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1. Statement of results.

Lets=0+it (0<0=<1, t=1) be a complex variable, {(s) the Riemann zeta-function,
d(n) the number of positive divisors of the integer n, y the Euler constant and
exp(2nio) = e(ar). We first define

R(s;t/2m)=(3(s)— Y, dmn~>—x3(s) Y. dmn~1,

nst/2n nst/2n
where
x(s)=2°n°"tsin(ns/2)I'(1 —s) . ,
As for this function R(s; t/2r), Motohashi (see (1) of [6]) proved the following “weak
form” of the Riemann-Siegel formula for ¢2(s):

x(1 —$)R(s; t/2m) = (t/2m) ~ /4 i d(n)h(n)n~1*sin(2./2ntn + n/4)
n=1

+0("loge), (1.1)

where

h(n) = (2/1:)1/2foo (y+nn)~ 2 cos(y +n/4)dy .

Kiuchi and Matsumoto (see Theorem 1 of [3]) started from this formula, and proved
an asymptotic formula for the mean square of | R(1/2+it; t/27) |:

0

~[‘TIR(1/2+it; t/2m) |2dt =/ 21:{ Y dz(n)hz(n)n"”z}T”z+0(T1/4logT). (1.2)
o Jd1 .

n=1
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Moreover, Motohashi sketched the proof for a stronger approximation formula
of (1.1)in [6], and gave a complete proof in [7]. By using this “full form”’ of Motohashi’s
formula (see Theorem 6 of [7]), the error term of the formula (1.2) was improved to
O(log3T) by Kiuchi [4].

Now we define the function R*(s; l¢/2rk) which is a generalization of R(s; ¢/2r).
Let k and / be integers with 1 </<k and (k, I)=1, and we define

R¥(s; lt)2nk)=(%(s)— Y d@mn™*—x%s) Y dmn!.

n<it/2xk nskt/2xl

The aim of this paper is to calculate mean value results of the error term R*(s; /t/2nk).
Our starting point is the following “non-symmetric form” of the Riemann-Siegel formula
for {?(s), which was proved in Motohashi (see Theorem 7 of [7]). In order to mention
his result, we need some other notation. Let @ and b be integers with a=1 and
(a,b)=1. For x=1, we put

A(x; bja)= Z' d(n)e(bn/a)—a~ ' x(log(x/a?) +2y—1)— E(0; b/a), (1.3)
nsSx

where )’ indicates that the last term is to be halved if x is an integer. E(0; b/a) is the
value at s=0 of the analytic continuation of

E(s; bja)= 21 d(n)e(bnjayn~* .

It is well-known that
E(0; b/a)<alog(2a) (see (2.6.3) of [7]) . 14
Then Motohashi’s “non-symmetric form” of the Riemann-Siegel formula for { 2(s) states
as follows: For 122, we have, uniformly for k/<t(logr)~2°,
x(1 —s)R*(s; It/2nk) = M(s; I/k) + M (1 -5, k/])
+O((I/k)*2 o (kl/t) ? 10g?r) , (1.5)
where

M(s; l/k)= —e™™/%(t/2m) = 2(I[k) ~*A(It|2nk; — k/I)

+% e~ ™4 (kl[2mt) 4 (Ifk) 12— i d(n)e(kn/l)n~1/* sin(2Qntn/kI)!? + /4)
n=1 )

= o]
. f e (y+nm)=32dy ;
o

and k is defined by kk=1 (mod/). In the section 3 we will give an analogue of the
formula (1.1) for R*(s; It/2nk) (see (3.3)). Then we can calculate the mean square of
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| R*(1/2+ it; It/27k) | in the following way, which is an analogue of (1.2).
THEOREM 1. For 1<I<k, (k,)=1, kIS T(logT) 2° and T=2, we have

T
f | R*(1/2+ it; It/2nk) |2dt
2

= 211:{ y dZ(n)H,f,,(n)n-m}Tlﬂ+0((k1)3/4T1/4 log®T),

n=1

where

H, (n)=(kl)~142/m)1/? fw {y+@n/kl)} =12 cos(y +2n(kn/l) + n/d)dy . (1.6)
0

COROLLARY. For 1ZI<k, (k,I)=1, ki<t(log?)~2° and t=2, we have
| R*(1/2 4 it; It/2nk) | = Q((kI)/4¢~1/12) .

As has been observed by Jutila (see p. 105 of [1]) when J/k is very close to 1 (e.g.
llk=140("1?%)),

| R*(s; It/2nk) | = Q(log?) .

The content of this corollary includes the Q-result which is deduced from the formula
(1.2).

Next we consider the mean square of R*(1/2+ it It/2nk) itself. Let w=¢/2n and
JW)=2w—2wlogw+ 1/4. From (1.5), we get

R*(1/2 +1it; It/ 2nk)?
=22(1/2+i){M(1/2 + it; l/k) + M(1/2+it; k/I)+ O((kl/t)** log3t)} 2 .
It follows from Stirling’s formula that
x2(2+it)=e(f(W))+O1}t), (1.7)

so the y2-factor of the above formula can be considered as an ‘“‘oscillatory factor”.
Because of this factor, it is natural to expect that the integral of R*(1/2+ it; It/2nk)? is
smaller than that of | R*(1/2 + it; It/2nk) |2. In fact, we obtain the following estimate:

THEOREM 2. For 1SI<k«T' and T2, we have

T
f R*(1/2+it; It/2nk)2dt < (KI)¥4 T4 2 4 (k1) T~ 112 .
2

REMARK. Kiuchi and Matsumoto proved the following mean value result for
R(1/2 +it; t/2m) (see Theorem 2 of [3]):
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T
I R(1/2+it; t/2m)2dt < TU4+¢ (1.8)

1

Comparing (1.2) and (1.8), we find that the leading term of (1.2) disappears in
(1.8). We find the same phenomenon between Theorems 1 and 2.

In what follows, & denotes an arbitrarily small positive number, not necessarily the
same at each occurrence.

2. Application of Meurman’s method.

Jutila (see [2], or (2.6.7) of [7]) proved the following formula, which is an analogue
of Voronoi formula for (1.3):

A(x; bja)= (nﬁ)‘ 1gl/2y1/4 i d(n)e(—bnjayn—3*

- cos(dn,/nx/a—mn/4)+ O(a3*x~1/4), 2.1
where x 2 a*(log2a)®, and b is defined by bb=1 (mod a). According to Meurman’s paper
[5], we transform (2.1) into

- A(x; bja)=(n/2) " 'a?x1* Y d(n)e(—bnja)n~3* cos(dn./nx ja—n/4)
nsM

+0(@'?x'4( S| +1 S, )+ O(@®?x~11%) (2.2)

where

Sy= 2. {d(m)e(—bnja)—a*(log(n/a*)+2y)}n~¥*e(+2./nx/a),

n>M

S,=a"! Y (log(n/a®)+2y)n~¥*e(+2,/nx/a).

n>M

Now, let us assume that M =2x, and let us put

GO= Y e(+2/nx/a).

M<nsé

By using [8, Lemma 4.8], we have
¢
G(§)=I e(+2,/xy/a)dy+O(1) .
M

So, we get

G(&)«ax™ 122 (2.3)
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On the other hand we have, by partial summation,

S,= ‘F G(¢Ha™ (log(¢/a”)+2y)E ™%} dl +a™" lim G(A)(log(4/a?)+2y)4 .
M A— o0

Hence, by (2.3), we obtain, for M =>2x,
S,«<ax™ 12, 2.4)
We note that, from (1.3) and (1.4),

g.g (d(me(—bn/a)—a~*(log(n/a?) +2y))=A(¢; —bja)+ O(alogd)  (£>1).
Then, by partial summation, and with

| A(x; —b/a) |« a?3xt/3+e (2.5)

for any a< x, we have

S «<a " 1x1/?

J‘wd(f; —bja)E 3 *e( £ 2./ x& [a)dE |+ x1*P M~ 4 logM .

M

Now, we estimate the integral,

rLA(é; —bja),™%e(+2/x¢|a)dE, (L2 M).

L

‘To do this, we make use of the following formula
A(x; bla)=(ny/ 2) " 'a'?x1* Y. d(n)e(—bn/a)n~3* cos(4n./nx a—n/4)
) n<N

+ O(ax'2*eN~12) 4 O(ax?®)

(for any a<x and 1< N«x* (4>0)), which is a truncated version of (2.1) (The proof
of this formula proceeds in the same way as in Ivi¢’s book [2], pp, 86-88). Then we
see that the above integral is

<<a3/2L-- 1/2x— 1/4+a||x" -1 +aL— 1/4+¢ s
where || x|| is the distance between x and its nearest integer. Hence we have
S1 «auzM— 1/2x1/4+a"x" -1 +x1/2M— 1/4 +¢ .

And this is O(ax~'/?), provided that M>a~'x%||x||~2. From this, (2.2) and (2.4), we
obtain the following Lemma:

LEMMA 1. Let a<x, and we put

E;,(M; x)=A(x; bja)— (r./ 2 )~ 1al/2x1/4 Z d(n)e(—bn/ayn~3* cos(4n./nx |a—m/4) .
ns=M
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Then we have

ad2x—1/4 if M>»a 1x5|x||~2,

E,(M; x)«
o {ax’ +axi/2tep—1/2 otherwise .

3. An analogue to the formula (1.1).

Applying the formula (2.1) with a=1/, b= —k and x=1t/2nk, we see that
A(lt)2nk; —k/)=(ny/ 2) " 1V2(lt/2nk) /4 d(n)e(kn/l)n=3* cos(2(2ntn/kl)'/? — /4)
n=1

+ O(k/4]5/4~1/4)
From this, it follows that

M(s; lfk)=i(2rk) ™ 2(t/2m) = Y4(l/k) /4~ i d(n)e(kn/l)n=1/* sin(2Q2ntn/kI)'/? + t/4)
=1

. I ei(y—u/4)(y+(nn/kl))—1/2dy+ 0(k1/4+015/4—at—3/4) .
(¢]

Similarly as above, we have

M@ -5 k/l)= —iQQnl)~12(t)2r) = V4K /1)*~ 34 azo: d(n)e(—kn/l)n—1/4

- sin(2Q2ntn/kl)V? + n/4) j e OTmY(y + (nnfkl))~V2dy + O(IMA + ok 514 o= 314y
0

Hence, for t>2and k/< t(logt) ~ 2%, in case o = 1/2, the formula (1.5) can be written as
X(1/2— i) R*(1/2+ it; It/2mk) = (¢ 2m) ~ 114 (k[T

+ 3 d(n)H, (ryn~ " sin(2(2men/kl) 2 4+ 7/8) + O(CkI) )2 log3?), (3.1)

where H, ,(n) is defined by (1.6). Integrating by parts, we have

H, ()= —./ 2 (n/ n)~(kl)/* cosRnkn/l—n/4) + O((k])**n=%2) .  (3.2)
Combining (2.1) and Lemma 1, we have

Y. d(n)e(—bnjayn=3* cos(dn,/nxja—n/8) < ax~ 12 +a~2x" V4 E (M; x)] .
n>M

Substituting a=/, b= +k and x=1It/2nk, we see that the right-hand side turns into
< (klft)}/2 4 kM4 =314~ 114 E(M; It/2nk) | .
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Therefore, from this, (3.1) and (3.2), it follows that for ki< t(logz)~2°,
1(1/2—iR*(1/2 + it; It]2mk) = (t/2m) = M4 (/1)
. ;M d(m)H, (m)n~ 1% sin(2(2ntn/kI)'/2 + 11/4) + D, (M; It/2nk) (3.3

where
Dy (M; It/ 2mk) < (kl/1)1/? log>t + (kI)5/4¢~ 114 p~ 314+
+(k/1t)'?| E(M; It/2nk) | . G.4)

4. Proof of Theorem 1.

In this section we assume that M >/~ X%|| X|| =2 (X'=IT/2nk). From (3.3), we have

2T
f | R*(1/2+it; lt/27tk)|2dt=11+0(| 11|1/2|12|1/2+|12 D, “.1)
T
where
I,= Zg{ d(m)d(n)H, ki(mH, k,l(n)(mn) T4

. JZT (t)2m)~ Y/ 4.sin(2(27ttm/kl)1/ 2 4 n/4) sin(2(2ntn/kD? + n/4)dt

2T
I,= f | D, ((M; It27k) |2dt .

T

By using (3.4) and Lemma 1, we have

I, < kllogs T+ (k)2 T2 M~ 3/2+¢ 4.2)
provided that 1<k</and ki< T(log T)~2°. Next, we have
2T
I, = i Z dz(n)H,f,,('n)n— 1/2 (t/2m) = Y2dt
2 nsM ‘ T

+% Y, d*(m)H} (n)n~ 2 f "(1/27:)_1/2 sin(4(2ntn/kl)'/?)dt
T

nsSM
2

+ —:12— Y. d(m)yd(n)H, (m)H, (n)(mn)~ 1/ ! (t/2m)~1/2 sin(2(ﬁ + ﬁ )(2nt/kl)*/2)dt

mnsM JT
m¥n

2

T(z/zn)-lfz cos(2(/m —/ n)(2ne/kl)?)dt

+—1— 2.2, d(m)d(n)H, (m)H, (n)(mn)~*/*
2 m',’»:é:{ JT
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=L+ ,+13+1, 4, say .

From (3.2), we have

11,1=./2n{ i dZ(n)Hg,,(n)n—UZ}(\/ﬁ—\/?H0((kml/2M-1/2+=). 4.3)

Since
rT (t/2m) " V2e2(/m +/n)t)20k)2)dt < JKI| /m £ /|7t (m#n),
T
we see that

I, ,<kl. 4.4

By using (3.2), and the argument of the proof of Theorem 3 in [7] A(see also [3], or
[4]), we have

Lis+1 <kl XY, dm)d(m)mn)~>4{(/m +/n) " +|/m—/n |~}

mnsM
«kllog’M . 4.5)
Hence, from (4.3)(4.5), we obtain

L={2n { ..21 d*(m)H3 (nmyn~ "2}(\/ 2T —./T)+O(kllog’ M + (kIT) /2 M~ 12 +e)
(4.6)

Now we put M =(IT/2nk)%. Then (4.6) implies I, = O((kIT)'/?). From this and (4.2),
the second term on the right-hand side of (4.1) is estimated by

< (kD341 4 10g3T .
Substituting this estimate and (4.6) into (4.1), we have

2T
j | R*(1/2 +it; It/2nk) |*dt
T

=/ 21:{ 3 dZ(n)H,f,,(n)n-I/Z}(,/ 2T —/T)+ O((kI)**T*"* 10g°T) .

=1

We complete the proof of Theorem 1.

5. Proof of Theorem 2.

Ffom (3.3) and Schwarz’s inequality, it follows that
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2T ‘
J R*(1)2+it; It2rk)2dt =T+ O( I, |2 I, |" + | 1, |), (5.1)

T

where
J= f o (t/2m) = 2e((2t/m) log(k/D)x 2(1/2 + it)
T .

. { Y. d(m)H, (m)n~Y*sin(2Qnn/kI)? + 7t/4)}2dt .
nsM

In this section we put M =(/T/2nk)"' ~*. Then from (4.6) we have I, = O((kiT)'/?). By
using Lemma 1, (3.4) and this estimate, we have

|1 V2 L | V2 4| L | < (KT 4 T4+ (5.2)
for k« T'/3. From (1.7), it follows that '

. J‘:T (27)~ Y2e(f(W)+ 2w log(k/l)){ Y. d(m)H, (m)n~ 4 sin2Qnn/ki)!>? + 1t/4)}2dt

T nsM
2
ﬁ)

2T
vof [
T

=J1+J2, Say.

Y. d(mH, (n)n~Y4sinQRQntn/kl)1/? + 1/4)

ns=M

By using (2.5) and (3.2), we see that, for k« T3,
Jz <<k1/315/6T— 1/3 +e+(k1)5/2T—- 1/2 i (53)
Similarly as in the case of I,, we have

Ji— Y, d*(mHE (myn~ 12 JZT(t/Zn)_ 2e(f(w) + 2w log(k/1))dt

2 nsM T
* é— >, d*(mH} (mn~1? f i (¢/2m)~ Y ée(f (w)+2wlog(k/D)) sin(4(2ntn/kl)*/)dt
nsM T
2T
* % 2.2 d(m)d(m)H,, (m)H, (n)(mn)~*/* f (#/2m) = 2e(f (W) + 2wlog(k/1))

mns<M T
;n$n

- sin(2(y/m ++/ n)Q2nt/kl)2)dt

' 2T
+ —;' 2.2, d(m)d(n)H, (m)H, (n)(mn)~1/* J (1/2m) = e(f (W) + 2w log(k/1))
mnsM T

m#%n

- cos(2(y/ m —/ n)2nt/kl)/?)dt
=J1’1 +J1’2+J1’3+J1,4, Say. (5.4)
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The right-hand side of (5.4) can be estimated by using the following Lemma:

LEMMA 2 (see (2.3) of [1]). Let F(t) be real differentiable, F'(t) monotonic,
F'(t)z2m>0 or £ —m<0 in [a, b]. Let G(t) be positive monotonic, | G(t)| <M in [a, b].
Then

Jw G(t)exp(iF(¢))dt|<M[m .

Let F(w)=2xn(f(w)+2wlog(k/l)+ 2u\/7) with ¥ <2(M/kl)!/2, Then, by Lemma 2,
we have

T/x
f w2 exp(iF(w))dw< T~ 12 .

T/2=

From the cases u=0 and u= +2(n/kl)!/2, it follows that
Joa+J1 < (KYTYV2
and from the cases u= +(\/m £./n)/(k])/?, it follows that
Ji,3+J; 4IT*.

Hence we have J, =O(IT* + (klI/T)'/?). Substituting this estimate, (5.2) and (5.3) into
(5.1), we obtain Theorem 2.
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