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\S 1. Introduction.

We consider the billiards in the cube $I^{3}$ with $I=[0,1]$ . Let a particle start at a
point $Q\in\bigcup_{i=1}^{3}F_{i}$ with constant velocity along a vector $v=(\alpha_{1}, \alpha_{2}, \alpha_{3})$ and reflect at
each face specularly, where $F_{i}:=\{(x_{1}, x_{2}, x_{3})|x_{i}=0,0\leq x_{j}<1(i\neq i)\}(i=1,2,3)$ .
Throughout this paper, we assume that

i) $\alpha_{1},$ $\alpha_{2},$ $\alpha_{3}>0$ are linearly independent over the field of rationals and
ii) the (forward) path of the particle never touches the edges of the cube.

If we label the two faces perpendicular to the $x_{i}- ax$ as $j$ and write down the label of the
faces which the particle hits in order of collision, we have an infinite sequence $w(v, Q)$

of 1, 2, and 3. The complexity of an infinite sequence $w\in\{1,2,3\}^{N}$ is the function $p(n;w)$

defined as the number of distinct blocks $\in\{1,2,3\}^{n}$ appearing in $w$ . In particular, we
put $p(n;v, Q)=p(n;w(v, Q))$ . Then the authors proved in [1] the following theorem
conjectured by G. Rauzy [2-3] in 1981.

THEOREM. Let $v$ and $Q$ satisfy the conditions i) and ii). Then the complexity of the
sequence $w(v, Q)$ is given by

$p(n;v, Q)=n^{2}+n+1$ $(n\geq 1)$ .
The proof in [1] is based on a dynamical system associated with billiards in the

cube. In this paper, we give an alternative proof, which is more elementary and
independent of the ergodic arguments.

\S 2. The sequence $\{p_{n}\}_{n\geq 1}$ and $\{q_{n}\}_{n\geq 1}$ .
By symmetry with respect to the faces, the word $w(v, Q)$ remains unchanged, if we

replace the cube by the torus $R^{3}/Z^{3}$ and imagine that the particle does not reflect at
the faces but passes through them. If we attach $t\in\{1,2,3\}$ to the intersection points of
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the half line $l:=\{tv+Q|t>0\}$ to the planes $X_{i}:=\{(x_{1}, x_{2}, x_{3})|x_{i}\in N\}$ and trace them
along $l$, we obtain the sequence $w(v, Q)$ defined above. More precisely, if we defin
$\{t_{n}\}_{n\geq 0}$ by

$\{t_{n}v+Q\}_{n\geq 1}=\{tv+Q|t>0\}\cap\bigcup_{i=1}^{3}X_{i}$

with $ t_{0}=0<t_{1}<t_{2}<\cdots$ and write
$ w(v, Q)=w_{1}w_{2}\cdots w_{n}\cdots$ , $w_{n}\in\{1,2,3\}$ ,

we have $t_{n}v+Q\in X_{w_{n}}(n\geq 1)$ . We remark that the condition ii) implies

$\{t_{n}v+Q\}_{n\geq 1}\cap X_{i}\cap X_{j}=\emptyset$ $(i,j\in\{1,2,3\}, t\neq j)$ . (1

For each $n\geq 1$ , let $P_{n}\in N^{3}$ and $Q_{n}\in\bigcup_{i=1}^{3}F_{i}$ be defined by $P_{1}=(1,1,1),$ $Q_{1}=Q$ ,

$\{tv+Q|t_{n-1}\leq t<t_{n}\}\subset P_{n}-P_{1}+I^{3}$ , and $Q_{n}=t_{n-1}v+Q-(P_{n}-P_{1})$ .
Then by definition

$ w(v, Q_{n})=w_{n}w_{n+1}w_{n+2}\cdots$ (2

Let $\pi$ denote the projection of $R^{3}$ onto the plane $\Pi=\{(x_{1}, x_{2}, x_{3})|\sum_{i=1}^{3}\alpha_{i}x_{i}=0$

along $v$ and let $H=\pi(I^{3})$ . If two points $x$ and $y$ in $R^{3}$ satisfy the relation $x-y=\sum_{i=1}^{3}k_{\iota^{\sqrt{}}}$

for some $k_{i}\in Z$ with $\sum_{i=1}^{3}k_{i}=0$ , we write $x\equiv y(mod H)$ . This defines an equivalenc
relation in $R^{3}$ . We put

$H^{*}=H\backslash ([e_{1}+e_{3}, e_{3}]\cup[e_{3}, e_{2}+e_{3}]\cup[e_{2}+e_{3}, e_{2}])$ ,

where $e_{1}=\pi(1,0,0),$ $e_{2}=\pi(0,1,0),$ $e_{3}=\pi(0,0,1)$ , and $[a, b]$ is the closed segment joirr
ing $a$ to $b$ . Then the family of hexagons $\{\sum_{i=1}^{3}k_{i}e_{i}+H^{*}|k_{i}\in Z, \sum_{i=1}^{3}k_{i}=0\}$ forms
tiling of $\Pi$ , and hence for any $ x\in\Pi$ there corresponds a unique $x^{*}\in H^{*}$ such tha
$x\equiv x^{*}(mod H)$ . $H^{*}$ can be considered as the two-dimensional torus.

We put $q_{n}=\pi(Q_{n})$ . Then

$q_{n+1}=q_{n}-e_{w_{n}}$ , $q_{n}\in\pi(G_{w_{B}})$ ,

where $G_{i}=\{(x_{1}, x_{2}, x_{3})|x_{i}=1,0\leq x_{j}<1(j\neq t)\}(i=1,2,3)$ . Noting that

$x\in F_{i}$ if and only if $x+e_{i}\in G_{i}$ $(i=1,2,3)$ ,

we have $q_{n}=q_{n}^{*}\in H^{*}(n\geq 1)$ . However, $\pi(P_{n})(n\geq 1)$ are not always in $H^{*}$ , and so $w$

define $p_{n}=\pi(P_{n})^{*}$ . Then, since $\pi(P_{n+1})=\pi(P_{n})+e_{1\nu_{n}}$, we have

$p_{n+1}\equiv p_{n}+e_{i}$ $(mod H)$ (4

for any $i=1,2,3$ , so that

$p_{n}+q_{n}\equiv p_{1}+q_{1}$ $(n\geq 1)$ .
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We remark that the sequence $\{q_{n}\}_{n\geq 1}$ depends on $v$ and $Q$ , however $\{p_{n}\}_{n\geq 1}$ depends
only on $v$ .

LEMMA 1. Both of the sequences $\{p_{n}\}_{n\geq 1}$ and $\{q_{n}\}_{n\geq 1}$ are dense in $H$.
$PR\infty F$ . We put $Q=(\beta_{1}, \beta_{2}, \beta_{3})$ . Then $tv+Q\in X_{1}$ if and only if $t\alpha_{1}+\beta_{1}\in N$, so

that $\{Q_{n}\}_{n\geq 1}\cap F_{1}=\{(0, \langle\alpha_{1}^{-1}\alpha_{2}k+\gamma_{2}\rangle, \langle\alpha_{1}^{-1}\alpha_{3}k+\gamma_{3}\rangle\}_{k\geq 1}$ for some fixed $\gamma_{2}$ and $\gamma_{3}$ ,
where $\langle x\rangle$ is the fractional part of $x$ . Hence $\{Q_{n}\}_{n\geq 1}\cap F_{1}$ is dense in $F_{1}$ by Kronecker’s
theorem. Similarly, $\{Q_{n}\}_{n\geq 1}\cap F_{i}$ is dense in $F_{i}(i=2,3)$ . Therefore $\{q_{n}\}_{n\geq 1}$ is dense in
$H$. So is $\{p_{n}\}_{n\geq 1}$ , by (5).

\S 3. Decomposition of the hexagon $H$.
We put

$m_{n}=\bigcup_{i=1}^{3}[p_{n}-e_{i},p_{n}]^{*}$ $(n\geq 1)$ ,

and define

$M_{n}=\bigcup_{k=1}^{n}m_{k}(=\bigcup_{t=1}^{3}[p_{1}-e_{i},p_{1}+(n-1)e_{i}]^{*})$ $(n\geq 1)$ .

$m_{n}$ is the union of three segments in $H^{*}$ starting at $p_{n-1}$ , not intersecting each other,
and ending at $p_{n}$ . $M_{n}$ consists of three segments starting at three points $p_{1}-e_{i}(i=1,2,3)$

which coincide $m\dot{o}dH$, winding around $H^{*}$ , intersecting only at $p_{1},p_{2},$ $\cdots$ and $p_{n-1}$ ,
and ending at $p_{n}$ . So $M_{n}$ forms a mesh which decomposes the hexagon $H$ into sub-
polygons. The set of all these subpolygons will be denoted by $\Delta_{n}$ , namely, $\Delta_{n}$ is the
set of all connected components of $H\backslash (\partial H\cup M_{n})$ , where $\partial A$ denotes the boundary
of a set $A$ in $\Pi$ . We note that the condition i) implies $p_{n}\not\in M_{n-1}(n\geq 2),$ $p_{1}\not\in\partial H$, and ii)
implies

$\{q_{n}\}_{n\geq 1}\cap(\partial H\cup\bigcup_{n=1}^{\infty}M_{n})=\emptyset$ .

REMARK 1. Every element in $\Delta_{n}(n\geq 1)$ is a convex polygon, since it is an
intersection of a finite number of half-planes in $\Pi$ . Moreover, it can be proved that any
element in $\Delta_{n}$ is triangle, quadrangle, pentagon, or hexagon whose sides are parallel
with $e_{1},$ $e_{2}$ , or $e_{3}$ . However, the latter fact will not be used to prove the theorem.

LEMMA 2. $p(n;v, Q)=\#\Delta_{n}(n\geq 1)$ .
$PR\infty F$ . For any $h\geq 1$ and $k\geq 0$ , we have by (3) and (5)

$ q_{\hslash}=\sum_{j=0}^{k-1}e_{w_{h\star j}}+q_{h+k}\equiv q_{1}-q_{k+1}+q_{h+k}\ulcorner$
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$\equiv p_{k+1}-p_{1}+q_{\hslash+k}$ $(mod H)$ , $k\geq 0$

noting that $e_{i}\equiv e_{j}(mod H)$ for any $i,j=1,2,3$ , and so
$q_{h}\in(p_{k}-p_{1}+\pi(G_{w_{h+k-1}}))^{*}$ , $k\geq 1$ . (8

Thus it follows from (2) that $w_{h}w_{h+1}\cdots w_{\hslash+n-1}=\sigma_{1}\sigma_{2}\cdots\sigma_{n}$ for some $\sigma_{1}\sigma_{2}\cdots\sigma_{n^{1}}$

$\{1,2,3\}^{n}$ if and only if

$q_{h}\in\bigcap_{k=1}^{n}(p_{k}-p_{1}+\pi(G_{\sigma_{k}}))^{*}$ .

Here we have for $k\geq 1$

$\bigcup_{i=1}^{3}\partial(p_{k}-p_{1}+\pi(G_{i}))^{*}=(p_{k}-p_{1}+\partial H)^{*}\cup(p_{k}-p_{1}+m_{1})^{*}$

$=m_{k-1}\cup m_{k}$ , (7

where $m_{0}=\partial H$, and so

$\bigcup_{k=1}^{-}\bigcup_{i=1}^{3}\partial(p_{k}-p_{1}+\pi(G_{i}))^{*}=\bigcup_{k=1}^{n}(m_{k-1}um_{k})=\partial H\cup M_{n}$ .

Hence we get

$p(n)=\#\{\sigma_{1}\sigma_{2}\cdots\sigma_{n}\in\{1,2,3\}^{n}|\bigcap_{k=1}^{n}(p_{k}-p_{1}+\pi(G_{\sigma_{k}}))^{*}\neq.\emptyset\}$ ,

which implies $p(n;v, Q)\leq\#\Delta_{n}$ .
To prove $p(n;v, Q)\geq\$\Delta_{n}$ , it is enough to show by Lemma 1 that, if $q_{i}$ and $q_{j}klon$

to distinct elements in $\Delta_{n}(n\geq 1)$ , then

$w_{i}w_{i+1}\cdots w_{i+n-1}\neq w_{j}w_{j+1}\cdots w_{j+n-1}$ .
This is true for $n=1$ . Assume that the statement holds for some $n\geq 1$ . Let $q_{i}\in\delta an|$

$q_{j}\in\delta^{\prime}$ for some $\delta,$ $\delta^{\prime}\in\Delta_{n+1}$ with $\delta\neq\delta^{\prime}$ . Then $\delta\subset\delta_{n}$ and $\delta^{\prime}\subset\delta_{n}^{\prime}$ for some $\delta_{n},$ $\delta_{n}^{\prime}\in\Delta_{n}$ . ]

$\delta_{n}\neq\delta_{n}^{\prime}$ , the statement holds for $n+1$ by induction hypothesis. Suppose that $\delta_{n}=\delta^{\prime}$,
Then $\delta\subset\gamma$ and $\delta^{\prime}\subset\gamma^{\prime}$ for some connected components $\gamma$ and $\gamma^{\prime}$ of $H\backslash (m_{n}\cup m_{n+1}$

adjacent each other. Taking (7) into account, we have $\gamma\subset(p_{n+1}-p_{1}+\pi(G_{\sigma}))^{*}an($

$\gamma^{\prime}\subset(p_{n+1}-p_{1}+\pi(G_{\sigma^{\prime}}))^{*}$ for some $\sigma,$ $\sigma^{\prime}\in\{1,2,3\}$ . Here we note that

$T=\bigcup_{\tau=1}^{3}\{m+\pi(G_{f})|m=\sum_{i=1}^{3}k_{i}e_{i},$ $k_{i}\in Z,\sum_{i=1}^{3}k_{i}=0\}$

formsa tiling of $\Pi,$ $wherem+\pi(G_{\tau})$ and m’ $+\pi(G_{l})\in T(m\neq m^{\prime})$ are not adjacent eaci
other; so that, for any $\tau$ and $m+\pi(G_{l})\in T$, any distinct $\infty nnected$ components $\gamma_{1}an($

$\gamma_{2}$ in $(m+\pi(G_{\tau}))^{*}$ are not adjacent each other. Threfore, we get $\sigma\neq\sigma^{\prime}$ ; which togethe
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with (6) implies $w_{i+n}\neq w_{j+n}$ . This completes the proof of Lemma 2.
REMARK 2. The above proof shows that every set $\bigcap_{k=1}^{n}(p_{k}-p_{1}+\pi(G_{\sigma_{k}}))^{*}$ is

connected unless it is empty, and so

$\Delta_{n}=\{\bigcap_{k=1}^{n}(p_{k}-p_{1}+\pi(G_{\sigma_{k}}))^{*}|\sigma_{1}\sigma_{2}\cdots\sigma_{n}\in\{1,2,3\}^{n}\}\backslash \{\emptyset\}$ $(n\geq 1)$ .

Hence, noting that the diameter of each $\delta_{n}\in\Delta_{n}$ tends to zero as $ n\rightarrow\infty$ by Lemma 1,
we have $w(v, Q)\neq w(v, Q^{\prime})$ for $Q\neq Q^{\prime}$ , and

$q=q_{1}=\bigcap_{n=1}^{\infty}(p_{n}-p_{1}+\pi(G_{w_{n}}))^{*}=$
$\bigcap_{n=1,q\in\delta_{n}\in\Delta_{n}}^{\infty}\delta_{n}$

.

These facts will not be used to prove the theorem.

\S 4. Proof of the theorem.

We have to show by Lemma 2 that

$\#\Delta_{n}=n^{2}+n+1$ $(n\geq 1)$ .
This is true for $n=1,2$ . Let $n\geq 3$ . The mesh $M_{n}$ decomposes $H$ into $\#\Delta_{n}$ polygons and
in the next step $m_{n+1}$ divides some of these polygons into subpolygons in $\Delta_{n+1}\backslash \Delta_{n}$ .
We put $d(n+1)=\#\Delta_{n+1}-\#\Delta_{n}$ . Since $d(2)=4$, it is enough to show that

$d(n+1)-d(n)=2$ $(n\geq 2)$ .
We shall count $d(n)$ by means of the intersection points $\bigcup_{i=1}^{3}[p_{n}-e_{i},p_{n}]^{*}\cap(\partial H\cup$

$M_{n-1})$ . We write $m_{n}=\bigcup_{i=1}^{3}l_{n,i}$ where $l_{n,i}=[p_{n}-e_{i},p_{n}]^{*}$ . Since $p_{n}\not\in M_{n-1}$ , there is a
$\delta_{n-1}\in\Delta_{n-1}$ with $p_{n}\in\delta_{n-1}\backslash \partial\delta_{n-1}$ . Then $\delta_{n-1}$ is divided into three polygons in $\Delta_{n}$ by
$l_{n,i}$ $(i=1,2,3)$ . Let $s_{n,i}$ be defined by $\{s_{n,i}\}=l_{n,i}\cap\partial\delta_{n-1}$ $(i=1,2,3)$ , so that
$\bigcup_{i=1}^{3}[p_{n}-e_{i}, s_{n,i}]^{*}$ is the part of $m_{n}$ outside of $\delta_{n-1}$ . Since the elements in $\Delta_{n-1}$ are
convex and $[p_{n}-e_{i}, s_{n,i}]^{*}(i=1,2,3)$ never intersects each other except at $p_{n-1}$ , the
number of elements in $\Delta_{n}\backslash \Delta_{n-1}$ produced by these segments coincides with
$\#\bigcup_{i=1}^{3}[p_{n}-e_{i}, s_{n,i}]^{*}\cap(\partial H\cup M_{n-1})$ , counting the points on $\partial H$ appropriately. $d(n+1)$

is counted similarly. Noting that the contribution of these intersection points on $\partial H$ as
well as $p_{k-1}$ and $p_{k}$ to $d(k)$ is the same for $k=n$ and $n+1$ , we get

$d(n+1)-d(n)=\#(M_{n}\cap m_{n+1})^{\prime}-\#(M_{n-1}\cap m_{n})^{\prime}$ ,

where $A^{\prime}=A\backslash \{p_{k}\}_{k\geq 1}$ . Here $\#(M_{n}\cap m_{n+1})^{\prime}=\#(M_{n-1}\cap m_{n+1})^{\prime}$ , since $m_{n}\cap m_{n+1}=$

$\{p_{n}\}$ . Therefore it is enough to show that

$\#(L_{n-1,w_{n}}^{\sim}\cap m_{n+1})^{\prime}=\#(L_{n-1,w_{n}}\cap m_{n})^{\prime}$ , (8)

$\#(L_{n-1,i}\cap m_{n+1})^{\prime}=\#(L_{n-1,i}\cap m_{n})^{\prime}+1$ $(i\neq w_{n})$ (9)
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where

$M_{n-1}=\bigcup_{i=1}^{3}L_{n-1,i}$ , $L_{n.i}=[p_{1}-e_{i},p_{1}+(n-1)e_{i}]^{*}$

We assume as we may that $\alpha_{1}>\alpha_{2}>\alpha_{3}>0$ . Then $(w_{n-1}, w_{n})\in\{(1,1),$ $(1,2)$ ,
$(1, 3)$, $(2, 1)$ , $(2, 3)$ , $(3, 1)$ , (3.2)} (cf. Fig. 1).

We shall prove (8) and (9) only in the first case $(w_{n-1}, w_{n})=(1,1)$ , since the remain-
ing cases can be treated in just the same way. Let $w_{n-1}=w_{n}=1$ . To prove (8), we
may exclude $l_{k,1}$ from $m_{k}(k=n, n+1)$ , since $l_{k,1}$ is parallel with $L_{n-1.1}$ (cf. Fig. 2).

FIGURE 2

Let $\phi$ be the projection of $[p_{n}-e_{2},p_{n}]\cup[p_{n}-e_{3},p_{n}]$ onto $[p_{n+1}-e_{2},p_{n+1}]\cup[p_{n+1}-$

$e_{3},p_{n+1}]$ along $e_{1}$ . We regard $\phi$ as a bijection of $l_{n,2}\cup l_{n,3}$ onto $l_{n+1,2}\cup l_{n+1,3}$ by
identifying points on $\pi$ by mod $H$. Then we see that $\phi(p_{k-1})=p_{k}(k=n, n+1)$ and that
$x\in(L_{n-1,1}\cap(l_{n,2}\cup l_{n,3}))^{\prime}$ if and only if $\phi(x)\in(L_{n-1,1}\cap(l_{n+1,2}\cup l_{n+1,3}))^{\prime}$ ; and hence (8)
follows. Next we prove (9) with $i=2$ . For this we may exclude $l_{k,2}$ from $m_{k}(k=n, n+1)$ ,
by the same reason as above (cf. Fig. 3).

FIGURE 3
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Let $\psi$ denote the projection of $l_{n+1,1}\cup l_{n+1,3}$ onto $l_{n,1}\cup l_{n.3}$ along $e_{2}$ . Clearly
$p_{n+1},$ $\psi(p_{n+1})\not\in L_{n-1.2}$ , and $p_{n}=\psi(p_{n})\not\in L_{n-1.2}$ . Furthermore; for $x\neq p_{*},$ $x\in(L_{n-1.2^{\Gamma}}$

$(l_{n+1,1}\cup l_{n+1.3}))^{\prime}$ if and only if $\psi(x)\in(L_{n-1.1}\cap(l_{n.1}\cup l_{n,3}))^{\prime}$ . However, a point on $L_{n-1^{\prime}}$.
starting at $p_{1}-e_{2}$ and going along $L_{n-1,2}$ must cross $l_{n+1,3}$ at $p_{*}$ to get $p_{n-1}$ (cf. Fig
3). This implies that $\psi^{-1}(p_{n-1})\in l_{n+1.3}$ , and therefore (9) with $i=2$ follows. The proo
is similar for $i=3$ , cf. Fig. 4.

FIGURE 4

The proof of the theorem is now completed.
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