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Abstract. The number of the distinct points entered by a random walk once and only once in the first
n steps is called the single point range up to time n. We consider the random walk on the 4 dimensional
integer lattice. When d>4, the auther showed a limiting behavior of the variance of the single point range
and established the central limit theorem. In this note, we proved the law of the iterated logarithm in the
same case.

§1. Introduction.

Let {S,}>, be a random walk on the d dimensional integer lattice Z¢. To define
exactly, {S,}.1o is the sequence of random variables with So=0 and S,=);_, X,
where {X,}:°., is a sequence of independent identically distributed random variables
defined on some probability space (2, B, P), which take values in Z¢. We assume
that the random walk is genuinely d dimensional, that is, the group generated by
{xe Z% P(X,=x)>0} is isomorphic to VAR If P(X;=e)=1/2d for each unit vector
ee Z* we call the random walk simple.

Let p=P(S,#0,n=1,2, ---). The random walk is called transient if p>0 or,
equivalently, > ©_, P(S,=0) converges. If d>3, it is wellknown that the random walk
is always transient.

The range of the random walk up to time n, denoted by R,, means the number of
distinct points visited by the random walk in the first 7 steps. It was proved by Kesten,
Spitzer, and Whitman [7] that n~!R,—p a.s. for any random walk. Jain and Pruitt [3]
showed that if d>4 and p < 1, there is a positive constant ¢ 2 such that Var R,=c%n+ o(n)
and R, obeys the central limit theorem. Moreover, they established the law of the
iterated logarithm in [4].
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Now we consider the single point range Q, of the random walk up to time n, that
is, the number of distinct lattice points entered once and only once in the first n steps.
Erd6s and Taylor [1] proved that the strong law of large number holds for the single
point range of the simple random walk under the normalization pin if d>3 and
n*n/(logn)? if d=2. Pitt [5] proved that n~'Q,—p? a.s. for transient random walks.
In [2], Hamana showed that if >4 and p < 1, there exists a positive constant u? which

satisfies Var Q,=pu?n+o(n) and Q, obeys the central limit theorem. Note that if p=1,
then R,=Q,=n almost surely and this case is not very interesting.

In the present paper we obtain the law of the iterated logarithm for Q, when d>4.

THEOREM 1. If p<1 and d>4, it holds that

a.s.

2
lim sup On—p’n =1
o /2u2nloglogn
and the lim inf of this sequence is — 1 almost surely.

Section 2 is devoted to giving some preliminary estimates. Section 3 contains the
proof of Theorem 1.

§2. Notation and preliminary results.

In this section, we will give some notation and probability estimates of some
quantities related to the random walk which are given, e.g., in [3] and [7] and will
play basic role in our proof of Theorem 1.

For xe Z, the notation P,(-) will be used to denote the probability measure of
events related to the random walk starting from x. When x=0, we will usually use
P(-) instead of Py(+). For x, ye Z% and n>0, let

P(%, y)=P(S,=y)=P(S,=y—x).
The following lemma is essential.

LEMMA 2.1. If p<1 and d is the genuine dimension of the random walk, there is a
positive constant A such that

P"(0, x)<An~%?2
SJor all n>1 and xe Z°.
For x, ye Z¢ let G(x, y) denote the Green function defined by

G(x,y)= gop"(x, y).

For a transient random walk, G(x, y) <G(0,0)=1/p< 0. The following useful bounds
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about the Green function are given in Jain-Pruitt [3].

LEMMA 2.2. If p<1 and d=3, then

Z pn(o’ x){G(ua x) + G(x9 u)} = O(nl -d/2)

xeZd
uniformly for ue Z°.
For xe Z¢, ©, will denote the first hitting time of x, defined by
1, =inf{n>1; S,=x} .

If there are no positive integers with S,=x, then 7,=00. The taboo probabilities are
defined by

pix, y)=P(S,=y, 1. =2n).
By Lemma 2.1,
Q.1 P(n<t,<0)= Y pix,»N<Cn' %
l=n+1
uniformly for all x, ye Z°.
LEMMA 2.3. If p<1 and d>3, then
P (n<t,<, 1< 0)<Con' "¥?{G(0, x)+ G(x, 0)}
for xe Z% and x #0.

§3. The proof of Theorem 1.

For m<k<n, define

1 if S;#S, for any ae(m,n] and a#k,
0 otherwise .

Z(k; m, n)= {

Using this indicator, Q, can be expressed by Y ;_, Z(k; 0, n).

Form a sequence {n;} of positive integers by taking for k=1, 2, - - - all integers in
the interval [2%* 22**2) which are of the form 2%+ ;{[k~'2¥]+1} where j is a
nonnegative integer. It is clear that at most 3k2* members of the sequence are in
[22*, 22k*2) for each k. For the sake of convenience, we put no=0.

Since

l Qn_EQn_Qm"I_EQm | —<—n_ni=0(ni1/2)

if n;<n<n;, ,, it is enough to prove along the sequence {n;}. We also need to see EQ,

can be replaced by p?n. However, it is valid since
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EQ,= Z Po(to>n—j)Po(t9>j)=p*n+ O(logn) ,
=1

J

which is obtained by (2.1).

Before proving Theorem 1, we introduce several random variables and give two
~ lemmas.
For m<k<n<l, let

Wk, m, n, )= Z(k; m, n)— Z(k; m, D,
and for p<m<k<l, |
V(k, p,m,1)=Z(k;m,1)—Z(k; p, 1) .
These are also indicator random variables:

1 if S,#S, for any ae(m, n] and a#k,
W(k; m, n, l)=[ and there is a te(n, I] such that S,=S,,
0 otherwise,

1 if S, #S, for any ae(m, 1] and a £k,
Vk;p,m,1)= [ and there is a e (p, m] sucht that S,=38, ,
0 otherwise .

For 0<j<i, put
ni+1 nj+1
4;= 2 Z(k;ni’niﬂ)’ W= t W(k;”j’ Rjv1s 1),
k=n;+1 k=nj+1
and
Vi= S VO n,n).
k=n;+1

Then we can easily show
i—1 i—1 i—-1
On=2 A4;— X W;— Y V;.
j=0 i=o j=o0

We will show that the term involving A4’s is the dominating one among the three
terms on the right hand side.
Firstly, we estimate the term involving W’s by the similar technique used in [4].

LEMMA 3.1. Ifp<]1, d>4, and 22*<n,<2%**2_ thep

i—-1
Var( 2 Wj)sc3k32*.
ji=0
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Var W(k; nj, n;, 1, n;)
1

i—=1 nj+q k-1
+2 Z 2 Z COV(W(k; nj: nj+ 1> ni), W(l’ njs nj+ 1 ni))

j=0k=n;+2 Il=n;+1

i—=1j—1 njsq B+
+23 ) Y. Cov(W(k;nyny, 1, 1), Wk nynyy 1, 1))
J=11=0 k=m;+1 h=m+1
—I+I+III.

We employ the lemmas in Section 2 and Markov property to estimate each term. For
n Jj < k S n j+1s

Var W(k;nj, njy 1, n) SEW(k; nj, njpq, ) <SEW(k; k,njp 4, 1))

< Y pre17KO, x)P (T < 0) .

x#0

Hence, noting P,(1,< 0)<G(x,0), we have from Lemma 2.2

i—1 Bi+1
ISC:!- Z 2 (nj+1—k+1)_ISC5ilogn,-.
j=0k=n;+1
For n;<l<k<n;,,,

Cov(W (k; Ry, Njyy, n), W(, nj njy 1, 1)) <EW(k; N, Njtq, n)W(; Ny, My, 1)

< ;Op"_’(o, X)Py(nj4 1 —k <7y <00, Tg< 0)

<Ce(nj1—k+1)"2(k—=1)"".

In the last estimate we used Lemma 2.2 and 2.3. Then we obtain
i—-1
n<c 'Zo {log(n;+, —n;)}?
j=

<C,i(logn;)? .

The estimate of III is slightly éomplicated. Since W(h; ny, ny 1, ;)= W(h; ny, ny 4, 1;)
+W(h;ny, nj, )+ W(h;ny, k, n;) for m<h<mn,,<n;<k<n;.{, and W(h;n,n;,,n;)
and W(k; nj, n;,,, n;) are independent, it holds

Cov(W (k; nj, Ny 1, M), W(h; ny, nyy 4, 1)) <EW(k; Rj, N4y, n)W(h; n, n;, k)
+EW(k;n;,njyq, n)W(h;n, k,n;) .




176 YUJI HAMANA

The bound of each term of the right hand side can be derived by a simple calculation.
Let r,=Py(n<ty< o) for n>1. We have

EW(k; ny, njo g, n)W(hs my ng k)<, _are s
<Csjr1—k+1)"Y(n;—h+1)1
- and

EW(k;nj, njy 1, n)W(hn, k,n)< Y. p*=*0, X)P(nj, 1 —k<1, <00, Ty<0)

x#0
<Co(nji1—k+1)"Yk—h+1"1.
Since k> n;,,

Bji+1 B+

i—1 j—-1
M<Cy,Y Y 2 M —k+1)"Ym;—h+1)"1

J=11=0k=n;+1 h=m+1
i-1

=Cio Y O 3 k) 1m—ht 1)t

J=1k=n;+1 h=1
<C,,i(logn,)?.
If 22 <n;<22k+2 then

k+1

3.1) - i(logn)> < C,,(2k+2)* Y. 32/<C, k2" .
ji=0

This completes the proof of the lemma. []
Next we give an estimate of the term involving V’s.

LEMMA 3.2. Ifp<1,d>4, and 2%*<n;<22**2_ thep

i—1
Var( V,)sCl4k62" .
=0

J

PROOF.

i-1 =1 mp,
Var( > Vj)= > 2 VarV(k; 0, n, n,)

j=0 j=0 k=llj+1

i—1 ity k—1
+2% Y Cov(V(k O, mym), VO, nym,))

J=0 k=n;+2 I=n;+1

i—=1j-1 nj4, B+

+2Y Y 5 Y CovWs 0, my my), Vi 0, my )

J=11=0k=n;+1 h=m+1

=I4+II+1II.
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The first two terms can be computed in the same way as Lemma 3.1 by reversing the
random .walk and we have I <C,silogn; and Il < C,4i(logn,)?. Hence I, IT < C,.k32% if
2% <n,<2%+*2 by (3.1).

We will estimate the third term III. For n,<h<n,,, <n;<k<n;,,, it holds that
V(k; 0, n; n,)=V(k;h, n;, n)+ V(k; 0, h,n;). Let

Uh;0,n,nyyq,n)=V(h0,n,n.,)—V(h;0,n,n).
Then we obtain
Cov(V(k; 0, ny, n;), V(h; 0, ny, n,)) = Cow(V(k; 0, h, n;), V(h; 0, n,, n;))
+ Cow(V(k; h,n;, n,), V(h; 0, ny, 1y 1))
—Cov(V(k; h, nj, n), Uh; 0, ny, my, 1, 1)) .

The first two terms can be bounded in the same fashion as Lemma 3.1. Then

COV(V(k, 0, h, ni)s V(h; 05 ny, ni)) < Z pk_h(o’ x)Px(h—nlSTx< 00, To < CXJ)

x#0
<Cigk—h)"'(h—n)*.
Since V(k; h: nj9 ni)= V(k; h) Ny, ni)+ V(k; Ny nj’ ni)s

Cov(V(k; h,nj, ny), V(h; O, n,, M4 1)< Polh—m<to<h)Po(k—n,, <to<k—h)
<Cigtk—ny ) '(h—my) ™!

by using the independence of V(k; M1, 0y ) and V(k;0,ny, ). When A<n,, ,, it
holds that (k—h) ™' <(k—mn,,,)” . Hence for 22*<n,<22**2 the sum of the first two
terms is not greater than constant multiple of

i—=1j—1 nj4eq n4q
YT Y Y en ) i)

J=11=0k=n;+1 h=m+1

ni n+1

i-2 :
= Z Z Z (k—n,H)_l(h—n,)_l

1=0k=nm+1+1 h=n+1

=0{i(logn,)*} =0(k32%) .

Lastly, we estimate the remaining term of III. Recall r,=Po(n<t5<o0). Then,

noting the definition of the random variables V(k; h, nj, n;) and U(k; O, ny, 1y, 4, 1,), We
have

COV(V(k; hs nja ni)a U(h’ 05 n, By ni))
2 _EV(ka hs n; nl)EU(h3 03 By, Ny, ni) ’
EV(k; h,n;, M) <Tk_p—1>
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and
EUMBO,n,nmyy 1, m)<Fp . —h—1Th—m—1 -

Hence the remaining term of III is not greater than

i-2 i—1 nj+1 ni+1

14
2 Z Z Tx—nyj—1Tmuy—n—1Tn—m—1
1=0 j=i+1k=n;+1 h=n+1

i-2 i—1
=0(12 ) %1 ("1+1—‘nz)_l1°g(n1+1—"1)1°g(nj+1—nj)) .
i

=0

If 22t <, <22¥*2 then

i—1
Y. log(n;, —n;) < Cyoilogn; < C, k22*
j=o0
and
i—2 k
Z (nl+1—nt)—110g("‘1+1_"1)S Z Z (np+1“‘"p)_11°g(np+1""p)
1=0 a=0 p:22x<ng<22=+2

k

<C,, Y, {302%(™12%) !log(a™ 29}

a=1
<C,3k*.
Therefore we obtain III < C,,k%2*. This completes the proof of the lemma. [J

Since we derive the estimates of negligible terms, the proof will be completed along
the same line as Theorem in [4].

PROOF OF THEOREM 1. Let B;=W;+V; for j=1,2, ---. When 2%*<n,<22*2

we have
(

for each ¢>0 by using Lemma 3.1, Lemma 3.2, and Chebyshev’s inequality. Now we
introduce a subsequence {n,} by taking every k°th member of {n;} in the interval
[22%, 22%*2) There are at most 3k~ 82% members in [22%*, 22¥*2) Since

we can conclude B part converges to zero almost surely along the subsequence by
Borel-Cantelli Lemma. We need to prove that this implies convergence to zero along
the original sequence {n;}. For 2%*<n, <n;<n, . <2?*2,

Bm+1—

i—-1

Y (B,—EB;)

ji=0

i—1
>an}/2)s.e'2n,-‘1Var( Y Bj)sCzskGZ"‘
j=0

m=1

>, (B;—EB))

i=0

Bi

>an‘/2)s Y (C,sk®2 ¥ x 3k~ 82" < 0,
k=1
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m—1 i—1 i—1
2. (B{—EB)— Y EB;<Y (B;—EB)
=0 J=tm i=o
Mm+1—1 Um+1—1
< ) (B—EB)+ ) EB,
j=o0 j=i

since B;>0 for each j>0. So we only need to obtain the estimate of EB;. If
22k<n.<22k+2
=15 b

EB= S (EW(kn,n,, n)+EV(KO, ny )

k=n;+1
< C2610g(nj+ 1 —n])S C27k .

Moreover, both u,, ., —i and i—pu,, are less than or equal to k°. Thus

i-1 Bm1—1

Z EBJ, Z EBJS C27k10=0(2k)

J=tm j=i

and we have finished to show the convergence to zero along the original sequence.
It remains to check that A part satisfies the Kolmogorov condition ([5] page 272).

{4,} is the sequence of independent random variables and the distribution of 4 jcoincides
with that of O, . ,-n, for each j. Hence

i—1 '
Var( Y Aj>=u2n,-+o(n,-).
j=o
For 22k <p, <22%k+2

) 1/2
loglogn;

Accordingly we complete the proof of Theorem 1. []
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