The Theta-Curve Cobordism Group Is Not Abelian

Katura MIYAZAKI
Tokyo Denki University
(Communicated by S. Suzuki)

Introduction.

A spatial theta-curve $f: \theta \rightarrow S^{3}$ is an embedding of a theta-curve with its vertices and edges labelled. Given two spatial theta-curves f and g, we can define a new spatial theta-curve $f \# g$, the vertex connected sum of f and g, up to ambient isotopy [7]. K. Taniyama [6] defines cobordism between spatial theta-curves, and observes that (1) the cobordism classes form a group Θ under vertex connected sum: the cobordism inverse of a theta-curve f is represented by the reflected inverse f ! of f; (2) a theta-curve is slice if and only if an associated 2-component parallel link is slice (i.e. bounds disjoint disks in the 4 -ball). He investigates the theta-curve cobordism group Θ through constituent knots of theta-curves, but the following fundamental question is left open in [6].

Question 1. Is Θ an abelian group?
This note presents an example answering the question in the negative. The proof consists of showing that certain 2 -component links are not slice using the refinement of the Casson-Gordon technique due to P. Gilmer [2].

Finally we raise intriguing questions below.
Question 2. (1) Does Θ contain the free group of infinite rank?
(2) What is the center of Θ ?

1. Statement of results.

We use the same notation as in [6], e.g. i-th parallel link $l_{i}(f)$, reflected inverse f ! of a spatial theta-curve f, theta-curve cobordism group Θ. Given a knot K and $q \in \boldsymbol{R}$, $\sigma_{(q)}(K)$ is the signature of the matrix $\left(1-e^{2 \pi i q}\right) V+\left(1-e^{-2 \pi i q}\right) V^{T}$ where V is a Seifert matrix for K.

[^0]Let f_{1} and f_{2} be the theta-curves given in Figure 1(a). The bands are tied in knots J_{i} without twisting (cf. Figure 1(b)), and the integers in the boxes indicate the numbers of half-twists.

Figure 1

Proposition 3. If $\left[f_{1}\right],\left[f_{2}\right] \in \Theta$ commute, then $\sigma_{(1 / 3)}\left(J_{1}\right)=0,-2$ or -4. Consequently, if J_{1} is a left handed trefoil knot (indicated in Figure 1(b)) and J_{2} is arbitrary, then $\left[f_{1}\right]$ and $\left[f_{2}\right]$ do not commute.

Figure 2

Assume that $\left[f_{1}\right]$ and $\left[f_{2}\right]$ commute. Then by [6, Theorem 5] the first parallel link $l_{1}\left(\left[f_{1}, f_{2}\right]\right)$ is slice where $\left[f_{1}, f_{2}\right]$ denotes the theta-curve $f_{1} \# f_{2} \# f_{1}$! \# f_{2} !. In Figure 2(a) J_{i} ! denotes the knot J_{i} with its crossings changed; J_{i} ! upside down is obtained from the tangle J_{i} by reflecting in a horizontal axis. Then, connecting the two components of $l_{1}\left(\left[f_{1}, f_{2}\right]\right)$ by any band yields a slice knot. Figure $2(\mathrm{~b})$ illustrates a slice knot K_{J} obtained in such a manner along with a basis $\{a, b, c, d\}$ for $H_{1}(F)$ where F is the evident Seifert surface. Our task is to deduce the claimed results in the proposition from the fact that K_{J} is slice for any knot J. We appeal to the following result of Gilmer, which combines the slicing obstructions of Levine [3] with those of

Casson-Gordon [1].
Let K be a knot with a Seifert surface F and a Seifert pairing $\varphi: H_{1}(F) \times H_{1}(F) \rightarrow Z$. Define $\varepsilon: H_{1}(F) \rightarrow H^{1}(F)$ by $\varepsilon(x)(y)=\varphi(x, y)+\varphi(y, x)$. Let $A^{\prime} \in H_{1}(F) \otimes \boldsymbol{Q} / \boldsymbol{Z}$ be the subset of elements of $\operatorname{ker}\left(\varepsilon \otimes \mathrm{id}_{\varrho / Z}\right)$ with prime power order.

Theorem 4 (Gilmer [2, Corollary (0.2)]). If K is a slice knot, then there is a direct summand H of $H_{1}(F)$ with the properties:
(1) $2 \operatorname{rank} H=\operatorname{rank} H_{1}(F)$;
(2) $\varphi(H \times H)=0$;
(3) Let $x \in H$ be an arbitrary primitive element such that $x \otimes s / m \in A^{\prime}$ for some $0<s<m$. Then $\left|\sigma_{(s / m)}\left(J_{x}\right)\right| \leq \operatorname{genus}(F)$ for any simple loop $J_{x} \subset F$ representing $x \in H_{1}(F)$.

In the next section we first find all summands H satisfying conditions (1) and (2) above for the knot K_{J}, and then evaluate a signature of some knot by Theorem 4(3).

Remark 5. The following facts show the difficulty of proving Θ being noncommutative.
(1) Given two theta-curves f and g, the link $L=l_{i}([f, g])$ has zero Conway polynomial (see [6]).
(2) Any knot obtained by a band connected sum of the components of L is algebraically slice.

2. Proof of Proposition 3.

With respect to the ordered basis $\{a, b, c, d\}$ of $H_{1}(F)$ in Figure 2(b), compute the Seifert matrix V for K_{J} : the (i, j) entry of V is the linking number of the i th base and the j th base which is pushed up off F. Then V and its inverse V^{-1} are given by:

$$
V=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 5 & -4 \\
-2 & 4 & -3 & 0 \\
0 & -5 & 0 & 6
\end{array}\right), \quad V^{-1}=-\left(\begin{array}{cccc}
3 / 2 & 3 / 5 & 1 / 2 & 2 / 5 \\
3 / 2 & 3 / 10 & 0 & 1 / 5 \\
1 & 0 & 0 & 0 \\
5 / 4 & 1 / 4 & 0 & 0
\end{array}\right)
$$

Let φ be the Seifert pairing on $H_{1}(F)$.
Step 1. Find all 2-dimensional direct summands of $H_{1}(F)$ on which φ vanishes.
By [4] this is equivalent to finding 2-dimensional subspaces of \boldsymbol{Q}^{4} on which the symmetric bilinear form β given by $V+V^{T}$ vanishes and which are invariant under the linear transformation $T=V^{-1} V^{T}$. In our case we have:

$$
T=\left(\begin{array}{cccc}
1 / 2 & -9 / 10 & 21 / 10 & 3 / 5 \\
0 & 4 / 5 & 9 / 5 & 3 / 10 \\
0 & 0 & 2 & 0 \\
0 & 0 & 3 / 2 & 5 / 4
\end{array}\right), \quad V+V^{T}=\left(\begin{array}{cccc}
0 & 0 & -3 & 0 \\
0 & 0 & 9 & -9 \\
-3 & 9 & -6 & 0 \\
0 & -9 & 0 & 12
\end{array}\right) .
$$

The transformation T has an eigenvector $x_{1}=(-1,0,0,0)^{T}$ for eigenvalue $1 / 2$; $x_{2}=(-3,1,0,0)^{T}$ for $4 / 5 ; x_{3}=(1,2,1,2)^{T}$ for $2 ; x_{4}=(0,2,0,3)^{T}$ for $5 / 4$. Since all eigenvalues are pairwise distinct, any vector space invariant under T is spanned by eigenvectors. On the other hand, it is easy to verify that $\beta\left(x_{i}, x_{j}\right)=0$ if and only if $|i-j| \neq 2$. Thus we obtain:

Lemma 6. There are exactly four 2-dimensional summands $H_{i}, 1 \leq i \leq 4$, of $H_{1}(F)$ on which φ vanishes: $H_{1}=\left\langle x_{1}, x_{2}\right\rangle, H_{2}=\left\langle x_{1}, x_{4}\right\rangle, H_{3}=\left\langle x_{2}, x_{3}\right\rangle, H_{4}=\left\langle x_{3}, x_{4}\right\rangle$.

Applying Gilmer's theorem to K_{J}, we look for the summands H of $H_{1}(F)$ satisfying conditions (1), (2), (3) of the theorem. Then $H=H_{i}$ for some i.

Step 2. For each H_{i} choose $x \otimes(s / m) \in A^{\prime} \cap\left(H_{i} \otimes Q / Z\right)$ and a simple loop $J_{x} \subset F$ representing x. Then evaluate $\sigma_{(s / m)}\left(J_{x}\right)$.

First note that $x \otimes(1 / 3) \in A^{\prime}$ for any primitive element $x \in H_{1}(F)$ because $V+V^{T}$ is divisible by 3.

Case 1. $H=H_{i}$ where $i=1,2$. Choose $x_{1} \otimes(1 / 3) \in A^{\prime} \cap\left(H_{i} \otimes Q / Z\right)$ and the simple loop $a \subset F$ representing x_{1}, where $i=1$, 2. As knots in the 3 -sphere $a=J_{2}$! \#J, so that $\sigma_{(1 / 3)}(a)=\sigma_{(1 / 3)}\left(J_{2}!\right)+\sigma_{(1 / 3)}(J)$. By Theorem 4(3) we get $\left|\sigma_{(1 / 3)}\left(J_{2}!\right)+\sigma_{(1 / 3)}(J)\right| \leq 2$.

Figure 3
Case 2. $H=H_{i}$ where $i=3,4$. In this case choose $x_{3} \otimes(1 / 3) \in H_{i} \cap A^{\prime}$. Note that $x_{3}=a+2 b+c+2 d=(a+b+c+d)+(b+d)(c f$. Figure 3(a)). Then the knot $k \subset F$ given in Figure 3(b) represents x_{3}. Let k_{1} be the knot k with J_{1} ! and J_{2} ! in the presentation of k replaced by trivial arcs. Since $k=k_{1} \# J_{1}!\# J_{2}!$, it follows:

$$
\begin{equation*}
\sigma_{(1 / 3)}(k)=\sigma_{(1 / 3)}\left(J_{1}!\right)+\sigma_{(1 / 3)}\left(J_{2}!\right)+\sigma_{(1 / 3)}\left(k_{1}\right) . \tag{1}
\end{equation*}
$$

Let k_{2} be the knot k_{1} with J_{2} replaced by a trivial arc; k_{2} is a right handed trefoil knot. Note that k_{1} is the satellite knot with pattern $k_{2} \subset \overline{S^{3}-N(l)}$ and companion J_{2}. The winding number of the pattern in the solid torus is 2 . Using the formula of the signatures of satellite knots by Litherland [5, Theorem 2], we obtain :

$$
\begin{equation*}
\sigma_{(1 / 3)}\left(k_{1}\right)=\sigma_{(2 / 3)}\left(J_{2}\right)+\sigma_{(1 / 3)}\left(k_{2}\right) \tag{2}
\end{equation*}
$$

Note that $\sigma_{(1 / 3)}\left(k_{2}\right)=-2$, and $-\sigma_{(1 / 3)}(K!)=\sigma_{(1 / 3)}(K)=\sigma_{(2 / 3)}(K)$ for any knot K. It then follows from (1) and (2) that $\sigma_{(1 / 3)}(k)=-\sigma_{(1 / 3)}\left(J_{1}\right)-2$. By Theorem 4(3) we get $\left|\sigma_{(1 / 3)}\left(J_{1}\right)+2\right| \leq 2$, so that $\sigma_{(1 / 3)}\left(J_{1}\right)=0,-2$ or -4 as claimed in Proposition 3.

If we take J to be a knot satisfying $\left|-\sigma_{(1 / 3)}\left(J_{2}\right)+\sigma_{(1 / 3)}(J)\right|>2$, then Case 2 is the only possible case. Hence Proposition 3 is proved.

References

[1] A. Casson and C. McA. Gordon, Cobordism of classical knots, A la Recherche de la Topologie Perdue (ed. by A. Marin and L. Guillou), Progress in Math. 62 (1986), Birkhäuser, 181-199.
[2] P. M. GILMER, Slice knots in S^{3}, Quart. J. Math. Oxford (2), 34 (1983), 305-322.
[3] J. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969), 229-244.
[4] J. Levine, Invariants of knot cobordism, Invent. Math. 8 (1969), 98-110.
[5] R. A. Litherland, Signatures of iterated torus knots, Topology of Low-Dimensional Manifolds, Lecture Notes in Math. 722 (1979), Springer, 71-84.
[6] K. Taniyama, Cobordism of theta curves in S^{3}, to appear in Math. Proc. Cambridge Philos. Soc. (1993).
[7] K. Wolcott, The knotting of theta curves and other graphs in S^{3}, Geometry and Topology (ed. by C. McCrory and T. Shifrin), Marcel Dekker (1987), 325-346.

Present Address:

faculty of Enginerring, Tokyo Denki University, Kanda-Nishikicho, Tokyo, 101 Japan.

[^0]: Received November 6, 1992

