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1. Introduction.

We will consider a piecewise linear mapping F from the unit interval [0, 1] into
itself for which there exists a sequence {c,} such that 1=¢c4>¢;>---—0 and

_C .
x‘// 1 if xe(ey,co],
F(x)= °
_')_c___c_"_"'__l_-|-c'l if X€(Chs15Cul s
Y
where
Vo= F)7' if xE(Ches )

ﬂ if n=0,
STt i p>.
Cp-1—Cy

Y. Takahashi ([7] and [8]) studied the ergodic properties of this mapping by calculating
its autocorrelations | xF(x)dx. In this paper, we will consider this problem in more
general situation.
This mapping has a fixed point at 0, and there are various cases depending on its
property at 0:
1. When F'(0)>1, the dynamical system is mixing and the decay rate of correlation
is of exponential order. In particular, the central limit theorem holds.
2. When F(x)—x~ x* such that « <5/3, the dynamical system is still mixing, but the
decay rate of correlation is of polynomial order. Nevertheless, the central limit
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theorem holds.

3. When 5/3<a<2, the dynamical system is still mixing and the decay rate of
correlation is of polynomial order, but the central limit theorem does not hold.

4. Finally, when a>2 (F"(0)< o0 if a=2 and F”(0)=0 if «>2). Then it has a o-finite
invariant measure only (A similar result is obtained for some continuous maps by
Thaler [10], [11]).

Note that, if c,~n~? then a=1+1/y. In this paper we consider “decay rate of

correlation” or “central limit theorem™ for a certain class of functions, which we will

state in §4.

The main tools which we use are, as in the previous papers ([2], [3], [4], [5]), the

Perron-Frobenius operator P defined by

J Pf(x)g(x)dx = ff (x)g(F(x))dx

and a renewal equation.

In §2, we summarize the notations, which are almost the same as in the previous
papers. In §3 and §4, we calculate the invariant measure and the decay rate of correlation.
Finally in §5, we prove the central limit theorem.

2. Fredholm matrix.

Since the mapping F is Markov, the renewal equation can be constructed on the

usual symbolic dynamics, although it can for more general mappings as is discussed
in [4]. We use the following notations, which are almost the same as in [4].
Let A={0,1,2, -} be an index set, that is, 4 is the set of alphabets. Let

<n> =(cn+ 1> cn] ’
so that

el ) <my=[0,11,
n=0

where clJ stands for the closure of a set J. The notations concerning words are slightly
different from those in the previous papers. For a word w=n, - - - n, (n;€ A), we denote

Wl =3 (ut1),

ew ={(n1—1)n2"'nk ff n121,
nyny - "Ny lf n1=0,

k
wy= () F™xn,
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1 if i=0,
lll‘lv — -1 ny, n ) )
n Yim H ¥; if N,_;<i<N,,
m=1 j,=0 j=N;-i
where
0 if i=0,
N.= i
' Y m+1) if i1
ji=1
Note that
1 if i=0,
. CnCnt1 if 1<i<n,
!/’;__" Cn—i—Cn—i+1
Cn—Cnt1 if i=n+1.
Co

We denote by W the set of words w which satisfy (w) # . If, as usual, we express the
subinterval (¢4, ¢o] by R and [0, c,] by L, a word w=n, - - - n, in our new notations is
expressed as

L...LRL...LR...L...LR.
[U—) [ —) T

2-1. Renewal equation. Now we will construct a renewal equation. Since the
mapping F is Markov, the Fredholm matrix can be constructed on the usual symbolic
dynamics. In [4], we also stated the relations between the Fredholm determinant and
the zeta function using the Fredholm matrix. We will state this in the next subsection.

~ For a subinterval J, a function ge L* and a complex number z e C, we define

o= 5. 7 | s,

Xs =j g(x)dx ,
J

that is,
57(2)=(1,, g)2)

_ 20 2 f 1,(x)g(F(x))dx
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=)z JP"I ;()g(x)dx
n=0

- f (I —zP)™'1,(x)g(x)dx ,

where 1, is the indicator function of J. For a word w we denote simply s4(2) and yxy
instead of s§*’(z) and x{™>.

To study the properties of the Perron-Frobemus operator, it is enough to construct
a renewal equation for s2(z) (cf. [8], [2], [5]):

LEMMA 2-1. (1) The renewal equation for s)(z) has the following form:
0=00 o 5 = —g-0-9 5 » § ),
k=0 Ck_ck+1 n=0 k=1 ck ck+l
where
1 & i
D(2)=—(1—2) Y c,z".
Co n=0
We call D(z) a Fredholm determinant.
(2) For any we W (w+#0), we get
5;(@2)= x5+ ¥ (2)s(2) ,

where

fw|=-2

X:(Z) = Z wx:kw ’

k=0

Y@=z gl

PrOOF. Since

0 = m H —_
#(o)= xg+m2=joz¢0sg(z) if n=0, an

x5+2zy,s " Y(2) if n>1,
the proof of (1) follows by induction. We can prove (2) in a similar way.

REMARK. (1) Note that
| Y=gl

1
= Lebes{w) .
Co - Cl

(2) As we will prove in the sequel,
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<Zc,,>f gdu if Y c,<o0,
n <k> =

Ck xk_. =0 n=0
— =
Ck—Ck+1 : 3
gdu., if ) c,=o0,
<k> n=0

where u (resp. u,,) is the invariant probability measure (resp. o-finite invariant measure).
(3) Suppose that ge L*®, then

Ck
X Cn

Q0
f 19lduo<lgloc, if X =00,
<> n=0

[0 o]
f lgldp<| gl if ) c,<oo,
<k> n=0

(2.2)

where by || g || , we denote the L® norm.

2-2. Fredholm determinant and zeta function. Now we can compute the
Fredholm determinant D(z) and the zeta function

C(z)=exp<fz—" ) loglF"'(p)l),

n=1 N p:Fp)=p
pel0,1]

using the results in [4]. It turns out that there appears a difference between them, which
comes from the following facts:

(1) To calculate D(z), we treat F as a mapping from (0, 1] into itself.

(2) The point x=0 is a fixed point of F.

THEOREM 2-2. Assume that Wy =lim,_, Y, exists. Then the zeta function is of the
form:

{27 =(1—y2)D(2).
PrOOF. Let Fy be a piecewise linear transformation of the form:
F(x) if xe(cy col,

FN(x)= Cn-1

x if xe[0,cy].
CN

Then by Theorem B in [4], we get
{n2) "t =det(I — Dy(2)),

where {y(z) and @y(z) are the zeta function and the Fredholm matrix corresponding to
Fy, respectively. The Fredholm matrix @,(z) is a 2N square matrix which is expressed
in terms of signed symbolic dynamics as:
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PN(2) g, b= 2| 4)0(O[b* < 0a°] — 1/2) a,bed, o,t1e{+, -},
where

1 if the statement L is true,
0 otherwise ,

5[L]={

(for details, see [4] §3). Since {(z) converges to {(z) in | z| < 1, we only need to calculate
det(I — Pp(z)). We get inductively

detll~ Oy(@) =12 +¥)— 3, 20— [T v;.
This shows

lim det(I — ®(2))=(1 —yz)D(2),
N-wo
and the proof is complete.

3. Invariant measure.

In this section, we will construct the invariant measure which is absolutely
continuous with respect to the Lebesgue measure. When ) ¢,= oo, the dynamical
system has a o-finite invariant measure only which corresponds to the case in Thaler
[10], [11]. We also calculate the decay rate of correlation.

LEMMA 3-1. (1) Suppose that Z:: o €k <00. Then there exists a unique absolutely
continuous invariant measure p and its density p(x) is given by

px)= if xeln).

cn
_ (Ca—Car1) )
(2) On the contrary, suppose that 3 c,=co. Then there exists no finite invariant
measure which is absolutely continuous with respect to the Lebesgue measure, but there
exists a o-finite invariant measure p,, whose density is given by

Po)=— if xeln).
Cn—Cn+1

PrOOF. The density p(x) of the invariant measure u is an eigenfunction cor-
responding to the eigenvalue 1 of the Perron-Frobenius operator P, that is, it satisfies
Pp=p. Therefore

6. 0%0)= 3. 2 [t o
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= 20 z" fP”p(x)g(x)dx

_Jp)gx)dx

1—z

3.1
On the other hand, if we express p(x)=) .wCul,(x), then we get

(0, gN2)= Y C,s(2)

weW
= ZW Cultg' (@) +Y™(2)s4(2) - (3.2

Hence for any g,, g, € L™, applying (3.1) and (3.2) to lim,;,(p, 9:X2)/(p, g2)(z), we get
[9:0900)dx _ 1. T, o (Cutgs() +97(2)52,(2))
fg200p(x)dx  zt1 Y, W Coli (@) +¥(2)s0,(2))
i Yo Cl @Y ek —cis )
z11 Zwe w CWW™(2) Zk ckxf;,/(ck —Ck+1)
- Zk j<k>gl(x)ck/(ck —Cy 4 1)dX -
Zk j<k> gz(x)ck/(ck —Cr+ 1)dx

This proves the lemma.

COROLLARY 3-2. (1) Suppose that Z:Z oCn<00. Then we get for any g with

flgldu<oo
so) = Leotx Jgedu | 3.ez" f1<o>(x)dx ’ fg dy

(1-2) > cz"
ch = < cn+kJ‘
—_ z" d , 3.3
chzn ng:o kgl Ck <k>g # ) ( )
where
Cy= Z Cx
k=n+1

(2) Suppose that )" c,=co. Then we get for [|g|du,, <o
( $ . ZH)SO(Z)J 10y(0dx - [ g(x)dp,
n 9

1—z

e8] 0 c"
- Z z" Z +k J1<0>(x)dx-f gdu, . 3.4
n=0 k=1 <k

Ck
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We can get the proof by combining Lemma 2-1 and Lemma 3-1.

This corollary suggests that for the case (1) the dynamical system is mixing and

J F(xX)g(F"(x))dx— Jf dx * fg du

decays with the order ¢,. On the contrary in the case (2), |f(x)g(F"(x))dx converges to
0 as n— oo but

lim d, Jf (x)g(F(x))dx = f fdx- Jg du,

where the sequence d, is defined by

x " 1
>

o d, (1-2ycz

We will state the general theory and also give the detail in the next section.

4. Decay rate of correlation.

As we have stated in §3, we will show that the dynamical system is mixing and that
the decay rate of correlation is determined by c,. First we will consider the case when
Z:’: o Cn<00. For the simplest cases, we get:

THEOREM 4-1. Assume that the radius of convergence of the sequence Z:°= o CnZ" IS
greater than 1, and that F'(0)> 1. Then we get:

) Spec(F)n{z: |z|>e ¢} ={z"': D(z)=0,|z| <€},

where Spec(F) is the spectrum of the Perron-Frobenius operator P restricted to BV, the
set of functions with bounded variation.
(2) The dynamical system is mixing and for any fe BV and ge L™ the decay rate

of the correlation is the reciprocal of the smallest zero in modulus of Z:’:o c,z", that is,
let n be the smallest zero in modulus. Then

I S (x)g(F"(x))dx — f Sf(x)dx - fg(xﬂﬂ ~n" as n—oo.

PrOOF. These are the direct consequences of Corollary 3-2 and Theorem A in [5].

Now we will proceed to our main aim. Let the radius of convergence of ). *_ _ c,z"
equal 1. Then, as we stated in §3, we will show that the decay rate of correlation for
a certain class of functions equals ¢,.

DeFINITION. Let {a,}%, be a positive sequence. Then we say that a function f
belongs to Class(a,) or class(a,), if there exists a decomposition of f(x)=)  _, C..1.(x)
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such that

> Gy~ (4.1)

|wl=n

{O(a,,) if feClass(a,),
o(a,) if feclass(a,) .
THEOREM 4-2. Suppose that c, is of order n~" with y>0. Then BV < Class(n~?"1).

PROOF. Assume that fe BV is monotone increasing. Now we express a word as
w=k, *-- k;such that k, + - - - +k;=n—i and get

Z CWl//w(l)z i Z Ck1 ceo ki l//’“mki(l) .

lwi=n i=1ky+--+ki=n—i

Since fis monotone increasing, we get

i Z Cyyr,<var(f),

i=1 ky+-+ky=n—i

where by var(f) we denote the variation of f. On the other hand,

l/,k;"'ki(l)z ﬁ ckj—ckj+1 CO

j=1 Co Co—Cq
Cm—C 1l i—Cp—it1
+ s .
< sup m m+1 n—i n—i .
m>1 Co CO"_CI

Since sup,,(c,,— cm+1)/Co <1, for sufficiently large n there exists a constant K such that

K
ky-ky
Y (I)Sn"—’Ll’

because ¢,—c,+; ~n~ "1, Combining the results, we get

S Carns2a)
n

jwl=n
This proves the theorem.
THEOREM 4-3. Suppose that ), c,<co. Then the dynamical system is mixing,
and for a function fe Class(c,) and ge L™, the decay rate of correlation equals ¢,=
;cv =1 cn+k'
ExaMPLE 4-4. (1) Suppose that c, is of order n~” (y>1, that is « <2). Then for
functions fe Class(n~") and ge L, the decay rate of correlation equals n~?*1!,

(2) Suppose that c¢,~{n(logn)°} ! for s> 1. Then for functions fe Class(c,) and
ge L® the decay rate of the correlation equals (logn)~*1.

We use the following lemmas.
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LEMMA 4-5. Let geL™. Then
> Cn+k ~
y 2 gdu~é,. 4.2)
k=1 G Ja

Proor. By (2.2), we get

ntk S gl
Z gdu|< Z Cn+k
k=1 k k> k=1 ZC,,,
e Mgl

This proves (4.2).
LEMMA 4-6. Suppose that fe Class(c,). Then for ge L™, the both n-th coefficient of

Y Cux(2) 4.3)
weW

and

A AL

weW 1—z

4.4)

are of order ¢,.

PRrROOF. Since

ZW Cuwiy(2)

Y Co(ty+zlyse + - - +zI 1 yglw =1y
weW

< iw Y 1C YW g llalco—cy)

Iwlzn

by the assumption that f belongs to Class(c,), this proves that the n-th coefficient of
(4.3) is of order &,, and we can show in a same way that the n-th coefficient of “4.4)is
also of order é,.

Now we will prove Theorem 4-3. We denote f= Y wew Cwl,- Then, noticing the
fact that

ZW waw(l)fl<o>dx=jfdx >
we get

(f; 9N2)= ZW Cusy(2)
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= ZW C.{x5(2) +¥"(2)sg(2)}

=2 wa;"(2)+[ 1 ]_[fdx Jgdﬂ
weW ZCZ
_dex ZCnn 1 Zznzcn+kj gd/J
Yc2" co—Cy n=0 k=1 C Jao

+ Y U@y f 1oy dx

|wlew
) 1 c,z" _Zc,, & & Cpk
(I: 1-2z ZC 2" ]jgdﬂ 2. CaZ" ngoz kgl Ci Lk)gd#) .
Therefore,
() CRLa T PPl @5
where

R(f, 9)2)=Ru(f;, 6X2) + Rolf, 9X2) + Ralf 0X2) + Rolf, 0)2)
Ry(f, gXe) =25 f fdx- Jg du,
Y ¢,z

RS 00= 3, Cogrt T, OYD (1 . f gdu,

weW

Ry(f, 6)2) = — ffdxZ 3 2 Z f gdu,
<k>

CZnO k=1 Cy

|wleWw

(ger fon-gim B2 5 ow)

If ) ¢,< o0, then for a function f=1,, with some word w and for ge L™, the above
equation (4.5) shows [f(x)g(F"(x))dx converges to [fdx [gdu. Hence the dynamical
system is mixing. By Lemma 4-6 and Lemma 4-5, the n-th coefficients of R,(f, g)z) and
R;(f, g)2) are of order ¢,. Moreover, it is easy to see that R,(f, g)z) is of order &, and
R4(f, gX2) is of small order. This proves the theorem.

R(f,9MD= Y C™@—¥™(1) f Loy dx

PROOF OF COROLLARY 4-4. Suppose that ¢, is of order n~7 with y>1. Then by
Theorem 4-3, the dynamical system is mixing and since &, is of order n~?*1, the decay




422 MAKOTO MORI

rate of correlation equals »~?*1. This proves (1). To prove (2), we only need to show

lim ¢,(logn)' =

n— o

(4.6)

{+oo if t>s—1,
— 00 if t<s—1.

If t>s—1, then

& (lognf 1
Cu(logn) kgl (1+k/n)log(n+k)y° n

n 1 1
<K(logn)~* _—
(togn) k;1 1+k/n n

N(logn)t—s+ 1

for some constant K. This proves the upper half of (4.6). For the rest half, we appeal
to the fact:

LEMMA 4-7. For a, B such that 0<a, B<1 and a+ =1, we get for x, y>0
x+y=xyf.
The proof follows from an elementary calculation.
This lemma shows that for 0<z<s
{log(nm)}* > (log n)’(logm)*~* .
Then

Cn~ > ! i @.7)
k=1 (1+k/n)logn(1+k/n) n

Therefore by Lemma 4-7, for t <s—1 the right hand term of (4.7) is less than or equal to

i 1 i N 1 J © 1
k=1(1+k/n)logn)(log(1+k/n)y* n  (logny J, x(logx)* "

Since for a>1

J, <
——dx<o0,
1 x(log x)*

this proves the latter part of (4.6). Therefore the proof of Corollary 4-4 is completed.

We now consider the case }°°_ c,=co. In this case, as we mentioned in Corollary
3-2, [f(x)g(F"(x))dx converges to 0.

THEOREM 4-8. Assume that ).°_ c,= 0. Define d, by
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z 1
ngo d, (1-2)Y c,z"°

and let d, be any sequence such that lim,_, , nd,d,=0. Then for fe Class(d,) and ge L®
with [|g|du,, < oo, we obtain

lim d, jf (x)g(F"(x))dx = .[ fdx Jg A, -

ProoF.
$ 2 [rware= 5 e
= X Cu{@+y@)sy(a)}

—_ ZWCng(Z)"' Z C ‘//w( ) Z Z:(jgdﬂw _ i 2" i Cn+kJ‘ gduw)

weW 1-z n=0 k=1 Cg

- % g+ 3 o, YOV e j pdu

weW 1_'2 chzn

J fdx - Jgduw Yy 2 +small order . (4.8)

n=0 4,

Since by the assumption that fe Class(d,), the n-th coefficient of Zwew wXy (2) is of
order nd,. Therefore the first term of the right hand term of (4.8) is of smaller order
than the third term. The second term of (4.8) is also of smaller order than the third
term, and this proves the theorem.

Note that when ¢,~1/n (i.e. y=1 or, in other words a«=2), then d,~logn. This
corresponds to the case in Thaler [10]:

X
F(x)= I=x
2x—1 1/2<x<1.

0<x<1/2,

5. Central limit theorem.

In [1] and [6], the validity of the central limit theorem for a function 4 was
characterized by the perturbed Perron-Frobenius operator P,,:

Puf(x)= Y €"NF'(p)| ' f()

y:F(y)=x

=P(e™f)x),
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because the characteristic function S,,h(x)=z:; (1) h(F*(x)) is expressed by
f €S dy J Bp(x)dx

We will study the central limit theorem by appealing to the renewal equation (4.5).

LEMMA 5-1. Let us denote the characteristic functions of S,h—nm by ¢,(t). Then
it is expressed in the form:

S a _ 1 z he
2 0= fh s fqbz(x)du, (5.1)

where
= f hdu,
h(x) = et —m _1
62= 5, 3 2o 3 2gogFhe) glFR ).
PROOF.

0 r

Z zn¢n(t)= Z Z" eit(snh(X)'—nm) dll

n=0 n=0 o/
© (*/n—
= Zo zn ( 1_[ elt(h m)° F")(x) d[l

Il
Ms
N

" L”: {("*= ™" P — 1)) + 1}] du

1 z
= + hd
1—2 (1—2)2Jt #

4 Q0 Q0

Z i1 i zi2 ... i 2 | h(x): - h(FI* Y i(x))du

(1—2?21S1j=1 =1 =1

_ 1 z z £ he
=4t 1_27 J.h:du+—————(1_z)2 thz (x)du .

This proves Lemma.

<+

DErFINITION. In the present paper we say that a power series f(z, t)= Z°° a,(t)z"
is of small order in (z, t) when lim,_, , a (0/\/ n)=0 for any fixed 0.

We need the following lemmas.
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LEMMA 5-2. Suppose that c,~n"? (y>1). Then for he L

.fh dﬂ% CpZ" ni d Z o f<k>htd#

0 k=1 ck

is of small order in (z, t).
PrOOF. The proof follows from Lemma 4-5.

LEMMA 5-3. (1) Let real numbers p, q satisfy p=>q. Define r, by

[ ¢} o0
Y r2"= Y nPz Y niz".
n=1 n=1 n=1

Then
n? g< —1
r,~ 1 nflogn g=—1 5.2
nptatl q>—1.

(2) Suppose that
o0 o0 o0
Y rz"= Y nz" Y nil(n)z",
n=1 n=1 n=1

where L(n) is monotone decreasing and lim,_, ., L(n)=0, and ¢> — 1. Then r,=o(n*"*9).
ProOOF. It follows from the elementary calculation.

Now we will calculate | ¢#du. Since

p2(x)= Z zlg(x)g(F J(X))+ZZ"9(>€) Z Zh* (g e goFz- - go FRY Ty Fiy(x))

= T ZagF) a0+ 3, ZabAFI)— 209,
we get

(1+gCNPLx)= Y Z'g(x)g(F(x))—g*(x) + Z 2ig(x)$ H(F(x)) -

j=0 ji=0

Therefore, by (4.5)

oan—(_9 g 9
fd&dy (1+ P g )() jl gdu+<1+gp,¢z)

g 2
1+g fg"““‘(m”’ )" J1+ au
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-~ g 2
| $rdu+R(—L—p, 62},
j(ﬁ I <1+g P, @ )
that is,
( ) J b f gdu+R<L P, g)(Z)
1+g 1+g
g ~
— du+Rl ——p, 97 ). 5.3
ngu (L0.42) (53)
Therefore, substituting (5.3) to (5.1), we get
zZ
"t h.d
Z ¢n() (1— )2 f (4 ”

z 1 h, h, )
+ dp | hdu+R(—"—p, h
(1—2)2[1—2J1+h, # f’” <1+h,p @)
- du+R kIl 1- d
J1+h, P8 T+, 1=z J 1+h F
1 z
_ hd
1—z+(1—z)2J'#

: 1 / 2 ‘ Ih,d;,t -1
+ (1—2)? [ 1—z \fh,dﬂ) + R(h,p, h,)(z)](] _T?)

+small order in (z, t)

1
—(l—z){l—z_[h du/(1—z)}

1

R(h,p, t)(z)(l ——|h du) +small order in (z,¢). (5.4)

(1

Appealing to Lemma 5-2 and Lemma 5-3, we get if y>3/2 and if heL*n
class(n™1),

& 1
"¢, ()= +small order in (z, t)
2 (I—2){1—z [ hdp/(1 —2)}
0 k
= ! ) (ij—h'd—”) +small order in (z, 1)
1—z k=o\ 1—2z

- f " 2 (f )k ""'(';d_k“) +small order in (z, £) . (5.5)
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Therefore, when we put t=6/,/ n , the n-th coefficient of (5.5) converges to exp[ — 6%v/2],
where v=[(h—m)*du. Hence the central limit theorem holds for the case where y>3/2
and he L® nclass(n™1).

Now we will consider the case y <3/2. Set

. -1 & ¢,
c"=11m_2—+kj h.du
<k

t—=0 [ k=1 Ck

1 .. 1 & iy hedx

= lim — Z Cn+k
Cm t—-0 t k=1 Ck—Ck+1

If the order of ¢, is greater than or equal to n~ /2, then, by Lemma 5-3 (1), the term

z {hau\~*
(T——z)_st(htp’ h,)(z)(l _——l_——z—>
—2) C,Z" n= o k=1 ¢ Jao k —z
N _"h du)"
(1—2)2 Z z"¢ tjh du Z ( — 5.6)

is no more of small order in (z, t). Because if the order of ¢, is greater than or equal to
n~1/2, the n-th coefficient of (5.6) does not vanish when we put t=6/,/n and taking
n— oo. In particular, if the order of &, is greater than n~ /2, then the n-th coefficient
of (5.6) diverges, and if ¢, is of order n~'/2, it approximately equals

0 2 k+3/2 2
s (0%v/2) exp<_00>’
o kl(k+3/2) 2

if c=lim,_, , é,n'/%(2/v)*? exists. Therefore the central limit theorem does not hold. On
the contrary, suppose that é,=o(n~*/?>L(n)), with L(n) monotone decreasing to 0. Then
by Lemma 5-3 (2), the central limit theorem holds.

Summarizing the results stated above, we get:

THEOREM 5-4. Let he L™ nclass(n™?!).
(1) Suppose that y>3/2, or é,=n""?L(n) for which L(n) is monotone decreasing to
0. Then

1 | 1 [t
—(S,,h(x)-—nm)=——< Y h(FXx))—n j hdﬂ)
Vo N
satisfies the central limit theorem with the variance { | h*du— ({ hdu)?}.
(2) Suppose that ¢é,=n"'?L(n) and liminf,_ L(n)>0. Then the central limit
theorem does not hold.
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COROLLARY 5-5. (1) Suppose that c,=o(n"**L(n)) where L(n) is monotone
decreasing to 0. Then the central limit theorem holds.

(2) On the contrary, suppose that the order of c, is greater than or equal to n~
Then for a function h which satisfies

3/2

lim inf lim v (™ ~m _1)dx >0,

koo 120t (Ce—Cr+1) Jany

the central limit theorem does not hold. In particular, for any word w the central limit
theorem does not hold for the indicator 1,,.
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