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Introduction.

Let G be a classical connected simple Lie group of real rank 1: i.e. G is one of the
groups SOy(1,n), SU(1,n) and Sp(1, n) corresponding to the fields R, C and H
respectively. Let G=KAN be an Iwasawa decompositon and M be the centralizer of 4
in K. Denoting by F the field corresponding to the group G, then G/K is the classical
hyperbolic space, i.e. the unit ball in F* (denoted by B(F™)) and it’s Martin boundary
K/M is the unit sphere in F* (denoted by S(F")). The action of G on B(F") and S(F")

is concretely given as follows: for x="(x;, - - -, x,)€F" and g=(g,)0<pq<n€G, We
define

x'=gx,
where x'='(x}, - - -, x}), with

x,p=(gp0+ Zl gpqxq)(gOO+ Zl quxq)—l s ISpsn .
q= q=

And the identifications G/K= B(F™) and K/M >~ S(F") are given by
G/K=~B(F") ; gK +— g0,
K/M=>S(F") ; kM ke, ,

where O is the origin of F" and e, ='(1, 0, - - - 0) e S(F™).
We now denote by D the Laplace-Beltrami operater on G/K= B(F"). The Poisson
kernel P: G/Kx K/M—R is given as follows:

1—|x]? \°
P(K, kM)=(TtL.%I_2_) ,
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where x=gK,b=kM and p=d—1+((n—1)/2)d, d= dimgF. As is well known, for any
complex number s, we have

DP*=4p%s(s—1)P*.
In particular, we have the following differential equations for P
DP=0
{DPz =8p2P2,
Now we consider the following problem.

PROBLEM 1. Suppose that a real valued C3-class function F#0 on G/K satisfies
the following conditions:

(a) DF=0

(b) DF?=8p2F2,

Then there exist ce R and kM e K/M such that FgK)=cP(gK, kM).

This problem is solved in the affirmative for F=R in [1]. For F=C also, a solution
was given in [S5] (the proof seems to have some gap, but we understand Kawazoe has
another proof to be published soon). The purpose of this paper is to give a quick proof
in the real case using the spherical functions on K/M. Also included is some preliminary
results about this problem, which might be useful to solve the problem in other cases.

1. Some lemmas on the function F.

We shall use the following notations for x="(x,, - - -, x,) € B(F").
F=R: x;=Xxy;, """, X,=Xp; ,
F=C: xi=xn+ix12, C e Xy =Xy +iX,, ,
F=H: x;=xy,+ixy,+jx;3+kxyq, -,
Xp=Xp1+Xpz +jXp3 + kx4 ,

where x,, (1<p<n,1<v<d)eR.
To return to Problem 1, we have

P(gx,b)=P(x, g~ 'b)P(gO0, b)

for xe B(F"), be S(F™) and geG. Since D is G-invariant, without loss of generality, we
may assume that F(0)=1. On the other hand, from (a), (b) and F(0)=1, we see that

5 (aF (0)) —ap?.

1<p<n axp,,
1<pu<d

So there exists ke K such that
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oF, oF,

0)=2p,
6x11() P 0x

0M=0 (p,w#(, 1),

pp

where F;(x) = F(kx). Thus we can conclude that Problem 1 is equivalent to the following
problem.

PROBLEM 2. Suppose that a real valued C2-class function F on B(F") satisfies the
following conditions:

(a) DF=0
(b) DF?>=8p2F?
© KO)=1

(d) (0F/0x11)(0)=2p, (OF/0x,,)(0)=0 ((p, p) #(1, 1)).
Then F(x)= P(x, e,) for xe B(F").

We remark that F is analytic, because D is elliptic.
The following lemma holds independent of the choice of F=R, C, H.

LEMMA 1. Letussuppose that F satisfies the assumptions of Problem 2. Then we have

(1) For 1>2, (0'F/ox',)(0) is expressed as a polynomial of (0™F/0xT,)(0)
(1 <m<lI—1) and (0™F/0x,,0xT{ H(O) ((r, ) #(1, 1), 1 <m<I—1), whose coefficients are
independent of the choice of F.

(2) (0'F/ox,,0x 7)(0)=0 for (r, A)#(1, 1) and > 2. In particular, (8'F/dx" ,)(Q)=
(0'P/0x}1)(0) (I=0) and moreover F(x,,,0)=P(x,,,0), where P(x)= P(x, e;).

PrOOF. We use the following notations
F=R: x,x,=A,;(x),
F=C: x,%;=Apq1(x)+iAp4,(x),
F=H: x,X,=App1(X)+ iApg2(X) +jA pga(x) + kA ppa(x),

where 4,,,(x) (1<p,g<n, 1 <pu<d)eR.Then the Laplace-Beltrami operator D has the
following expression:

N2 i ne 02
D=(1—|x 1—|x
A-1xP) 2 a=15R ¥ 5o
62
+ (1 - I X |2) Z S(p’ K, q, V)qum(p,n,q,v) ﬁ'—
1 Fi<a *ouTqv

0
+Ad=2A—15P) ¥ Fp—
1spus<d

where m(p, u, q,v)=1, - - -, d and s(p, u, q, v)=1, — 1. Since F satisfies (a) and (b), we
obtain '
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ox

Pu

8p2F2=2(1—|x|?) i (1=1x,1%) Xd: ( oF )2

oF OF
+2(0=1x12) X S 1y @ V) A pemippgiy ———
P#q 0x,, @

1<u,vs<d

(1.1)
Xqv ’

‘Applying the differential operator 8'~!/ax7! to (1.1), we put x=0. Then we see that

ISH(1=1\ 81N gk
8p2 0 0
p kgo( k ) ox'717k © ox%, ©

—DIT o '
2y y ¢ 1)'[ (1—|x2) -2 (1—|x,,|2)]

ié:é; atpty a!lBly! | ox%, ox{, x=0
ay+1—qF JIt1F
( 3 (y) 7 0 (0)).
a=0\q/ 0x,,0x}] 0x,,0x%,

This implies our first assertion (1).
We now prove (2) by the induction with respect to /. Applying the differential
operator 0/0x,, ((r, 2)#(1, 1)) to (1.1), we put x=0. Then we have

oF oF 0%F 0%F
16p2F0 0)=4 0 0)=4—(0).
P F0) 0x,; © ,2,,; 0x,, © 0x,,0x,, © 0x,,0x,, )
Therefore
2
F
9 ©0)=0 for (r,)#(1,1).
0x,,0x,

Let />3 and we suppose that

o™F
——(0)=0 for (r,A 1,1), 2< I-1.
0x,,0x7 1 © A= 1 s
Applying the differential operator '~ 1/dx,,dx'32 ((r, A #(1, 1)) to (1.1), we put x=0.
Then we have

o'F

0)=0.
0x,,0x' 7! ©

Thus our assertion (2) is true. Finally, it follows from the analyticity of F that
F(xy4, 0)=P(x,,, 0). O

Let K denote the set of equivalence classes of finite dimensional unitary irreducible
representations of K. For (t, V,)e K (V, is the representation space of 1), we denote by
V¥ the space of M-fixed vectors in V,. And we set 4, = {a,| t=>0} with




POISSON KERNELS

coshz sinhz O
a,=| sinht cosht

0 I

n—1

Then we have the Cartan decomposition G=KA4 , K.
LEMMA 2. Suppose that F satisfies the assumptions of Problem 2.
(1) (Helgason) The following equality holds for t>0:
J F 2(ka,0)dk=j P%(ka,0, e,)dk ,
K K

where dk is the normalized Haar measure on K.
(2) (Helgason) For (1, V.)€ K which satisfies diim V™ =1, there exists a constant
o, € C such that

f @(k)F(ka,0)dk =, J 0. (k)P(ka,0,e))dk  (:=0),
K K

where @ (k)= (1(k)ey, ey) and ey, is the normalized vector in VM.
(3) ForO<r<i,

Z atdtJ‘ | mp(rkela el)dk

teRM K

=Y 4, f @ (k) P(rke,, e,)dk ,
K

tEkM

where R, is the set of elements (x, V) e K which satisfy dimV™=1 and d,=dimV,. And
the series’ of both sides absolutely converge.

Proor. (1) and (2) are proved in [3], [4] and [5].
Proof of (3). We set

G(x)= J F(mx)dm ,
M

where dm is the normalized Haar measure on M. Since the function k> G(ka,O) is M
bi-invariant and

f ¢ (k)F(ka,0)dk = f ¢ (k)G(ka,0)dk ,
K

K

we have the following Fourier expansion for k— G(ka,0):

G(ka,0)= ). dtU <Pz(k')G(k'at0)dk’]¢t(k)
K

tekn
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2 d [ f <p,(k')F(k'a,0)dk'] @u(k)
K

tGM

= X a'dr[f ¢(k")P(k'a,0, el)dk’] @(k) .
K.

tERM

In particular,

G(@0)= Y, ad | ¢(k)P(kaO,e,)dk.

teRM K

Similarly, we see that

P@0,e)= Y d, f ¢(k)P(ka,0, e)dk .
K

teRn

On the other hand, it follows from Lemma 1 and a,0 =tanhte, that G(a,0)= P(q,0, e,).

Thus we can obtain our assertion. O

2. A new proof for the real case of Problem 2.
Let F=R. We define the functions ¢ by

P(rb, e,)= i c(b)rt, 0<r<1, beS(R".

1=0

Then we see that

r=0
12/ o'H s
=l— ; ( )W(O)bl ‘

where

2 \»r
HG, m= (Il—flz)'

By the way, for (z, ¥,)e K which satisfies dim V¥ =1, there uniquely exists a non-
negative integer p such that

OB =CL=22(b,)[Cy (1), b=ke, .
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And we have
J CO=D2(b)e,(b)do,(b)=0  (m<p),
S(R™)
where do,, is the normalized element of surface area on S(R"). So we obtain that

J. @(k)P(rkey, e))dk=[CT~22(1)] ™" OZOZ r! C8=272(by)cy(b)do(b) -
K

I=p JS®R")

We remark that
‘[ Cg' —2) 2(bl)c,,(b)dor,,(b) #0.
S(R™)

Putting «,=a, and d,=d,, Lemma 2 (3) can be stated as follows.

i o,d, [CE™2(D] i r' Cy~212(by)cy(b)do,(b)

p=0 I=p S(R")

=2 4[Ce™ Pt X ! C3=272(by)cy(b)do(b) -
p=0 I=p S(R™)
Comparing the coefficients of r! (/>0) in both sides, we can conclude that a,=1 for all
p=0. Thus we have
fl

f @ (k)F(ka,O)dk= | ¢ (k)P(ka,0, e,)dk ,
K

JK

for (z, V.)€ K which satisfies dim ¥ =1. On the other hand, by Lemma 2 (1),

J F*(ka,0)dk=| P%(ka,0, e,)dk .
K

JK

These facts imply that F(kaq,0)= P(ka,O,e,) for ke K and t>0, that is to say
F(x)=P(x, e;). This completes the proof for the real case of Problem 2.
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