k) also satisfy (1) and (2). Since T v
(1<i<k) are ordered by the inclusion relation of V,, their orbits are mutually
different. So f"Vo - o f")Y(K)~K implies n;=0 for 1<i<k by Lemma 10. This
completes the proof. O

Theorem 6 gives a proof of Theorem 2 which is different from that in [6].

§4. Relations to the periodicity.

In this section, we observe the case when (n,, - - -, n)#(0, - - -, 0), Zf= 1;=0and

f‘("l)o cee of,("')(K)gK

REMARK 11. We construct a new knot K’ from a periodic knot K in the
following. Theorem 3 without the condition ) ;_, 7;#0 does not hold for X'

Let K be a periodic knot in S* with the period N >2, ¢ : $*-S3 an orientation
preserving homeomorphism with the period N which fixes K. Suppose 7 ={T, - - -, T}}
is as in §3, and ¢ fixes | J7. As in Lemma 10, assume the orbits under ¢

are {Tpu1y * > Tpany} Where 1<i<r. We have N=LCM{N,, ---, N,}. Suppose
Y =0 for 1<i<r. Note that this implies }!_, n,=0. Define a knot K’ by
0 9 1,2 .. 6(1,N;—1
;((12)1))0 SOAD oo £OON- 1)
Co (Yo fOED .., fOEN I (K)

where 0(, ))=Y1_, n,. Denote gof™o-- 0o fi® by ¢ @, where u=(n,, - -, n).
Note that 0(i, 1) =n,, 1), 0G, N)=0, and f§%{ %)V o £ 1241+ = f@ED, | for any 1 <i<r
and 1<j<N;—1. Then we have

DUK)= gy (S o o SR oo o ([0 - o [R5~ D)K)

( . ( 1
=0 (URER = S525 ) (R LG5 - oG S5 )

{( IS?'("I)I)) ° ;( n Bp(r,1) ( f(f:(rl;’l:l)r)) f;( r,;‘:-()' ,)))}( K)
=<pu°{ Statit f,ffi‘n'f ‘-”S” el f,fff,'nﬁ"ii”
;unlp)u 1) ;u"’s:; Nn)} -+ of ;(' ';x)»(r RT) of;(' ;;:()r "”)}(K)
=@, {5y o “’{‘N’f‘ Dbe o e e Sy

e e )

Since go“of,}(';’j,=f,f;'i{j+1,o(p” for 1<i<rand 1<j<N;—1, we get
0 1,1 (6(1,Ny— 1)) (a( 1)) O@,N,— 1))
Pu(K)={ oz "o ot Ny “o{fowrs “© Lo }

e fime fim o KD
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(0(1 1 (9(1 N;—-1)) 9 1 (6(r,N,— 1))
={/, Jo1,3 ))) p(1 N,)1 Joroof p(( ('2)» ofp(r,rN,.) }oo(K)

=K'.
So we have f{")o - -- o fBNKNY=K".

When r=1 and N,=2, we show an example in Figure 1. The knot K’ is
constructed from a periodic knot K= f{~1(K’), and ¢ has a period 2. T, and T, are
essential tori in the same orbit under ¢, _;,. In the sense of Remark 11, a knot type
related to the periodicity is invariant under twisting.

FIGURE 1

Assume the case (ny, -, n)#(0, ---,0), ! =0 and f™o - o fM(K)xK.
If the equivalence of these knots is given by an orientation preserving periodic
homeomorphism ¢ : $3—S3, the above observation is formulated as Theorem 7.

PROOF OF THEOREM 7. Let I ={T,, ‘-, T,} and M; be as in §3. We denote
Qo fi™o- 0o M by @, where u=(ny,---,n). Modify ¢ so as to satisfy
(p,,(U T ) \UZ. Let the orbits under ¢, be {T ot 13 Tpizp "> Tpany Where
1<i<r. By Lemma 9, we can assume M; with »n;70 is not a composing space for
any i. Then we have Z a.)=0 for 1 <i<r by Lemma 10. Define the knot K’ by

ji=1 P
{ ( 0(1,1)) , £(— 0(1 2) f( 6(1,Ny—1))
(1,2) pQ, p(1,Ny)
( o(r, 1)) (- 6( 2, ... (—0(r,N-— 1))
{ p(r,2) ° Jp(r, )’ °J p(r.N,) }(K)’

where 0(i, ))=Y7 _, n,4. Then we get

(-0(1,N1 1)) o1 (- 60N, ~ 1))
o(K)=¢- (( Bé)l o fp(1 N1) ' }° T °{ ((r 2()r Vo fp(r N:) }(K)
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- - - — 6(1,N;—1
=¢u°f( m) o f{=ndo ... of( ”')°{f((1?z()l"”° f::u ;m 1 ))}
o(r,1 (= 0(r.Ny— 1))
o {fpedy Ve e foeny | HK)
_ (—n ) IS ( n ) ( nper,1)) . ( r.N.))
=@u° oty " Soamy ™"} { Sow 50 Soeny ™"}
(—6(1,1 (—6(1,N,—1)) o(r,1 (—6(r,N,— 1))
o{foa%y Ve fpu No e o {fgeay Ve f;)(r,N:) }K) .

Since we have

(—n ) SR (—n ) 0(i,1) ( 0(i,N;— 1))
{f;’(l 1;’“ ” pli, N':)(i e } {fl’(‘ y p(l Ny) " }
= £(7mpu,n) g , ( N, . 0(i,N;— 1 ,
— p(i,'lh;u 1) (f;(z g()u 19) I fp(l,"p(i ,2) ) o (f( o N(:) 1—1)) f;(a ;;:)u N )))
03,1 (—0@{,N;—1))
fP((" o fp(i Ni_;) ’
then
(1,1 (—6(1,N1—1)) . or,1 (—6@,N-—1))
o(K)=9,°{f, 1() Vo f(l Ni—1) Jorroff ((r, o f(r,N:—l) HK)
_ —0(1,1 (-6, N1 —1) .. or,1 .. (—0(r,Nr-— 1))
- {f((l,z() » ° f;’(l Ny) " } ° ° { ((l’, 1 )) ° p(r, N:) } ° (pp(K)
=K’

By [7] and [9], the fixed point set of an orientation preserving periodic
homeomorphism on S3 is either empty or a trivial knot. So according as the fixed
point set of ¢ is empty or a trivial knot, K’ has a free or semifree period. Therefore it
has the required property. — O
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