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Abstract. The notion of an entangled linear order was first introduced by Avraham and Shelah [1].
Subsequently, Todorcevic [5] generalized it to higher cardinals and mentioned it is useful to solve problems
such as the productivity of chain conditions and the square bracket partition relations. He also showed that
if $wCH(\mu)$ holds there is a $2^{\mu}$-entangled linear order of size $2^{\mu}$ . From this, we can immediately observe that
GCH implies the full existence of entangled linear orders. In this paper we will show that such full existence
occurs also in the Easton’s models in which we can arbitrarily determine the powers ofinfinite regular cardinals.

1. Entangled linear orders.

Let $(L, \leq)$ be a linear order. For $x\in[L]^{n}(n\in N)$ we represent by $ x\langle i\rangle$ the $(i+1)$-th
member of $x$ with respect to $\leq$ . For disjoint $x,$ $y\in[L]^{n}$ and $s\in n2$ , we say that the type
ofentanglement of $x$ and $y$ is $s$ if $x\langle i\rangle<y\langle i\rangle\Leftrightarrow s(i)=0$ for all $i<n$ . Using this notation,
we introduce a notion that we mainly concem in this paper.

DEFINITION $- 1.1$ . $\kappa$ is an infinite cardinal and $n\in N$. A linear order $(L, \leq)$ is called
$(\kappa, n)$-entangled, if for any pairwise disjoint family $x\subseteq[L]^{n}$ of size $\kappa$ and any $s\in n2$ there
exist $x,$ $y\in X$ whose type of entanglement is $s$ . $(L, \leq)$ is called $\kappa$-entangled if it is
$(\kappa, n)$-entangled for all $n\in N$.

Find some elementary facts about entangledness below.

LEMMA 1.2. For any infinite $\kappa$ and any $n\in N$ the following hold.
(i) $A(\kappa, n)$-entangled linear order is also $(\kappa, m)$-entangledfor all $m\leq n$ .
(ii) All linear orders of size less than $\kappa$ are $\kappa$-entangled.
(iii) $A(\kappa, n)$-entangled linear order of size $\lambda\geq\kappa$ is also $(\lambda, n)$-entangled.
(iv) A subset of a $(\kappa, n)$-entangled linear order is $(\kappa, n)$-entangled.
(v) All linear orders are $(\kappa, 0)$-entangled and $(\kappa, 1)$-entangled.
(vi) $(L, \leq)$ is a $(\kappa, 2)$-entangled linear order $\iota ff$ there are no disjoint $S,$ $T\subseteq L$ of

size $\kappa$ that are order isomorphic or inversely isomorphic.
(vii) $A(\kappa, 2)$-entangled linear order does not have a discrete subset of size $\kappa$ .
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(viii) $A(\kappa, 2)$-entangled linear order does not have pairwise disjoint $\kappa$ many $ope$,

intervals.
(ix) $A(\kappa, 3)$-entangled linear order has a dense subset of size less than $\kappa$ .
$PR\infty F$ . $(i)-(v)$ are clear from Definition 1.1. Let us show (vi). Suppose $S,$ $ T\subseteq\lrcorner$

are disjoint sets of size $\kappa$ and $\varphi:S\rightarrow T$ is an order isomorphism (the case where $($

is an inverse isomorphism is similar). Either $\{r\in S;r<\varphi(r)\}$ or $\{r\in S;r>\varphi(r)\}$ is $c$

size $\kappa$ . Without loss of generality, we assume $S^{\prime}=\{r\in S;r<\varphi(r)\}$ is such. Le
$X=\{\{r, \varphi(r)\}\in[L]^{2} ; r\in S^{\prime}\}$ and $s(i)=1-i$ for $t<2$ . Then there are no $x,$ $y\in X$ whos
type of entanglement is $s$ . The other direction is now clear. For (vii), let $K\subseteq L$ be
discrete subset of size $\kappa$ each of whose element $r$ is isolated by $(r^{-}, r^{+})$ . We construe
inductively a sequence $\langle r_{\alpha} ; \alpha<\kappa\rangle$ in $L$ so that $r_{\alpha}\in K\backslash \bigcup_{\gamma<\alpha}\{r_{\gamma}^{-}, r_{\gamma}, r_{\gamma}^{+}\}$ for all $\alpha<\dagger\{$

Since either $r_{\alpha}^{-}<r_{\alpha}<r_{\alpha}^{+}\leq r_{\beta}^{-}<r_{\beta}<r_{\beta}^{+}$ or $r_{\beta}^{-}<r_{\beta}<r_{\beta}^{+}\leq r_{\alpha}^{-}<r_{\alpha}<r_{\alpha}^{+}$ holds for any distinc
$\alpha,$ $\beta<\kappa$ , it is clear that $\{r_{\alpha} ; \alpha<\kappa\}$ and $\{r_{\alpha}^{+} ; \alpha<\kappa\}$ are disjoint and isomorphic, hence $b$

(vi) we are done. For (viii), suppose, for a contradiction, $(L, \leq)$ is $(\kappa, 2)$-entangled an $($

has a pairwise disjoint family $\{I_{\alpha} ; \alpha<\kappa\}$ of open intervals. By (vii) we may assume eac
$I_{\alpha}$ has an infinite size. Choose distinct $r_{\alpha}^{0},$ $r_{\alpha}^{1}\in I_{\alpha}$ for each $\alpha<\kappa$ , then $\{r_{\alpha}^{0} ; \alpha<\kappa\}an|$

$\{r_{\alpha}^{1} ; \alpha<\kappa\}$ are disjoint and isomorphic and we are done. For (ix), suppose $(L, \leq)i$

$(\kappa, 3)$-entangled and has no dense subset of size less than $\kappa$ . Notioe that $L\backslash \overline{K}$ is ope
and of size $\kappa$ if $K\subseteq L$ is of size less than $\kappa$ . Using this fact together with (vii), we ca
construct inductively a sequence $\langle\langle r_{\alpha}^{0}, r_{\alpha}^{1}, r_{\alpha}^{2}\rangle;\alpha<\kappa\rangle$ of triplets from $L$ such tha
$r_{\alpha}^{0}<r_{\alpha}^{1}<r_{a}^{2}$ and $[r_{\alpha}^{0}, r_{\alpha}^{2}]\cap\overline{\bigcup_{\gamma<a}\{r_{\gamma}^{0},r_{\gamma}^{1},r_{\gamma}^{2}\}}=\emptyset$ hold for all $\alpha<\kappa$ . Now let $X=$

$\{\{r_{\alpha}^{0}, r_{\alpha}^{1}, r_{\alpha}^{2}\};\alpha<\kappa\}$ and define $s\in^{3}2$ by $s(i)=1$ iff $i=1’$ . Then there are no $x,$ $ y\in\lrcorner$

with their type of entanglement $s$ . This is a contradiction. $[$

Todorcevic.. [5] showed that the existence of an entangled linear order induces th
negative solution ofproblems such as the productivity of a chain condition and a squar
bracket partition relation.

THEOREM 1.3 (Todorcevic). If there is a $\kappa$-entangled linear order of size $\lambda$ the
the following (I) and (II) hold.

(I) $ If\kappa isaregularcardinal,foranyk\in Nthereisaposet9suchthat2^{k}satisfi\epsilon$

the $\kappa- cc$ but $2^{k+1}$ does not satisfy the $\lambda- cc$ .
(II) The square bracket partition relation $\lambda\rightarrow[\kappa]_{\aleph_{O}}^{2}$fails (i.e. $[\lambda]^{2}$ can be partitione

into $\aleph_{0}$ fragments $\Psi$ so that $[A]^{2}\cap W\neq\emptyset$ holdsfor any $ A\subseteq\lambda$ ofsize $\kappa$ and any $w\in r$

2. The maximal size of an entangled linear order.

By (ix) of Lemma 1.2, we get a necessary condition for the possible size of
$\kappa$-entangled linear order as follows.

LEMMA 2.1. For any infinite cardinal $\kappa$, if there is a $\kappa$-entangled linear order (or
$(\kappa, 3)$-entangled linear order in fact) of size $\lambda$ then:
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(A1) $\exists\mu<\kappa(\lambda\leq 2^{\mu})$ holds and
(A2) if $\kappa=\mu^{+}$ and $\mu$ is a singular cardinal then $\lambda\leq\mu^{<\mu}$ holds.

PROOF. Let $(L, \leq)$ be a $\kappa$-entangled linear order of size $\lambda$ . By (ix) of Lemma 1.2,
$(L, \leq)$ has a dense subset $K$ofsize $\mu<\kappa$ . For $r\in L$ let us define $C_{r}\subseteq K$by $C_{r}=\{s\in K;s\leq r\}$ ,
then $r<r^{\prime}$ implies $C_{r}\neq C_{r’}$ because some $s\in K$ between $r$ and $r^{\prime}$ is in $C_{r’}\backslash C_{r}$ . This means
$\lambda=|L|\leq|\wp(K)|=2^{\mu}$ . When $\kappa=\mu^{+}$ and $\mu$ is singular, we can have a slightly stronger
condition (A2) for $\lambda$ as follows. $LetK\subseteq Lbeasaboveandv<\mu$ be the cofinality of $\mu$ .
Then there is an increasing (with respect to $\subseteq$ ) sequence $\langle K_{\alpha};\alpha<v\rangle$ of subsets of $K$

such that $ K_{\alpha}|<\mu$ for any $\alpha<v$ and $K=\bigcup_{\alpha<v}K_{a}$ . For $\alpha<v$ and $r\in L$ we represent by
$C_{r}^{\alpha}$ a set ofall $s\in K_{\alpha}$ such that $s\leq r$ . Here we choose $A_{r}\in[K]^{<\mu}$ for each $r\in L$ as follows.

$0$ If there is $\alpha<v$ such that $sup{}_{L}C_{r}^{\alpha}=r$ then let $A_{r}$ be $C_{r}^{\alpha}$ for such $\alpha$ .
$0$ If there is no such $\alpha<v$ then choose a sequence $\langle s_{a};\alpha<v\rangle$ from $K$ so that

$C_{r}^{\alpha}\leq s_{\alpha}<r$ holds for any $\alpha<v$ and let $A_{r}=\{s_{\alpha};\alpha<v\}$ .
It is clear that $\sup_{L}A,=r$ for all $r\in L$ , hence if $r\neq r^{\prime}$ then $A_{r}\neq A_{r}$ for all $r,$

$r^{\prime}\in L$ . So
$\lambda=|L|\leq|[K]^{<\mu}|=\mu^{<\mu}$ .

It is well-known that the countable chain condition is a productive property if
$MA_{\aleph_{1}}$ (the Martin’s Axiom) holds, hence there is no uncountable $\aleph_{1}$ -entangled linear
order by (I) of Theorem 1.3. And moreover it can be observed by (i), (vi) and (ix) of
Lemma 1.2 that OCA (the Open Coloring Axiom) implies the non-existence of an
uncountable $(\aleph_{1},3)$-entangled linear order. Each of these facts says it is consistent that
(A1) and (A2) does not give the sufficient condition for the size of an entangled linear
order. But if GCH holds they give it by the following theorem.

THEOREM 2.2 (Todorcevic). Let $\mu$ be an infinite cardinal such that $wCH(\mu)$ holds
(i.e. $ 2^{<\mu}=\mu$). If $\kappa\leq 2^{\mu}$ and $cf\kappa=cf2^{\mu}$ , there is a $\kappa$-entangled linear order of size $\kappa$ .

COROLLARY. If GCH holds, there is a $\kappa$-entangled linear order of size $\lambda$ iff (A1)
and (A2) hold.

$PR\infty F$ OF COROLLARY. We first observe that (A1) and (A2) are equivalent to the
following (a) and (b) under GCH.

(a) If $\kappa$ is a successor cardinal then $\lambda\leq\kappa$ .
(b) If $\kappa$ isalimit cardinal then $\lambda<\kappa$ .

So, by Lemma2.1 and (ii) ofLemma 1.2 it is sufficient to show that there are $\mu^{+}$ -entangled
linear order of size $\mu^{+}$ for any infinite cardinal $\mu$ . But it is clear from Theorem 2.2 since
$ 2^{<\mu}=\mu$ and $2^{\mu}=\mu^{+}$ by GCH. $\square $

This means that entangled linear orders fully exist under GCH. Our main aim in
this paper is to show such full existence of entangled linear orders occurs also in the
Easton’s models, in which we can arbitrarily determine the powers of infinite regular
cardinals.
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3. The Easton’s models.

This section is devoted to a short survey ofthe Easton’s models in order to introduce
some elementary facts about them that are needed in the next section. For more detailec
information a reader should consult W. B. Easton’s original paper [2] or the chapte]
3 of Jech [3].

Let $M$ be a c.t.$m$ . of $ZFC+GCH+TWA$ , where TWA is the Total Well-ordering
Axiom which says that the whole universe can be well-ordered by some class relation
We represent by $Ord^{M},$ Card and $Reg^{M}$ the class of all ordinals, infinite cardinals and
infinite regular cardinals in $M$ respectively. A class function $F$ from $Reg^{M}$ to Card in
$M$ is called an index function when the following hold.

$o\mu<F(\mu)$ for all $\mu\in Reg^{M}$ .
$0$ If $ v\leq\mu$ then $F(v)\leq F(\mu)$ for all $\mu,$ $v\in Reg^{M}$ .
$o\mu<(cfF(\mu))^{M}$ for all $\mu\in Reg^{M}$ .

For a given index function $F$ we define a class poset as follows.

DEFINITION 3.1. Let $F$ be an index function. We define a class poset $P$ with the
inverse inclusion ordering as a $co$llection of all $p\in M$ satisfying the following $(a)-(c)$ .

(a) $p$ is a function such that dom$p\subseteq Reg^{M}\times Ord^{M}\times Ord^{M}$ and ran$p\subseteq\{0,1\}$ .
(b) If $\langle\mu, \alpha, \xi\rangle\in domp$ then $\alpha<F(\mu)$ and $\xi<\mu$ .
(c) $|\{\langle v, \alpha, \xi\rangle\in domp;\nu\leq\mu\}|^{M}<\mu$ for all $\mu\in Reg^{M}$ .
For any $H\subseteq P$ (possibly $H$ is not a class in $M$) and a class $A\subseteq Reg^{M}$ in $M$, a

restriction $H\uparrow A$ of $H$ to $A$ is a set {$p\in P$ ; dom$p\subseteq A\times Ord^{M}\times Ord^{M}$}. In particular we
also write $H^{\mu}$ or $H^{\leq\mu}$ for $HrA$ when $A$ is respectively $\{\mu\}$ or $\{v\in Reg^{M} ; v\leq\mu\}fo1$

$\mu\in Reg^{M}$ . So the class $M^{p}$ of all P-names is defined as $\cup\{M^{p};\mu\in Reg^{M}\}\leq\mu$ Next, lel
us generalize the notion of generic filters to our class poset $P$. We call $G\subseteq P$ an M-generic
filter on $P$ if $G$ is a filter on $P$ such that $ G\cap D\neq\emptyset$ for every class $D$ in $M$ which is
dense in P. It is clear that ifG is an M-generic filter onPand $\mu\in Reg^{u}thenG\leq\mu$ is an
M-generic filter on $ p\leq\mu$ in the usual sense, hence each $ M[G\leq\mu]=\{va1(\sigma, G\leq\mu);\sigma\in M^{p})\leq\mu$

is a c.t.$m$ . of ZFC with its ordinals the same as $M’ s$ .
Here, we fix an M-generic filter $G$ on $P$ and let an Easton’s model $M[G]$ for $F$ be

$\cup\{M[G\leq\mu] ; \mu\in Reg^{M}\}$ , then $M[G]$ is a c.t.$m$ . of ZFC and the following lemma holds

LEMMA 3.2. $M,$ $F,$ $P$ and $G$ are as above. For any $K\in Reg^{M}$, a function $f\in M[G]$

from $\kappa$ to $Ord^{M}$ belongs to $M[G\leq\kappa]$ in fact.
By Lemma 3.2, a generic extension by $P$ does not change cofinalities and cardinal.

ities since $ p\leq\kappa$ satisfies the $\kappa^{+}- cc$ in $M$ and hence preserves all cofinalities $\geq\kappa^{+}fo[$

any $\kappa\in{\rm Re} \mathscr{J}$ .
The most important property of an Easton’s model is that the powers of infinitt

regular cardinals in it are given by its index function.
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THEOREM 3.3 (Easton). For any regular cardinal $\mu$ in $M[G]$ (hence in $M$) it holds
that:

$M[G]\models 2^{\mu}=F(\mu)$ .
Moreover it is known that the singular cardinals hypothesis (i.e. $ 2^{\nu}<\mu$ implies

$\mu^{\nu}=\mu^{+}$ for any singular cardinal $\mu$ of cofinality v) holds in $M[G]$ . So we can completely
calculate the cardinal exponentation in $M[G]$ . Here we mention just the form of $\mu^{<\mu}$ ,
which will be needed later.

LEMMA 3.4. In $M[G]$ , the cardinal exponentation $\mu^{<\mu}$ for a singular cardinal $\mu$ is
calculated as follows.

$\mu^{<\mu}=\left\{\begin{array}{ll}\mu^{+} & if \mu is strongly limit\\2^{<\mu} & otherwise.\end{array}\right.$

4. Entangled linear orders in the Easton’s models.

Now we will show that (A1) and (A2) of Lemma 2.1 also give a sufficient condition
for the existence of a $\kappa$-entangled linear order of size $\lambda$ in $M[G]$ . Throughout this
section $F$ is any index function and $M[G]$ is an Easton’s model for $F$.

Let Ord$M[G]Card^{u[G]}$ and $Reg^{M[G]}$ denote the class of all ordinals, infinite cardinals
and infinite regular cardinals in $M[G]$ respectively. By the argument in the previous
section, they are identical with Ord$u$ Card and $Reg^{M}$ . For $\mu\in Reg^{M[G]}$ and $\alpha<F(\mu)$ ,
we represent by $f_{\mu}^{\alpha}$ the $\langle\mu, \alpha\rangle$ -th generic function that is a function from $\mu$ to $\{0,1\}$

defined as:
$ f_{\mu}^{\alpha}(\xi)=\epsilon\Leftrightarrow\exists p\in G\leq\mu$ $(\langle\mu, \alpha, \xi\rangle\in domp\wedge p(\langle\mu, \alpha, \xi\rangle)=\epsilon)$

for any $\xi<\mu$ and $\epsilon\in\{0,1\}$ . We can easily check the well-definedness of this definition.
And a standard forcing argument shows that if $\langle\mu, \alpha\rangle\neq\langle v, \beta\rangle$ then there is an ordinal
$\eta<\min(\mu, v)$ such that $f_{\mu}^{\alpha}(\eta)\neq f_{v}^{\beta}(\eta)$ . So we represent the least such ordinal by $\eta(f_{\mu}^{\alpha}, f_{\nu}^{\beta})$ .

DEFINITION 4.1. For $\mu\in Card^{M[G]}$ we define a linear order $(L_{\mu}, \leq_{\mu})$ as follows.
$oL_{\mu}=\{\langle v, \beta\rangle\in Reg^{M[G]}\times Ord^{M[G]} ; v\leq\mu\wedge\beta<F(v)\}$ .
$0$ For any $\langle v, \beta\rangle,$

$\langle v^{\prime}, \beta^{\prime}\rangle\in L_{\mu},$ $\langle v, \beta\rangle\leq_{\mu}\langle v^{\prime}, \beta^{\prime}\rangle$ iff $\langle v, \beta\rangle=\langle v^{\prime}, \beta^{\prime}\rangle$ or other-
wise $f_{v}^{\beta}(\eta(f_{\nu}^{\beta}, f_{\nu}^{\beta’},))<f_{v^{\prime}}^{\beta^{\prime}}(\eta(f_{v}^{\beta}, f_{v}^{\beta’},))$ .

$(L_{\mu}, \leq_{\mu})$ is in $M[G\leq\mu]$ in fact.

It is clear from definition that if $\nu\leq\mu$ then $(L_{\nu}, \leq_{\nu})$ is a suborder of $(L_{\mu}, \leq_{\mu})$ , so
we will omit the subscript of the ordering from now on.

LEMMA 4.2. Let $\mu\in Reg^{M[G]}$ and $\kappa=\mu^{+}$ . Then $(L_{\mu}, \leq)$ is a $\kappa$-entangled linear
order in $M[G]$ .

To show this lemma, notice that any $X\subseteq[L_{\mu}]^{n}$ (where $n\in N$) of size $\kappa$ in $M[G]$
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belongs to $M[G\leq\kappa]$ by Lemma 3.2. Then $(L_{\mu}, \leq)$ is $\kappa$-entangled in $M[G]$ iff so $i$

it in $M[G\leq\kappa]$ . And since $P^{\leq\kappa}$ is canonically isomorphic to $ P^{\kappa}\times P\leq\mu$ we $g_{f}$

$M[G\leq\kappa]=M[G^{\kappa}][G\leq\mu]$ where $G^{\kappa}$ is an M-generic filter on $P^{\kappa}$ and $G^{\leq\mu}$ is an $M[G^{\kappa}]$

generic filter on $ p\leq\mu$ . We will first introduce the lemma which plays an important rol
in the proof of Lemma 4.2.

LEMMA 4.3. Let $\mu\in{\rm Re} \mathscr{J}^{[G]}$ and $\kappa=\mu^{+}$ . Then the following (i) and (ii) hold $\iota$

$M[G^{\kappa}]$ .
(i) $2^{\nu}=v^{+}for$ any infinite cardinal $ v\leq\mu$ .
(ii) $P^{\leq\mu}satisfiesthestrong\kappa- cc(i.e$ . every subset $ofP\leq\mu ofsize\kappa includesapairwis$

compatible set of size $\kappa$).

$PR\infty F$ . $SinceP^{\kappa}$ is $\kappa- closedandG^{\kappa}$ is an M-generic $fi1teronP^{\kappa}$ , all subsets of
in $M[G^{\kappa}]$ belong to $M$. Then (i) is clear because GCH holds in $M$. For (ii) we $WOI$

in $M[G^{\kappa}]$ . Let $\{p_{\gamma};\gamma<\kappa\}$ be any subset of $ p\leq\mu$ Since ldom$ p_{\gamma}|<\mu$ for all $\gamma<\kappa$ an
$\mu^{<\mu}=\mu<\kappa$ holds in $M[G^{\kappa}]$ by (i) and the regularity of $\mu$, there are $ A\subseteq\kappa$ of size $\kappa$ an
$d$ of size $<\mu$ such that $domp_{\gamma}\cap domp_{\delta}=d$ for any distinct $\gamma,$

$\delta\in A$ by $\Delta$-system lemm
(see Lemma 4.4 below). Moreover we can find $B\subseteq A$ of size $\kappa$ so that $p_{\gamma}\uparrow d=p_{\delta}$ $[$

for any $\gamma,$
$\delta\in B$ because $|^{d}2|\leq 2<\mu=\mu<\kappa=cf\kappa$ by (i). $\{p_{\gamma};\gamma\in B\}$ is clearly pairwis

compatible. $[$

We used the $\Delta$-system lemma for higher cardinals in the proof above. For tf
readers’ convenience we will state it here. The following form of this lemma is seen $i$

Kunen [4].

LEMMA 4.4 ( $\Delta$-system Lemma). Let $\mu$ be an infinite cardinal and $\kappa$ be a regult
cardinal larger than $\mu$ such that $ v^{<\mu}<\kappa$ for all $ v<\kappa$ . If $\{a_{\gamma};\gamma<\kappa\}$ is a family of sets $\iota$

$ size<\mu$ then the$re$ are $ A\subseteq\kappa$ of size $\kappa$ and a set $d$ of $ size<\mu$ such that $\{a_{\gamma};\gamma\in A\}$ forn
a $\Delta$-system with a root $d$ (i.e. $a_{\gamma}\cap a_{\delta}=d$ for any distinct $\gamma,$

$\delta\in A$).

Now we will prove Lemma 4.2. By the argument above, it is sufficient to sho
that $(L_{\mu}, \leq)$ is a $\kappa$-entangled linear order in $M[G^{\chi}][G\leq\mu]$ . Fix $n\in N$and let $X=\{x_{\gamma};\gamma<r$

be a pairwise disjoint subset of $[L_{\mu}]^{n}$ in $M[G^{\kappa}][G\leq\mu]$ . Let $\dot{X}$ be a $P^{\leq\mu}$-name for $Xl$

$M[G^{\kappa}]$ (i.e. $\dot{X}\in M[G^{\kappa}]^{p^{\leq\mu}}$ such that $va1(\dot{X},$ $G\leq\mu)=X$) and $ p_{0}\in G\leq\mu$ be a condition suc
that:

$[p_{0}|\mapsto\leq\mu(\dot{X}\subseteq[L_{\mu}]^{n}\wedge\forall x, y\in\dot{X}(x\neq y\Rightarrow x\cap y=\emptyset))]^{M[G^{\kappa}]}$ .

By standard argument we can find a set $\{\dot{x}_{\gamma}; \gamma<\kappa\}$ of $P^{\leq\mu}$-names in $M[G^{\kappa}]$ such tha
$va1(\dot{x}_{\gamma}, G\leq\mu)=x_{\gamma}$ for any $\gamma<\kappa$ . In the rest of this proof we will work in $M[G^{\kappa}]a\iota J$

show that for any given $s\in n2$ the set of all $ q\in p\leq\mu$ which force for some $\gamma,$

$\delta<\kappa$ tha

“the type of entanglement of $\dot{x}_{\gamma}$ and $\dot{x}_{\delta}$ is $s$
’

is dense below $p_{0}$ . If we achieve it, the proof is completed by the $M[G^{K}]$ -genericity $($
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$G^{\leq\mu}$ and $ p_{0}eG\leq\mu$

We Prst introduce a new notion. For $ q\in p\leq\mu$ we say $q$ has a sectionwise even domain
if for any $ v\leq\mu$ there are $\zeta<v$ and $A\subseteq F(v)$ of size $<v$ such that:

dom $ q\cap(\{v\}\times F(v)\times v)=\{v\}\times A\times\zeta$ .
We represent $\zeta$ and $A$ in the above definition by $\zeta_{q}(v)$ and $A_{q}(v)$ . It is clear that the set
of all $ q\in p\leq\mu$ with sectionwise even domains is dense in $ p\leq\mu$ . Now fix $s\in n2$ and we will
begin. Let $ p\in P\leq\mu$ be any condition below $p_{0}$ . For each $\gamma<\kappa$ we can choose $q_{\gamma}\leq p$ with
a sectionwise even domain and $z_{\gamma}\in nL_{\mu}$ such that $q_{\gamma}|\vdash,\leq\mu(\dot{x}_{\gamma}\langle i\rangle=z_{\gamma}(i))$ for any $i<n$ .
Without loss of generality, we will assume $\beta_{\gamma}(i)eA_{q_{\gamma}}(v_{\gamma}(i))$ , where $ z_{\gamma}(i)=\langle v_{\gamma}(i), \beta_{\gamma}(i)\rangle$ ,
for any $\gamma<\kappa$ and $i<n$ . Then by (ii) of Lemma 4.3 there is $ B\subseteq\kappa$ of size $\kappa$ such that
$\{q_{\gamma};\gamma\in B\}$ is pairwise compatible. Furthermore by some iterative use of the Pigeon Hole
Principle we reduce $B$ to $B^{\prime}$ of size $\kappa$ such that the following hold.

(a) There are fixed $v_{0},$ $\cdots,$ $ v_{n-1}\leq\mu$ such that $v_{\gamma}(i)=v_{i}$ for all $\gamma\in B^{\prime}$ and $i<n$ .
(b) There are fixed $\zeta_{0}<v_{0},$ $\cdots,$ $\zeta_{n-1}<v_{n-1}$ such that $\zeta_{q_{\gamma}}(v_{i})=\zeta_{i}$ for all $\gamma\in B^{\prime}$ and

$i<n$ .
(c) There are fixed $g_{0}\in\zeta_{0}2,$

$\cdots,$ $g_{n-1}\in\zeta_{n- 1}2$ such that $q_{\gamma}(\langle v_{i}, \beta_{\gamma}(i), \xi\rangle)=g_{i}(\xi)$ for
all $\gamma\in B^{\prime},$ $i<n$ and $\xi<\zeta_{i}$ .

So pick distinct $\gamma,$
$\delta\in B^{\prime}$ and let $\overline{q}=q_{\gamma}\cup q_{\delta}$ . It is clear that $ qeP\leq\mu$ and since $\overline{q}\leq p_{0}$ we

get $z_{\gamma}(i)\neq z_{\delta}(j)$ for any $i,j<n$ . Moreover, by (a) and (b) we can easily certify that
$\langle v_{\gamma}(i), \beta_{\gamma}(i), \zeta_{i}\rangle,$ $\langle v_{\delta}(i), \beta_{\delta}(i), \zeta_{i}\rangle\not\in dom\overline{q}$ for all $i<n$ . Then we define an extension $ qeP\leq\mu$

of $\overline{q}$ as
$q=\overline{q}u\{\langle\langle v_{\gamma}(i), \beta_{\gamma}(i), \zeta_{i}\rangle, s(i)\rangle ; i<n\}$

$\cup\{\langle\langle v_{\delta}(i), \beta_{\delta}(i), \zeta_{i}\rangle, 1-s(i)\rangle ; i<n\}$ .
Clearly $q\leq\overline{q}\leq p$ and the following holds for each $i<n$ where $f_{\nu}^{\beta}$ denotes the $ p\leq\mu$-name
for $f_{\nu}^{\beta}$ which is constructed in the canonical way.

$q|\vdash p\leq\mu[\forall\xi<\zeta_{i}(f_{v_{\gamma}\langle i)(\xi)=g_{i}(\xi))\wedge}^{\beta_{\gamma}\langle i)}f_{v_{\gamma}\langle i)}^{\beta_{\gamma}\langle i)}(\zeta_{i})=s(i)$

$\wedge\forall\xi<\zeta_{i}(f_{v_{\delta}\langle i)(\xi)=g_{i}(\xi))\wedge}^{\beta_{\delta}\langle i)}f_{v_{\delta}\langle i)}^{\beta_{\delta}\langle i)}(\zeta_{i})=1-s(i)]$ .
Therefore $\gamma,$

$\delta$ and $q$ are what we needed. $\square $

The next lemma says that we can omit the assumption‘ $\mu$ is regular” in Lemma 4.2.

LEMMA 4.5. Let $\mu\in Card^{M[G]}$ and $\kappa=\mu^{+}$ . Then $(L_{\mu}, \leq)$ is a $\kappa$-entangled linear
order in $M[G]$ .

$PR\infty F$ . We have already shown in the case where $\mu$ is regular. Let $\mu\in Card^{M[G]}$

be singular in $M[G]$ . Notice that $L_{\mu}=\cup\{L_{\nu} ; v\in Reg^{M[G]}\wedge v<\mu\}$ . For any $neN$ and
any $x\subseteq[L_{\mu}]^{n}$ of size $\kappa$ we can find $Y\subseteq X$ of size $\kappa$ and $v\in Reg^{M[G]}$ less than $\mu$ such that
$Y\subseteq[L_{\nu}]^{n}$ by the regularity of $\kappa$ . Then there are $x,$ $y\in Y$ with any type of entanglement
because $(L_{v}, \leq)$ is $\kappa$-entangled by Lemma 4.2 and (iii) of Lemma 1.2. $\square $
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So we have got the following theorem.

THEOREM 4.6. Let $M[G]$ be an Easton’s model for an index function F. Then th
necessary and sufficient condition for the existence of a $\kappa$-entangled linear order of siz
$\lambda$ in $M[G]$ is (A1) and (A2).

$PR\infty F$ . The necessity is by Lemma 2.1. To show the sufficiency we may assum
$\kappa$ is an infinite successor cardinal $\mu^{+}$ , since the limit cases are trivial by the successo
cases. If $\mu$ is regular then the size of a $\kappa$-entangled linear order $(L_{\mu}, \leq)$ is $F(\mu)=2^{\mu}$ . $O$

the other hand, if $\mu$ is singular it is computed as $|L_{\mu}|=\sup\{F(v);v\in{\rm Re} \mathscr{J}^{[G]}\wedge v<\mu\}=$

$\sup\{2^{\nu} ; v\in Reg^{M[G]}\wedge v<\mu\}=2<\mu$ . So, by Lemma 3.4 and the singular cardinals hypo
thesis in $M[G]$ , the rest case is where $\mu$ is strongly limit and $\lambda=\mu^{+}=2^{\mu}$ . But it is clea
from Theorem 2.2 because $wCH(\mu)$ holds. $[$
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