Токуо Ј. Матн. Vol. 17, No. 1, 1994

The Theta-Curve Cobordism Group Is Not Abelian

Katura MIYAZAKI

Tokyo Denki University (Communicated by S. Suzuki)

Introduction.

A spatial theta-curve $f: \theta \to S^3$ is an embedding of a theta-curve with its vertices and edges labelled. Given two spatial theta-curves f and g, we can define a new spatial theta-curve $f \ddagger g$, the vertex connected sum of f and g, up to ambient isotopy [7]. K. Taniyama [6] defines cobordism between spatial theta-curves, and observes that (1) the cobordism classes form a group Θ under vertex connected sum: the cobordism inverse of a theta-curve f is represented by the reflected inverse f! of f; (2) a theta-curve is slice if and only if an associated 2-component parallel link is slice (i.e. bounds disjoint disks in the 4-ball). He investigates the theta-curve cobordism group Θ through constituent knots of theta-curves, but the following fundamental question is left open in [6].

QUESTION 1. Is Θ an abelian group?

This note presents an example answering the question in the negative. The proof consists of showing that certain 2-component links are not slice using the refinement of the Casson-Gordon technique due to P. Gilmer [2].

Finally we raise intriguing questions below.

QUESTION 2. (1) Does Θ contain the free group of infinite rank? (2) What is the center of Θ ?

1. Statement of results.

We use the same notation as in [6], e.g. *i*-th parallel link $l_i(f)$, reflected inverse f! of a spatial theta-curve f, theta-curve cobordism group Θ . Given a knot K and $q \in \mathbf{R}$, $\sigma_{(q)}(K)$ is the signature of the matrix $(1-e^{2\pi i q})V+(1-e^{-2\pi i q})V^T$ where V is a Seifert matrix for K.

Received November 6, 1992

KATURA MIYAZAKI

Let f_1 and f_2 be the theta-curves given in Figure 1(a). The bands are tied in knots J_i without twisting (cf. Figure 1(b)), and the integers in the boxes indicate the numbers of half-twists.

FIGURE I

PROPOSITION 3. If $[f_1]$, $[f_2] \in \Theta$ commute, then $\sigma_{(1/3)}(J_1) = 0$, -2 or -4. Consequently, if J_1 is a left handed trefoil knot (indicated in Figure 1(b)) and J_2 is arbitrary, then $[f_1]$ and $[f_2]$ do not commute.

Assume that $[f_1]$ and $[f_2]$ commute. Then by [6, Theorem 5] the first parallel link $l_1([f_1, f_2])$ is slice where $[f_1, f_2]$ denotes the theta-curve $f_1 # f_2 # f_1! # f_2!$. In Figure 2(a) $J_i!$ denotes the knot J_i with its crossings changed; $J_i!$ upside down is obtained from the tangle J_i by reflecting in a horizontal axis. Then, connecting the two components of $l_1([f_1, f_2])$ by any band yields a slice knot. Figure 2(b) illustrates a slice knot K_J obtained in such a manner along with a basis $\{a, b, c, d\}$ for $H_1(F)$ where F is the evident Seifert surface. Our task is to deduce the claimed results in the proposition from the fact that K_J is slice for any knot J. We appeal to the following result of Gilmer, which combines the slicing obstructions of Levine [3] with those of

Casson-Gordon [1].

Let K be a knot with a Seifert surface F and a Seifert pairing $\varphi : H_1(F) \times H_1(F) \to Z$. Define $\varepsilon : H_1(F) \to H^1(F)$ by $\varepsilon(x)(y) = \varphi(x, y) + \varphi(y, x)$. Let $A' \in H_1(F) \otimes Q/Z$ be the subset of elements of ker($\varepsilon \otimes id_{Q/Z}$) with prime power order.

THEOREM 4 (Gilmer [2, Corollary (0.2)]). If K is a slice knot, then there is a direct summand H of $H_1(F)$ with the properties:

(1) $2\operatorname{rank} H = \operatorname{rank} H_1(F);$

(2) $\varphi(H \times H) = 0;$

(3) Let $x \in H$ be an arbitrary primitive element such that $x \otimes s/m \in A'$ for some 0 < s < m. Then $|\sigma_{(s/m)}(J_x)| \le \text{genus}(F)$ for any simple loop $J_x \subset F$ representing $x \in H_1(F)$.

In the next section we first find all summands H satisfying conditions (1) and (2) above for the knot K_J , and then evaluate a signature of some knot by Theorem 4(3).

REMARK 5. The following facts show the difficulty of proving Θ being noncommutative.

(1) Given two theta-curves f and g, the link $L = l_i([f, g])$ has zero Conway polynomial (see [6]).

(2) Any knot obtained by a band connected sum of the components of L is algebraically slice.

2. Proof of Proposition 3.

With respect to the ordered basis $\{a, b, c, d\}$ of $H_1(F)$ in Figure 2(b), compute the Seifert matrix V for K_J : the (i, j) entry of V is the linking number of the *i*th base and the *j*th base which is pushed up off F. Then V and its inverse V^{-1} are given by:

$$V = \begin{pmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 5 & -4 \\ -2 & 4 & -3 & 0 \\ 0 & -5 & 0 & 6 \end{pmatrix}, \qquad V^{-1} = -\begin{pmatrix} 3/2 & 3/5 & 1/2 & 2/5 \\ 3/2 & 3/10 & 0 & 1/5 \\ 1 & 0 & 0 & 0 \\ 5/4 & 1/4 & 0 & 0 \end{pmatrix}.$$

Let φ be the Seifert pairing on $H_1(F)$.

Step 1. Find all 2-dimensional direct summands of $H_1(F)$ on which φ vanishes.

By [4] this is equivalent to finding 2-dimensional subspaces of Q^4 on which the symmetric bilinear form β given by $V + V^T$ vanishes and which are invariant under the linear transformation $T = V^{-1}V^T$. In our case we have:

$$T = \begin{pmatrix} 1/2 & -9/10 & 21/10 & 3/5 \\ 0 & 4/5 & 9/5 & 3/10 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 3/2 & 5/4 \end{pmatrix}, \qquad V + V^T = \begin{pmatrix} 0 & 0 & -3 & 0 \\ 0 & 0 & 9 & -9 \\ -3 & 9 & -6 & 0 \\ 0 & -9 & 0 & 12 \end{pmatrix}.$$

KATURA MIYAZAKI

The transformation T has an eigenvector $x_1 = (-1, 0, 0, 0)^T$ for eigenvalue 1/2; $x_2 = (-3, 1, 0, 0)^T$ for 4/5; $x_3 = (1, 2, 1, 2)^T$ for 2; $x_4 = (0, 2, 0, 3)^T$ for 5/4. Since all eigenvalues are pairwise distinct, any vector space invariant under T is spanned by eigenvectors. On the other hand, it is easy to verify that $\beta(x_i, x_j) = 0$ if and only if $|i-j| \neq 2$. Thus we obtain:

LEMMA 6. There are exactly four 2-dimensional summands H_i , $1 \le i \le 4$, of $H_1(F)$ on which φ vanishes: $H_1 = \langle x_1, x_2 \rangle$, $H_2 = \langle x_1, x_4 \rangle$, $H_3 = \langle x_2, x_3 \rangle$, $H_4 = \langle x_3, x_4 \rangle$.

Applying Gilmer's theorem to K_J , we look for the summands H of $H_1(F)$ satisfying conditions (1), (2), (3) of the theorem. Then $H = H_i$ for some *i*.

Step 2. For each H_i choose $x \otimes (s/m) \in A' \cap (H_i \otimes Q/Z)$ and a simple loop $J_x \subset F$ representing x. Then evaluate $\sigma_{(s/m)}(J_x)$.

First note that $x \otimes (1/3) \in A'$ for any primitive element $x \in H_1(F)$ because $V + V^T$ is divisible by 3.

Case 1. $H = H_i$ where i = 1, 2. Choose $x_1 \otimes (1/3) \in A' \cap (H_i \otimes Q/Z)$ and the simple loop $a \subset F$ representing x_1 , where i = 1, 2. As knots in the 3-sphere $a = J_2! \# J$, so that $\sigma_{(1/3)}(a) = \sigma_{(1/3)}(J_2!) + \sigma_{(1/3)}(J)$. By Theorem 4(3) we get $|\sigma_{(1/3)}(J_2!) + \sigma_{(1/3)}(J)| \le 2$.

Case 2. $H=H_i$ where i=3, 4. In this case choose $x_3 \otimes (1/3) \in H_i \cap A'$. Note that $x_3=a+2b+c+2d=(a+b+c+d)+(b+d)$ (cf. Figure 3(a)). Then the knot $k \subset F$ given in Figure 3(b) represents x_3 . Let k_1 be the knot k with $J_1!$ and $J_2!$ in the presentation of k replaced by trivial arcs. Since $k=k_1 \# J_1! \# J_2!$, it follows:

$$\sigma_{(1/3)}(k) = \sigma_{(1/3)}(J_1!) + \sigma_{(1/3)}(J_2!) + \sigma_{(1/3)}(k_1) . \tag{1}$$

Let k_2 be the knot k_1 with J_2 replaced by a trivial arc; k_2 is a right handed trefoil knot. Note that k_1 is the satellite knot with pattern $k_2 \subset \overline{S^3 - N(l)}$ and companion J_2 . The winding number of the pattern in the solid torus is 2. Using the formula of the signatures of satellite knots by Litherland [5, Theorem 2], we obtain :

$$\sigma_{(1/3)}(k_1) = \sigma_{(2/3)}(J_2) + \sigma_{(1/3)}(k_2) . \tag{2}$$

THETA-CURVE COBORDISM GROUP

Note that $\sigma_{(1/3)}(k_2) = -2$, and $-\sigma_{(1/3)}(K!) = \sigma_{(1/3)}(K) = \sigma_{(2/3)}(K)$ for any knot K. It then follows from (1) and (2) that $\sigma_{(1/3)}(k) = -\sigma_{(1/3)}(J_1) - 2$. By Theorem 4(3) we get $|\sigma_{(1/3)}(J_1) + 2| \le 2$, so that $\sigma_{(1/3)}(J_1) = 0$, -2 or -4 as claimed in Proposition 3.

If we take J to be a knot satisfying $|-\sigma_{(1/3)}(J_2) + \sigma_{(1/3)}(J)| > 2$, then Case 2 is the only possible case. Hence Proposition 3 is proved.

References

- A. CASSON and C. MCA. GORDON, Cobordism of classical knots, A la Recherche de la Topologie Perdue (ed. by A. Marin and L. Guillou), Progress in Math. 62 (1986), Birkhäuser, 181–199.
- [2] P. M. GILMER, Slice knots in S³, Quart. J. Math. Oxford (2), 34 (1983), 305-322.
- [3] J. LEVINE, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-244.
- [4] J. LEVINE, Invariants of knot cobordism, Invent. Math. 8 (1969), 98-110.
- [5] R. A. LITHERLAND, Signatures of iterated torus knots, *Topology of Low-Dimensional Manifolds*, Lecture Notes in Math. 722 (1979), Springer, 71–84.
- [6] K. TANIYAMA, Cobordism of theta curves in S^3 , to appear in Math. Proc. Cambridge Philos. Soc. (1993).
- [7] K. WOLCOTT, The knotting of theta curves and other graphs in S³, Geometry and Topology (ed. by C. McCrory and T. Shifrin), Marcel Dekker (1987), 325-346.

Present Address:

Faculty of Engineering, Tokyo Denki University, Kanda-Nishikicho, Tokyo, 101 Japan.