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\S 1. Introduction and results.

Let $\Omega$ be a bounded domain in Euclidean spaoe $R^{N}$ with $C^{\infty}$ -boundary $\Gamma$ and its
closure $O=\Omega\cup\Gamma$ is an N-dimensional compact $C^{\infty}$-manifold with boundary. Let

$A=\sum_{i=1}^{N}\frac{\partial}{\partial x_{i}}(\sum_{j=1}^{N}a^{ij}(x)\frac{\partial}{\partial x_{j}})+\sum_{j=1}^{N}b^{j}(x)\frac{\partial}{\partial x_{j}}+c(x)$

be an elliptic differential operator of second order. Here the coefficients of $A$ satisfy
the following conditions:

(1) $a^{ij},$ $b^{j}$ and $c$ are real-valued $C^{\infty}$-functions on $\Omega$ for $1\leq i,$ $j\leq N$.
(2) $a^{ij}(x)=a^{ji}(x)$ for $x\in\overline{\Omega},$ $1\leq i,$ $j\leq N$.
(3) $A$ is strongly elliptic; there exists a constant $a_{0}>0$ such that

$\sum_{i.j=1}^{N}a^{ij}(x)\xi_{i}\xi_{j}\geq a_{0}|\xi|^{2}$ , $ x\in\Omega$ , $\xi\in R^{N}$

(4) $c(x)\leq 0,$ $ x\in\Omega$ .
First, we shall give regularity, existence and uniqueness theorems of the solutions

of a nonhomogeneous elliptic boundary value problem $(*)$ :

$(*)$
$\left\{\begin{array}{ll}Au=f & in \Omega,\\Lu=a\frac{\partial u}{\partial v}+bu|_{\Gamma}=\varphi & on \Gamma.\end{array}\right.$

Here
(1) $a$ and $b$ are real-valued $C^{\infty}$-functions on $\Gamma$ .
(2) $\partial/\partial v$ is the conormal derivative associated with the matrix $(a^{ij})$ :

$\frac{\partial}{\partial v}=\sum_{i.j=1}^{N}a^{ij}n_{j}\frac{\partial}{\partial x_{i}}$ ,
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where $n=(n_{1}, \cdots, n_{N})$ is the unit exterior normal to $\Gamma$ . We associate with Problem $(*_{J}\backslash $

an operator $\mathscr{A}$ :

$d:H^{s,p}(\Omega)\rightarrow H^{s-2,p}(\Omega)\times B_{\langle a,b)}^{s-1-1/p,p}(\Gamma)$

$u$ $\mapsto$ (Au, $Lu$).

We shall explain function spaces. $H^{s,p}(\Omega)(s\in R, 1<p<\infty)$ denotes the set of all
functions in $L^{p}(\Omega)$ whose derivatives up to order $s$ belong to $L^{p}(\Omega)$ (for the precise
definition, see Section 2). $B^{s-1\prime p.p}(\Gamma)(s>1/p, 1<p<\infty)$ denotes the set of the boundary
values of functions in $H^{s,p}(\Omega)$ with the norm:

$|\varphi|_{s-1/p.p}=\inf\{\Vert u\Vert_{s.p} ; u\in H^{s,p}(\Omega), u|_{\Gamma}=\varphi\}$ , $\varphi\in B^{s-1/p,p}(\Gamma)$ .

$B_{\{a,b)}^{s-1-1/p.p}(\Gamma)$ denotes the following function space introduced from $B^{s-1/p.p}(\Gamma)$ and
$B^{s-1-1/p,p}(\Gamma)$ in connection with the boundary condition $L$ :

$B_{(a.b)}^{s-1-1/p,p}(\Gamma)=\{\varphi=a\varphi_{1}+b\varphi_{2} ; \varphi_{1}\in B^{s-1-1\prime p,p}(\Gamma), \varphi_{2}\in B^{s-1\prime p,p}(\Gamma)\}$

with the norm:
$|\varphi|_{a.b;s-1-1/p.p}=\inf\{|\varphi_{1}|_{s-1-1/p.p}+|\varphi_{2}|_{s-1/p,p} ; \varphi=a\varphi_{1}+b\varphi_{2}\}$ ,

$\varphi\in B_{(a,b)}^{s-1-1/p.p}(\Gamma)$ .
Then we have the following:

THEOREM 1. Let $ 1<p<\infty$ . Assume that the following conditions are satisfied:
(A.1) $a(x^{\prime})\geq 0$ and $b(x^{\prime})\geq 0$ on $\Gamma$ .
(A.2) $b(x^{\prime})>0$ on $\Gamma_{0}=\{x^{\prime}\in\Gamma;a(x^{\prime})=0\}$ .
(A.3) $c(x)<0$ in $\Omega$ .
Then, the operator $\mathscr{A}$ is a homeomorphism for all $s\geq 2$ .

The proof of Theorem 1 mainly consists of those of the $su\dot{q}ectivity$ and injectivity
of $d$ . The injectivity of $\mathscr{A}$ is proved by means of the strong maximum principle and
the boundary point lemma due to Protter and Weinberger [9]. On the other hand, we
need characterization of the adjoint operator of $d$ in the proof of the $su\dot{q}ectivity$ of
$d$ . Lions and Magenes [6] consider the case when $a(x^{\prime})>0$ on $\Gamma$, in the space $L^{p}(\Omega)$ .
In [6], the adjoint operator of $d$ is characterized by means of Green’s formula. But,
the technique of Lions and Magenes seems to be difficult to charactenize the adjoint
operator when $a(x^{\prime})\geq 0$ on $\Gamma$ . A method which we use in this paper is that of reducing
Problem $(*)$ to the study ofa first order pseudo-differential operator $T$on the boundary.

Taira [13], by using this technique of the reduction to the boundary, investigates
Problem $(*)$ under the assumptions (A.1) and (A.2) in the space $L^{2}(\Omega)$ . He makes an
argument in which he mainly use an inequality of Garding type due to Melin [7], to



MIXED BOUNDARY VALUE PROBLEMS 103

prove the surjectivity of $\mathscr{A}$ . But, in the present paper, the results with regard to existence
of a parametrix for the operator $T$ due to H\"ormander [3] and boundedness of the
parametrix due to Bourdaud [4], play a main role in order to prove the surjectivity $of\mathscr{A}$ .

Taira [15] studies Problem $(*)$ , in the case of the homogeneous boundary conditiori
with the assumptions (A.1) and (A.2), in the spaoe $L^{p}(\Omega)$ . Taira [15] gives the a priori
estimate for Problem $(*)$ such that for any solution $u\in H^{2,p}(\Omega)$ of Problem $(*)$ with
$f\in L^{p}(\Omega)$ and $\varphi\in B^{2-1/p,p}(\Gamma)$ , we have

$\Vert u\Vert_{2,p}\leq C(\Vert f\Vert_{p}+|\varphi|_{2-1/p.p}+\Vert u\Vert_{p})$

with some constant $C>0$ . In Theorem 1 with $s=2$ , it follows from the continuity of
the inverse $\mathscr{A}^{-1}$ of $\mathscr{A}$ that for any solution $u\in H^{2,p}(\Omega)$ of Problem $(*)$ with $f\in L^{p}(\Omega)$

and $\varphi\in B_{\langle a,b)}^{2-1/p,p}(\Gamma)$ , we have

$\Vert u\Vert_{2,p}\leq C(\Vert f\Vert_{p}+|\varphi|_{a,b;1-1/p,p})$

with some constant $C>0$ . This implies that the space $B_{(a,b)}^{s-1/p,p}(\Gamma)$ which we introduce
from both $B^{s-1/p,p}(\Gamma)$ and $B^{s-1-1/p,p}(\Gamma)$ in connection with the boundary condition $L$,
plays an important role. We remark that if $a\equiv 0$ on $\Gamma$ and $b>0$ on $\Gamma$ (the Dirichlet
condition), our estimate becomes

$\Vert u\Vert_{2,p}\leq C(\Vert f\Vert_{p}+|\varphi|_{2-1/p,p})$ ,

and that if $a>0$ on $\Gamma$ (the Neumann condition or the third condition), our estimate
becomes

$\Vert u\Vert_{2,p}\leq C(\Vert f\Vert_{p}+|\varphi|_{1-1/p,p})$ .

Secondly we shall derive some properties of eigenvalues and eigenfunctions for
certain unbounded linear operators in the Lebesgue space $L^{p}(\Omega)$ in connection with a
homogeneous boundary value problem $(**)$ :

$(**)$ $\left\{\begin{array}{ll}Au=\lambda u & in \Omega,\\Lu=0 & on \Gamma.\end{array}\right.$

Here $\lambda\in C$. We associate with the homogeneous problem $(**)$ an operator $A_{p}$ in the
space $L^{p}(\Omega)$ :

(a) The domain $\mathscr{D}(A_{p})$ of $A_{p}$ is

$\mathcal{D}(A_{p})=$ {$u\in H^{2,p}(\Omega);Lu=0$ on $\Gamma$}.
(b) $A_{p}u=Au,$ $u\in \mathcal{D}(A_{p})$ .
In order to characterize the adjoint operator of $A_{p}$ we introduce an unbounded

linear operator $A_{p’}$ in the space $L^{p}’(\Omega)$ :

(a) $\mathcal{D}(A_{p},)=\{v\in H^{2,p}’(\Omega);L^{*}v\equiv a\frac{\partial v}{\partial v}+\{$$b-a(\sum_{i=1}^{N}b^{i}n_{i})\}v|_{\Gamma}=0\}$ .
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(b) $A_{p^{\prime}}v=A^{*}v$ , $v\in \mathcal{D}(A_{p’})$ .
Here $1/p+1/p^{\prime}=1$ and

$A^{*}v(x)=\sum_{i=1}^{N}\frac{\partial}{\partial x_{i}}(\sum_{j=1}^{N}a^{ij}(x)\frac{\partial v}{\partial x_{j}}x))-\sum_{\iota=1}^{N}b^{i}(x)\frac{\partial v}{\partial x_{i}}(x)$

$+(c(x)-\sum_{i=1}^{N}\frac{\partial b^{i}}{\partial x_{i}}(x))v(x)$ .

Agmon [1] treated the case that $a(x)>0$ on $\Gamma$ . When $ 1<p<\infty$ , he proved the
following results (see [1], Theorem 4.4; [2], Theorem 15.1):

(1.1) The operator $A_{p}$ , is the adjoint operator of $A_{p}$ .
(1.2) The eigenvalues and eigenfunctions of $A_{p}$ are common to all $p$ .
(1.3) The real parts of the eigenvalues of $A_{p}$ are bounded above by some con-

stant $K$.
(1.4) All rays $\arg\lambda=\theta$ different from the negative axis are rays ofminimal growth

of the resolvent $(A_{p}-\lambda)^{-1}$ .
(1.5) The spectrum of $A_{p}$ is discrete, the eigenvalues of $A_{p}$ have finite multiplicities

and there are only a finite number ofeigenvalues outside any angle: $|\arg\lambda|<\pi-\epsilon,$ $\epsilon>0$ .
(1.6) The negative axis is a direction of condensation of eigenvalues.
(1.7) If $\{\lambda_{j}\}$ is the sequence ofeigenvalues of $A_{p}$, counted according to multiplicity,

and if for $\lambda\leq K,$ where the constantK is the same as in the assertion (1.3), $N(\lambda)$ is the
number of $\lambda_{j}$ such that $\lambda\leq{\rm Re}\lambda_{j}$, then one obtains that

$N(\lambda)=\frac{|\Omega|}{2^{N}\pi^{N/2}\Gamma(N/2+1)}\lambda^{N/2}+o(\lambda^{N/2})$ ,

where $|\Omega|$ denotes the volume of $\Omega$ .
(1.8) The generalized eigenfunctions are complete in $L^{p}(\Omega)$; they are also complete

in $\mathscr{D}(A_{p})$ in the $\Vert\cdot\Vert_{2,p}$ norm for all $p$ .
In this paper, we shall prove

THEOREM 2. Let $ 1<p<\infty$ andp’ $=p/(p-1)$ . Assume that the conditions (A.1) and
(A.2) are satisfied, andfurther that the following condition is satisfied:

(A.4) $b(x)-a(x)(\sum_{i=1}^{N}b^{i}(x)n_{i})\geq 0$ on $\Gamma$ .

Then, we have the assertions $(1.1)-(1.8)$ .
The assertion (1.1) is proved by means of Green’s formula. By virtue of the

hypoellipticity (Theorem 3.6) of the mapping $d$ in Theorem 1, we prove the assertion
(1.2). Using integration by parts as in [13], we obtain the assertion (1.3). The assertion
(1.4) follows from Theorem 2 of [15]. If the assertion (1.2) is true, we have only to
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verify the assertion (1.3) and $(1.5)-(1.7)$ in the case $p=2$ and have only to verify the
assertion (1.8) in the case $p=2$ by virtue of Theorem of Agmon [1]. Taira [13]
investigates this problem in the space $L^{2}(\Omega)$ in the case that the operator $A$ is the usual
Laplacian. He proves the assertions (1.1) and $(1.3)-(1.8)$ (see [13], Theorems 2 and
7.4). In this paper, in order to prove $(1.5)-(1.8)$ , we apply the results due to Agmon
([1], [2]) to the operator $A_{2}$ as in [13].

The rest of this paper is organized as follows:
Section 2 is devoted to the basic definitions and properties of function spaces and

pseudo-differential operators.
Section 3 is devoted to the proof of the injectivity of the operator $\mathscr{A}$ .
In Section 4 we prove the surjectivity and continuity of the operator $d$ . In this

section, we finish the proof of Theorem 1.
In section 5 we prove Theorem 2.

\S 2. Function spaces and pseudo-differential operators.

2.1. Function spaces. If $1\leq p<\infty,$ $L^{p}(\Omega)$ denotes the space of Lebesgue
measurable functions $u$ on $\Omega$ such that $|u|^{p}$ is integrable on $\Omega$ . The space $L^{p}(\Omega)$ is a
Banach space with respect to the norm

$\Vert u\Vert_{p}=(\int_{\Omega}|u(x)|^{p}dx)^{1/p}$

We recall the Fourier transform $\mathscr{F}$ and the inverse Fourier transform $\mathscr{F}^{*}$ :

$\mathscr{F}f(\xi).=\int_{R^{N}}e^{-ix\cdot\xi}f(x)dx$ , $f\in L^{1}(R^{N})$ ,

$\mathscr{F}^{*}g(x)=(\frac{1}{2\pi})^{N}\int_{R^{N}}e^{ix\cdot\xi}g(\xi)d\xi$ , $g\in L^{1}(R^{N})$ ,

where $x\cdot\xi=x_{1}\xi_{1}+\cdots+x_{N}\xi_{N}$ . $S(R^{N})$ denotes the space of $C^{\infty}$ functions $\varphi$ on $R^{N}$ such
that for any non-negative integer $j$, we have that $\sup\{(1+|x|^{2})^{j/2}|\partial^{\alpha}\varphi(x)|$ ; $x\in R^{N}$,
$ 0\leq|\alpha|\leq j\}<\infty$ , where $\partial^{\alpha}=\partial^{|\alpha|}/\partial x_{1}^{\alpha_{1}}\cdots\partial x_{N}^{\alpha_{N}},$ $\alpha=(\alpha_{1}, \cdots, \alpha_{N})$ and $\alpha_{i}(1\leq i\leq N)$ is a
non-negative integer. The transforms $\mathscr{F}$ and $\mathscr{F}^{*}$ can be extended to the transforms on
the dual spaces $\mathscr{S}^{\prime}(R^{N})$ of $S(R^{N})$ . If $s\in R$, we get a mapping $J^{s}$ : $S^{\prime}(R^{N})\rightarrow S^{\prime}(R^{N})$ by
the formula:

$J^{s}u=\mathscr{F}^{*}((1+|\xi|^{2})^{-s/2}\mathscr{F}u)$ , $u\in S^{\prime}(R^{N})$ .
We define function spaces which are called generalized Sobolev spaces. Ifl $<p<\infty$ ,

$H^{s,p}(R^{N})$ denotes the image of $L^{p}(R^{N})$ under the mapping $J^{s}$ . The space $H^{s.p}(R^{N})$ is a
Banach space with norm $\Vert u\Vert_{s,p}=\Vert J^{-s}u\Vert_{p}$ . We remark that, if $s$ is a non-negative integer,
$H^{s,p}(R^{N})$ coincides with the usual Sobolev space which is the space offunctions $u\in L^{p}(R^{N})$
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whose derivatives $\partial^{\alpha}u,$ $|\alpha|\leq s$, belong to the space $L^{p}(R^{N})$ , and that for $u\in H^{s,p}(R^{N})$

the norm $\Vert u\Vert_{s,p}$ is equivalent to the norm

$(\sum_{|a|\leq s}\int_{R^{N}}|\partial^{\alpha}u(x)|^{p}dx)^{1/p}$

Next, if $1<p<\infty,$ $B^{1.p}(R^{N-1})$ denotes the space offunctions $\varphi\in L^{p}(R^{N-1})$ such that

$\int\int_{R^{N-1}xR^{N-1}}\frac{|\varphi(x+y)-2\varphi(x)+\varphi(x-y)|^{p}}{|y|^{N-1+p}}dydx<\infty$ .

The space $B^{1,p}(R^{N-1})$ is a Banach space with norm

$|\varphi|_{1,p}=(\int_{R^{N- 1}}|\varphi|^{p}dx+\int\int_{R^{N-1}xR^{N-1}}\frac{|\varphi(x+y)-2\varphi(x)+\varphi(x-y)|^{p}}{|y|^{N-1+p}}dydx)^{1/p}$

If $s\in R,$ $B^{s.p}(R^{N-1})$ denotes the image of $B^{1,p}(R^{N-1})$ under the mapping $J^{s-1}$ on $R^{N-1}$ .
The space $B^{s.p}(R^{N-1})$ is a Banach space with norm $|\varphi|_{s,p}=|J^{-s+1}\varphi|_{1.p}$ .

Now, we define $H^{s.p}(\Omega)$ and $B^{s,p}(\Gamma)$ . $H^{s,p}(\Omega)$ denotes the space of restrictions to
$\Omega$ of functions in $H^{s.p}(R^{N})$ . The space $H^{s.p}(\Omega)$ has the norm $\Vert u\Vert_{s.p}=\inf\Vert U\Vert_{s.p}$ where the
infimum is taken over all $U\in H^{s,p}(R^{N})$ which equal $u$ in $\Omega$ . Let $\{O_{j}\}$ be any open covering
over $\Gamma$ such that there is a $C^{\infty}$-homeomorphism $\Phi_{j}(j=1,2, \cdots)$ which maps
$\{x^{\prime}\in R^{N-1} ; |x^{\prime}|<1\}$ onto $O_{j}$, and let $\{g_{j}\}$ be any partition of the unity subordinate to
the covering $\{O_{j}\}$ , that is, $g_{j}\in C^{\infty}(\Gamma),$ $0\leq g_{j}\leq 1$ on $\Gamma$, supp $g_{j}\subset O_{j}$ and $\sum_{j}g_{j}\equiv 1$ on $\Gamma$ .
$B^{s,p}(\Gamma)$ denotes the space of functions $\varphi$ on $\Gamma$ such that $(g_{j}\varphi)\circ\Phi_{j}\in B^{s.p}(R^{N-1})$ for all

$j$. The space $B^{s,p}(\Gamma)$ has the norm $|\varphi|_{s.p}=\sum_{j}|(g_{j}\varphi)\circ\Phi_{j}|_{s,p}$ . We remark that since $\Omega$ is a
bounded domain in $R^{N}$, the norm $|\varphi|_{s.p}$ defined above is always finite. $H_{1\dot{o}c}^{sp}(\Omega)$ denotes
the space of distributions $u\in \mathscr{D}^{\prime}(\Omega)$ such that $\psi u\in H^{s.p}(R^{N})$ for all $\psi\in C_{0}^{\infty}(\Omega)$ . $B_{1oc}^{s,p}(\Omega)$

denotes the space of distributions $\varphi\in \mathscr{D}^{\prime}(\Omega)$ such that $\psi\varphi\in B^{s,p}(R^{N})$ for all $\psi\in C_{0}^{\infty}(\Omega)$ .
We equip the space $H_{1oc}^{s,p}(\Omega)$ with the topology defined by the seminorms $u\mapsto\Vert\varphi u\Vert_{s,p}$

as $\varphi$ range over $C_{0}^{\infty}(\Omega)$ . It is easy to verify that $H_{1oc}^{s,p}(\Omega)$ is a Fr\’echet space. Similarly,
the space $B_{1oc}^{s,p}(\Omega)$ can be topologized.

In addition, we recall a relation between $H^{s.p}(\Omega)$ and $B^{s,p}(\Gamma)$ . It is well known (cf.
[11], [12]) that the trace map

$\rho:H^{s.p}(\Omega)\rightarrow B^{s-1\prime p,p}(\Gamma)$

$u$ $\mapsto$ $u|_{\Gamma}$ .

is well-defined, continuous and $su\dot{\eta}\infty tive$ for $s>1/p$ .
Finally we introduce a subspace of $B^{s,p}(\Gamma)$ associated with the boundary condition

$L$ . If $a(x^{\prime})^{2}+b(x^{\prime})^{2}>0$ on $\Gamma$, we let

$B_{(a.b)}^{s.p}(\Gamma)=\{\varphi=a\varphi_{1}+b\varphi_{2} ; \varphi_{1}\in B^{s,p}(\Gamma), \varphi_{2}\in B^{s+1.p}(\Gamma)\}$
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and

$|\varphi|_{a,b;s,p}=\inf\{|\varphi_{1}|_{s,p}+|\varphi_{2}|_{s+1,p} ; \varphi=a\varphi_{1}+b\varphi_{2}\}$ .

Then we can check that the quantity $|_{a,b;s,p}$ is a norm in the space $B_{\langle a.b)}^{s,p}(\Gamma)$ and that
the space $B_{\langle a,b)}^{s,p}(\Gamma)$ is a Banach space with respect to the $|\cdot|_{a,b;s,p}$ norm. We remark that

$B_{\langle a,b)}^{s,p}(\Gamma)=B^{s+1,p}(\Gamma)$ if $a\equiv 0$ and $b>0$ on $\Gamma$ ,

$B_{(a,b)}^{s,p}(\Gamma)=B^{s,p}(\Gamma)$ if $a>0$ on $\Gamma$

and

$B^{s+1,p}(\Gamma)\subset B_{(a,b)}^{s,p}(\Gamma)\subset B^{s,p}(\Gamma)$ ,

with continuous injections.

2.2. Pseudo-differential operators. Let $\Omega$ be an open subset of $R^{N}$ . If $m\in R$ and
$0\leq\delta<\rho\leq 1,$ $S_{\rho,\delta}^{m}(\Omega\times R^{N})$ denotes the space of all functions $a\in C^{\infty}(\Omega\times R^{N})$ with the
property that, for any compact $ K\subset\Omega$ and multi-indices $\alpha,$

$\beta$, there exists a constant
$C_{K,\alpha,\beta}>0$ such that we have for all $x\in K$ and $\theta\in R^{N}$

$|\partial_{\theta}^{\alpha}\partial_{x}^{\beta}a(x, \theta)|\leq C_{K,a,\beta}(1+|\theta|)^{m-\rho|\alpha|+\delta|\beta|}$ .

We set $S^{-\infty}(\Omega\times R^{N})=\bigcap_{m\in R}S_{\rho,\delta}^{m}(\Omega\times R^{N})$ . A symbol $a(x, \theta)\in S_{1.O}^{m}(\Omega\times R^{N})$ is said to be
classical if there exist $C^{\infty}$-functions $a_{j}(x, \theta)$ , positively homogeneous of degree $m-j$ in
$\theta$ for $|\theta|\geq 1$ , such that

$a\sim\sum_{j=0}^{\infty}a_{j}$ .

Here $a\sim\sum_{j=0}^{\infty}a_{j}$ means that for any $k>0$ , there exists $b_{k}\in S_{1,0}^{mk}(\Omega\times R^{N})$ such that
$a=a_{0}+a_{1}+\cdots+a_{k-1}+b_{k}$ . The homogeneous function $a_{0}$ of degree $m$ is called the
principal part of $a$ . $S_{ci}^{m}(\Omega\times R^{N})$ denotes the set of all classical symbols of order $m$ .

We call an operator $A$ of the following form a pseudo-differential operator of order
$m$ on $\Omega$ :

Au$(x)=\int\int_{\Omega xR^{N}}e^{i\langle x-y)\cdot\xi}a.(x, y, \xi)u(y)dyd\xi$ , $u\in C_{0}^{\infty}(\Omega)$ ,

with some $a\in S_{p,\delta}^{m}(\Omega\times\Omega\times R^{N})$ . Let $L_{\rho,\delta}^{m}(\Omega)$ be the set of all pseudo-differential operators
oforder $m$ on $\Omega$ . We set $L^{-\infty}(\Omega)=\bigcap_{m\in R}L_{\rho.\delta}^{m}(\Omega)$ . We remark that $ifp(x, \xi)\in S_{\rho.\delta}^{m}(\Omega xR^{N})$ ,

then the operator $p(x, D)$ :

$ p(x, D)u(x)=\frac{1}{(2\pi)^{N}}\int_{R^{N}}e^{ix\cdot\xi}p(x, \xi)\hat{u}(\xi)d\xi$ , $u\in C_{0}^{\infty}(\Omega)$ ,

is a pseudo-differential operator of order $m$ on $\Omega$ , that is, $p(x, D)\in L_{\rho,\delta}^{m}(\Omega)$ .
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We recall that a continuous linear operator $A:C_{0}^{\infty}(\Omega)\rightarrow \mathscr{D}^{\prime}(\Omega)$ is said to be properly
supported if the following two conditions are satisfied:

(1) For any compact subset $K$ of $\Omega$, there exists a compact subset $K^{\prime}$ of $\Omega$ such
that if supp $v\subset K$, then we have supp $Av\subset K^{\prime}$ .

(2) For any compact subset $K^{\prime}$ of $\Omega$ , there exists a compact subset $K$ of $\Omega$ such
that if supp $ v\cap K=\emptyset$ , then we have supp $ Av\cap K^{\prime}=\emptyset$ . If $A$ is properly supported, then
it maps $C_{0}^{\infty}(\Omega)$ continuously into $d^{\prime}(\Omega)$ , and further it extends to a continuous linear
operator on $C^{\infty}(\Omega)$ into $\mathscr{D}^{\prime}(\Omega)$ . Let $A\in L_{\rho,\delta}^{m}(\Omega)$ . A properly supported $B\in L_{\rho,\delta}^{-m}(\Omega)$ is
called a parametrix for $A$ if the operator $B$ satisfies

$AB\equiv I$ mod $L^{-\infty}(\Omega)$ ,
$BA\equiv I$ mod $L^{-\infty}(\Omega)$ .

Finally we cite the following two theorems which will be used in the sequel.

THEOREM 2.1 (Bourdaud [3], Theorem 1). Let $\Omega\subset R^{N}$ . Every properly supported
operator $A\in L_{1.\delta}^{m}(\Omega),$ $0\leq\delta<1$ , extends to continuous linear operators

$A:H_{1oc}^{s,p}(\Omega)\rightarrow H_{1oc}^{s-m,p}(\Omega)$ ,

$A:P_{1\dot{o}c}^{p}(\Omega)\rightarrow B_{1oc}^{s-m.p}(\Omega)$ ,

for all $s\in R$ .
THEOREM 2.2 (H\"ormander [4], Theorem 4.2). Let $\Omega\subset R^{N},$ $1-\rho\leq\delta<\rho\leq 1$ and

let $A=p(x, D)\in L_{\rho.\delta}^{m}(\Omega)$ be properly supported. Assume that, for any compact $ K\subset\Omega$ and
any multi-indices $\alpha,$

$\beta$, there exist constants $C_{K,a.\beta}>0,$ $C_{K}>0$ and $\mu\in R$ such that we have
for all $x\in Kand|\xi|\geq C_{K}$,

$|\partial_{\xi}^{\alpha}\partial^{\beta}p(x, \xi)|\leq C_{K,\alpha.\beta}|p(x, \xi)|(1+|\xi|)^{-\rho|\alpha|+\delta|\beta|}$ ,

$|p(x, \xi)|^{-1}\leq C_{K}(1+|\xi|)^{\mu}$ .
Then, there exists a parametrix Be $L_{\rho,\delta}^{\mu}(\Omega)$ for $A$ .

REMARK. Even if $\Omega$ is an N-dimensional compact $C^{\infty}$ manifold without boundary,
it is known that Theorem 2.1 is valid, and that Theorem 2.2 is also valid by virtue of
the condition that $1-\rho\leq\delta<\rho\leq 1$ .

\S 3. Proof of Theorem 1. Part 1.

In this section, after we reduce Problem $(*)$ to the boundary, we shall prove the
injectivity of the operator $d$ . If $s\geq 2$ , it is well known that the Dirichlet problem:

$\left\{\begin{array}{ll}Aw=0 & in \Omega,\\w=\varphi & on \Gamma,\end{array}\right.$
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has a unique solution $w\in H^{s,p}(\Omega)$ for any $\varphi\in B^{s-1/p,p}(\Gamma)$ . Letting $ w=P\varphi$ , the operator
$P:B^{s-1/p,p}(\Gamma)\rightarrow H^{s,p}(\Omega)$ is called the Poisson operator. Moreover, according to Seely
[10] (Theorems 5 and 6), the operator $P$ maps $B^{s-1/p,p}(\Gamma)$ isomorphically onto
$N(A, s,p)=\{w\in H^{s,p}(\Omega);Aw=0\}$ , the trace on $\Gamma$ of elements in $N(A, s, p)$ can be defined
and the inverse of $P$ is the restriction map; $w\mapsto w|_{\Gamma}$ .

Let $T$ be

$T:C^{\infty}(\Gamma)\rightarrow C^{\infty}(\Gamma)$

$\varphi$ $\mapsto LP\varphi$ .
Then we have

$T=a\Pi+b$ ,

where $\Pi\varphi=(\partial/\partial v)(P\varphi)|_{\Gamma}$ . We remark that the operator $\Pi$ is a classical pseudo-differen-
tial operator of first order on the boundary $\Gamma$ . By Theorem 2.1, the operator $T$ can
be extended to a continuous linear operator:

$T:B^{t,p}(\Gamma)\rightarrow B^{t-1,p}(\Gamma)$

for all $t\in R$ .
Now we reduce Problem $(*)$ to the study of the operator $T$ on $\Gamma$ . We have the

equivalence of the regularity of $\mathscr{A}$ with that of $T$ as follows (cf. [15], Theorem 3.9):

THEOREM 3.1. For any $s\geq 2$ , the following two assertions are equivalent:
(1) The condition that $u\in L^{p}(\Omega)$ , Aue $H^{s-2,p}(\Omega)$ and $Lu\in B_{\langle a,b)}^{s-1-1/p,p}(\Gamma)$ implies that

$u\in H^{s,p}(\Omega)$ .
(2) The condition that $\varphi\in B^{-1/p,p}(\Gamma)$ and $T\varphi\in B^{s-1/p,p}(\Gamma)$ implies that $\varphi\in$

$B^{s-1/p,p}(\Gamma)$ .
$PR\infty F$ . First we show that the assertion (1) implies the assertion (2). We let

$\varphi\in B^{-1/p,p}(\Gamma)$ and $T\varphi\in B^{s-1/p.p}(\Gamma)$ . And we set $ u=P\varphi$ . Then, we have that $u\in L^{p}(\Omega)$ ,
$Au=0$ in $\Omega$ and $Lu=LP\varphi=T\varphi\in B^{s-1/p,p}(\Gamma)$ . By the assertion (1) we obtain that
$P\varphi\in H^{s,p}(\Omega)$ . It follows that $\varphi\in B^{s-1/p,p}(\Gamma)$ .

Next, we show that the assertion (2) implies the assertion (1). We let $u\in L^{p}(\Omega)$ ,
$Au\in H^{s-2,p}(\Omega)$ and $Lu=a\varphi_{1}+b\varphi_{2}\in B_{\langle a,b)}^{s-1-1/p,p}(\Gamma)$ where $\varphi_{1}\in B^{s-1-1/p,p}(\Gamma)$ and
$\varphi_{2}eB^{s}$

‘

$1/p,p(\Gamma)$ . Combining Theorems 3.1 and 3.3 of [15], we have that the Neumann
problem:

$\left\{\begin{array}{l}Av=Auin\\\frac{\partial v}{\partial v}=\varphi_{1}on\end{array}\right.$

$\Gamma\Omega$

,

has a unique solution $v\in H^{s,p}(\Omega)$ . Let $w=u-v$ . We obtain that weL $(\Omega)$ and $Aw=0$

in $\Omega$ . It follows that there exists $\varphi\in B^{-1/p,p}(\Gamma)$ such that $P\varphi=w$ . But we have by the
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assertion (2) that $\varphi\in B^{s-1/p,p}(\Gamma)$ , since $T\varphi=LP\varphi=Lw=Lu-Lv=a\varphi_{1}+b\varphi_{2}-$

$a(\partial v/\partial v)-bv=b(\varphi_{2}-v)\in B^{s-1/p,p}(\Gamma)$ . Hence we obtain that $u=w+v=P\varphi+v\in H^{s,p}(\Omega)$ .
The proof of Theorem 3.1 is now complete.

Next, about properties of the operator $\Pi$ , we have the following:

THEOREM 3.2. (1) The operator $\Pi$ is strongly elliptic, that is, we have, for $al$

$\varphi\in C^{\infty}(\Gamma)$ ,

(3.1) ${\rm Re}\int_{\Gamma}\Pi\varphi\cdot\overline{\varphi}d\sigma\geq c_{1}|\varphi|_{1/2.2}^{2}-c_{2}|\varphi|_{-1/2.2}^{2}$ ,

with some constants $c_{1}>0$ and $c_{2}>0$ . Here $d\sigma\dot{i}$ the surface element on $\Gamma$ .
(2) Let $p_{1}(x^{\prime}, \xi^{\prime})+\sqrt{-1}q_{1}(x^{\prime}, \xi^{\prime})$ be the principal symbol of the operator $\Pi$ . Then

we have

(3.2) $p_{1}(x^{\prime}, \xi^{\prime})\geq c_{0}|\xi^{\prime}|$

on the bundle $T^{*}(\Gamma)\backslash \{0\}$ of non-zero cotangent vectors with some constant $c_{0}>0.$ Her
$|\xi^{\prime}|$ is the length of $\xi^{\prime}$ with respect to the Riemannian metric of $\Gamma$ induced by the natura
metric of $R^{N}$ .

$PR\infty F$ . (1) By the divergence theorem, for $ u\in C^{\infty}(\emptyset$ , we have

$-{\rm Re}\iint_{\Omega}$ Au $\cdot\overline{u}dx=\iint_{\Omega}\sum_{i.j=1}^{N}a^{ij}(x)\frac{\partial u}{\partial x_{i}}(x)\cdot\overline{\frac{\partial u}{\partial x_{j}}(x)}dx$

$-{\rm Re}\int_{\Gamma}\frac{\partial u}{\partial v}(x^{\prime})\cdot\overline{u(x^{\prime})}d\sigma$

$+\int\int_{\Omega}(\frac{1}{2}\sum_{j=1}^{N}\frac{\partial b^{j}}{\partial x_{j}}(x)-c(x))|u(x)|^{2}d\kappa$

$-\frac{1}{2}\int_{\Gamma}\sum_{j=1}^{N}b^{j}(x^{\prime})\cdot n_{j}|u(x^{\prime})|^{2}d\sigma$ .

Taking $ u=P\varphi$ where $\varphi\in C^{\infty}(\Gamma)$ , we have

${\rm Re}\int_{\Gamma}\frac{\partial}{\partial v}(P\varphi)\cdot\overline{\varphi}d\sigma=\int\int_{\Omega}\sum_{i,j=1}^{N}a^{ij}\cdot\frac{\partial}{\partial x_{i}}(P\varphi)\cdot\frac{\partial}{\partial x_{j}}(P\varphi)dx$

$+\int\int_{\Omega}(\frac{1}{2}\sum_{j=1}^{N}\frac{\partial b^{j}}{\partial x_{j}}(x)-c(x))|P\varphi|^{2}dx$

$-\frac{1}{2}\int\sum_{\Gamma^{j=1}}^{N}b^{j}(x^{\prime})\cdot n_{j}|\varphi|^{2}d\sigma$ .
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Letting

$K=\max\{0,$ $\sup_{\Omega}(c(x)-\frac{1}{2}\sum_{j=1}^{N}\frac{\partial\nu}{\partial x_{j}}(x))\}$

and

$c_{3}=\max\{1,$ $\sup_{\Gamma}\sum_{j=1}^{N}y(x^{\prime})n_{j}\}$ ,

we have

${\rm Re}\int_{\Gamma}\Pi\varphi\cdot\overline{\varphi}d\sigma\geq a_{0}\iint_{\Omega}\sum_{i=1}^{N}|\frac{\partial}{\partial x_{i}}(P\varphi)|^{2}dx-K\iint_{\Omega}|P\varphi|^{2}dx-\frac{c_{3}}{2}\int_{\Gamma}|\varphi|^{2}d\sigma$

$=a_{0}\Vert P\varphi\Vert_{1,2}^{2}-(a_{O}+K)\Vert P\varphi\Vert_{0,2}^{2}-\frac{c_{3}}{2}\int_{\Gamma}|\varphi|^{2}d\sigma$ .

From Theorem 3.16 ofMizohata [8], we obtain that for any $\epsilon>0$ , there exists a constant
$C(\epsilon)>0$ such that

$\int_{\Gamma}|\varphi(x^{\prime})|^{2}d\sigma\leq\epsilon\Vert P\varphi\Vert_{1,2}^{2}+C(\epsilon)\Vert P\varphi\Vert_{0.2}^{2}$ .

Hence, taking $\epsilon=a_{0}/c_{3}$ , we have

${\rm Re}\int_{\Gamma}\Pi\varphi\cdot\overline{\varphi}d\sigma\geq\frac{a_{0}}{2}\Vert P\varphi\Vert_{1,2}^{2}-(a_{O}+K+\frac{c_{3}C(\epsilon)}{2})\Vert P\varphi\Vert_{0,2}^{2}$ .

Since the operator $P$ maps $B^{t-1/2,2}(\Gamma)$ isomorphically onto $N(A, t, 2)$ for all $t\in R$, we have

${\rm Re}\int_{\Gamma}\Pi\varphi\cdot\overline{\varphi}d\sigma\geq c_{1}|\varphi|_{1/2,2}^{2}-c_{2}|\varphi|_{-1/2,2}^{2}$

with some constants $c_{1}$ and $c_{2}>0$ .
(2) It is known (cf. [5]) that the inequality (3.1) implies the strong ellipticity (3.2)

of the operator $\Pi$ .
The proof of Theorem 3.2 is now complete.

Using Theorem 3.2, we shall prove the hypoellipticity of the operator $T$ (see [15],
Lemma 4.1):

THEOREM 3.3. Let $ 1<p<\infty$ . Assume that the conditions (A.1) and (A.2) are
satisfied. Then, for any distribution $\varphi$ on $\Gamma$ , the condition that $T\varphi\in B^{s,p}(\Gamma)$ implies that
$\varphi\in B^{s,p}(\Gamma)$ for any seR. Andfurther we have, for $t<s$,

$|\varphi|_{s,p}\leq C_{s,t}(|T\varphi|_{s,p}+|\varphi|_{t,p})$
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with some constant $C_{s.t}>0$ .
In order to prove Theorem 3.3, we introduce some lemmas. The first lemma is $(cf_{s}$

[15], Lemma 4.2)

LEMMA 3.4. Let $t(x^{\prime}, \xi^{\prime})$ be a symbol of the operator $T=a\Pi+b$ . Assume that the
conditions (A.1) and (A.2) are satisfied. Then, for any $ x^{\prime}\in\Gamma$, there exists a neighborhooc
$U(x^{\prime})$ of $x^{\prime}$ such that, for any compact subset $K\subset U(x^{\prime})$ and any multi-indices $\alpha,$

$\beta$, we
have for $x^{\prime}\in Kand|\xi^{\prime}|\geq C_{k}$

(3.3) $|\partial_{\xi^{\prime}}^{\alpha}\partial_{x^{\prime}}^{\beta}t(x^{\prime}, \xi^{\prime})|\leq C_{K,\alpha.\beta}|t(x^{\prime}, \xi^{\prime})|(1+|\xi^{\prime}|)^{-|\alpha|+(1\prime 2)|\beta|}$ ,

(3.4) $|t(x^{\prime}, \xi^{\prime})|^{-1}\leq C_{k}$

with some constants $C_{K,\alpha.\beta}$ and $C_{K}>0$ .
$PR\infty F$ . First we prove the inequality (3.4). By Theorem 3.2, the operator $\Pi$ has

the symbol

$p_{1}(x^{\prime}, \xi^{\prime})+\sqrt{-1}q_{1}(x^{\prime}, \xi^{\prime})+p_{0}(x^{\prime}, \xi^{\prime})+\sqrt{-1}q_{0}(x^{\prime}, \xi^{\prime})+terms$ of order $\leq-1$ ,

where $p_{j},$ $q_{j}\in S_{1.0}^{j}(\Gamma)(j=0,1)$ and $p_{1}(x^{\prime}, \xi^{\prime})\geq c_{0}|\xi^{\prime}|$ on $T^{*}(\Gamma)\backslash \{0\}$ . It follows that

$t(x^{\prime}, \xi^{\prime})=a(x^{\prime})[p_{1}(x^{\prime}, \xi^{\prime})+\sqrt{-1}q_{1}(x^{\prime}, \xi^{\prime})]$

$+\{b(x^{\prime})+a(x^{\prime})[p_{0}(x^{\prime}, \xi’)+\sqrt{-1}q_{0}(x’, \xi^{\prime})]\}$

$+terms$ of order $\leq-1$ .
If $a(x^{\prime})>0$ , we can take $|\xi^{\prime}|$ enough large such that

$|t(x^{\prime}, \xi^{\prime})|\geq|a(x^{\prime})[p_{1}(x^{\prime}, \xi^{\prime})+p_{0}(x^{\prime}, \xi^{\prime})]+b(x^{\prime})|$

$\geq|a(x^{\prime})[p_{1}(x^{\prime}, \xi^{\prime})+p_{0}(x^{\prime}, \xi^{\prime})]|-b(x^{\prime})$

$\geq\frac{c_{O}}{2}a(x^{\prime})|\xi^{\prime}|-b(x^{\prime})$

$\geq\frac{c_{O}}{4}a(x^{\prime})|\xi^{\prime}|+1$ .

If $a(x^{\prime})=0$ , for $|\xi^{\prime}|$ enough large, we have

(3.5) $|t(x^{\prime}, \xi^{\prime})|\geq b(x^{\prime})$ .
Noting that the set $\Gamma_{0}=\{x^{\prime}\in\Gamma;a(x^{\prime})=0\}$ is compact, it follows that

$|t(x^{\prime}, \xi^{\prime})|\geq C\{a(x^{\prime})|\xi^{\prime}|+1\}$ for enough large $|\xi^{\prime}|$ .
Here and in the sequel, the letter $C$ denotes a generic positive constant. This proves the
inequality (3.4).
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Secondly we verify the inequality (3.3). When $|\alpha|=1$ and $|\beta|=0$ , we can take $|\xi^{\prime}|$

enough large such that

$|\partial_{\xi^{\prime}}^{a}t(x^{\prime}, \xi^{\prime})|\leq C(a(x^{\prime})+|\xi^{\prime}|^{-1})$

$\leq C(1+|\xi^{\prime}|)^{-1}(a(x^{\prime})|\xi^{\prime}|+1)$ .
By the inequality (3.5), we have

$|\partial_{\xi}^{\alpha},t(x^{\prime}, \xi^{\prime})|\leq Ct(x^{\prime}, \xi^{\prime})|(1+|\xi^{\prime}|)^{-1}$

This proves the inequality (3.3) with $|\alpha|=1$ and $|\beta|=0$ .
When $|\alpha|=0$ and $|\beta|=1$ , we need the following lemma to prove the inequality (3.3).

LEMMA 3.5. Let $f$ be a non-negative $C^{2}$-function of $R$ such that

$\sup_{x\in R}|f^{\prime\prime}(x)|\leq c_{4}$ ,

with some constant $c_{4}>0$ . Then, we have

$|f^{\prime}(x)|\leq\sqrt{2c_{4}}\sqrt{f(x)}$ on $R$ .
Now we continue the proof of Lemma 3.4. For $|\xi^{\prime}|$ enough large, we have

$|\partial_{x^{\prime}}^{\beta}t(x^{\prime}, \xi^{\prime})|\leq C(|\partial_{x}^{\beta},a(x^{\prime})||\xi^{\prime}|+a(x^{\prime})|\xi^{\prime}|+1)$ .
From Lemma 3.5 and the inequality (3.5), it follows that

$|\partial_{x’}^{\beta}t(x^{\prime}, \xi^{\prime})|\leq C(\sqrt{a(x^{\prime})}|\xi^{\prime}|+a(x^{\prime})|\xi^{\prime}|+1)$

$\leq C\{|\xi^{\prime}|^{1/2}(a(x^{\prime})|\xi^{\prime}|+1)^{1/2}+(a(x^{\prime})|\xi^{\prime}|+1)\}$

$\leq C|t(x^{\prime}, \xi^{\prime})|(|\xi^{\prime}|^{1/2}|t(x^{\prime}, \xi^{\prime})|^{-1/2}+1)$

$\leq C|t(x^{\prime}, \xi^{\prime})|(1+|\xi^{\prime}|)^{1/2}$

This proves the inequality (3.3) with $|\alpha|=0$ and $|\beta|=1$ .
For general case that $|\alpha|+|\beta|=k(k=2,3, \cdots)$ , we can similarly prove the

inequality (3.3). The proof of Lemma 3.4 is complete.

Using Lemma 3.4, we prove Theorem 3.3.
$PR\infty F$ OF THEOREM 3.3. First we remark that we can have a finite number of

local charts $\{(U_{j}, \chi_{j})\}_{j=1}^{m}$ of the boundary $\Gamma$ such that the estimates (3.3) and (3.4) hold
in each of them. One can check that the operator $T$ satisfies the conditions of Theorem
2.2 with $\mu=0,$ $\rho=1$ and $\delta=1/2$ . So, by Theorem 2.2 there exists a parametrix
$S\in L_{1,1/2}^{0}(U_{j})$ of $T$. Let $\{\varphi_{j}\}_{j=1}^{m}$ be a partition of unity subordinate to the covering
$\{U_{j}\}_{j=1}^{m}$ , and let $\psi_{j}\in C_{O}^{\infty}(U_{j})$ be such that $\psi_{j}=1$ on supp $\varphi_{j}$ . Then, the operator $T$ is de-
composed as follows:
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$T\varphi=\sum_{j=1}^{m}\varphi_{j}T\varphi=\sum_{j=1}^{m}\varphi_{j}\{T\psi_{j}\varphi+T(1-\psi_{j})\varphi\}$

$=\sum_{j=1}^{m}\varphi_{j}T\psi_{j}\varphi+\sum_{j=1}^{m}\varphi_{j}T(1-\psi_{j})\varphi$ .

The second term of the right-hand side belongs to $L^{-\infty}(\Gamma)$ since $\varphi_{j}(1-\psi_{j})=0$ . Tht
proof of Theorem 3.3 is reduced to those of the following assertions:

(1) If $\psi_{j}\varphi\in B^{t.p}(U_{j})$ and $T\psi_{j}\varphi eB^{s.p}(U_{j})$ , then we have $\psi_{j}\varphi\in B^{s.p}(U_{j})$ .
(2) $|\psi_{j}\varphi|_{s.p}\leq C_{s,t}(|T\psi_{j}\varphi|_{s,p}^{2}+|\psi_{j}\varphi|_{t,p}^{2})$ with some constant $C_{s.t}>0$ .
We shall prove the assertion (1). Since the operator $T$ has the parametrix $S$, we

obtain that

$ ST\psi_{j}\varphi=\psi_{j}\varphi+R\psi_{j}\varphi$ ,

where $R\in L^{-\infty}(U_{j})$ . Theorem 2.1 tells us that the operator $S$ maps $B_{1oc}^{s,p}(\Gamma)$ continuously
into itself for all $s\in R$ . Hence it follows that $\psi_{j}\varphi\in B^{s,p}(U_{j})$ . And further we have tht
inequality (2). The proof of Theorem 3.3 is complete.

Combining Theorem 3.1 and Theorem 3.3, we have the folowing:

THEOREM 3.6. Let $ 1<p<\infty$ . Assume that the conditions (A.1) and (A.2) art

satisfied. Then, for any $s\geq 2$ the condition that $u\in L^{p}(\Omega)$ , $ Au\in H^{s-2,p}(\Omega)an\iota$

$LueB_{Ja,b)}^{s-1-1/p,p}(\Gamma)$ implies that $u\in H^{s,p}(\Omega)$ .
Now, we shall show the injectivity of the operator $\mathscr{A}$ . For any $s\geq 2$ , let $u\in H^{s.p}(\Omega)$

and suppose that

(3.6) $Au=0$ in $\Omega$

and

(3.7) $Lu=0$ on $\Gamma$ .
Then, we shall show that $u\equiv 0$ in $\Omega$ . First we obtain by Theorem 3.6 that $u\in H^{t.p}(\Omega_{J}^{\backslash }$

for all $t\geq 2$ . Hence, using the Sobolev imbedding theorem, we have $ u\in C^{\infty}(\Omega\gamma$ . We
suppose that we do not have $u(x)=0$ for all $ x\in\Phi$. Then, by replacing $uby-u$ if $u(x)\leq t$

in $\Omega$, we have only to consider the two cases:

(i) $\max_{\Omega}u=u(x_{0})>0$ at some $ x_{0}\in\Omega$ .

(ii) $\max_{\Omega}u=u(x_{1}^{\prime})>0$ at some $ x_{1}^{\prime}\in\Gamma$ .

If $\max_{\Omega}u=u(x_{O})>0$ , it follows from the strong maximum principle (cf. [9], Chap
2, Sec. 3, Theorem 6) that $u(x)\equiv u(x_{0}),$ $ x\in\Omega$ . By (3.6) and the condition (A.3), we obtain
that $0=Au(x)=c(x)u(x)<0$ . This leads to a contradiction.
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If $\max_{\Omega}u=u(x_{1}^{\prime})>0$ , it follows from the boundary point lemma (cf. [9], Chap.
2, Sec. 3, Theorem 8) that $(\partial u/\partial v)(x_{1}^{\prime})>0$ . By (3.7) we have that $0=Lu(x_{1}^{\prime})=$

$a(x_{1}^{\prime})(\partial u/\partial v)(x_{1}^{\prime})+b(x_{1}^{\prime})u(x_{1})$ . On the other hand, if $a(x_{1})>0$ , then $a(x_{1}^{\prime})(\partial u/\partial v)(x_{1}^{\prime})$

$+b(x_{1}^{\prime})u(x_{1}^{\prime})>0$ . If $a(x_{1}^{\prime})=0$ then, $a(x_{1}^{\prime})(\partial u/\partial v)(x_{1}^{\prime})+b(x_{1}^{\prime})u(x_{1}^{\prime})=b(x_{1}^{\prime})u(x_{1}^{\prime})>0$ .
These assertions also lead to a contradiction. Hence, we have $u\equiv 0$ in $\overline{\Omega}$.

We have finished the proof of the injectivity of the operator $\mathscr{A}$ .

\S 4. Proof of Theorem 1. Part 2.

In this section we shall prove the surjectivity and continuity of the operator $d$ .
We consider the surjectivity of the pseudo-differential operator $T$ to which we reduce
Problem $(*)$ on the boundary in Section 3. We recall the operator $T$:

$T:B^{s-1/p,p}(\Gamma)\rightarrow B^{s-1-1/p,p}(\Gamma)$ , $s\geq 2$ ,

$\varphi$ $\mapsto$ $ a\Pi\varphi+b\varphi$ ,

where $\Pi\varphi=(\partial/\partial v)(P\varphi)|_{\Gamma}$ . We introduce an operator $\mathcal{T}$ in $B^{s-1/p,p}(\Gamma)(s\geq 2)$ associat-
ed with $T$ as follows:

(a) The domain $\mathcal{D}(\mathcal{T})$ of $\mathcal{T}$ is the space

$\mathscr{D}(\mathcal{T})=\{\varphi\in B^{s-1/p,p}(\Gamma);T\varphi\in B^{s-1/p,p}(\Gamma)\}$ .
(b) $\mathcal{T}\varphi=T\varphi,$ $\varphi\in \mathscr{D}(\mathcal{T})$ .

We remark that the operator $\mathcal{T}$ is densely defined, and closed in $B^{s-1/p,p}(\Gamma)$ .
Next, instead of Problem $(*)$ , we consider the following problem:

$(*)_{\lambda}$
$\left\{\begin{array}{l}(A-\lambda)u=f\\Lu=\varphi\end{array}\right.$ $inon$ $\Gamma\Omega$

,

where $\lambda\geq 0$ . We associate with Problem $(*)_{\lambda}$ a linear operator $\mathscr{A}_{\lambda}$ :
$\mathscr{A}_{\lambda}$ : $H^{s,p}(\Omega)\rightarrow H^{s-2.p}(\Omega)\times B_{\langle a,b)}^{s-1-1/p,p}(\Gamma)$

$u$ $\mapsto$ $((A-\lambda)u, Lu)$ .
We remark that the operator $d_{\lambda}$ coincides with $\mathscr{A}$ when $\lambda=0$ . We reduce Problem $(*)_{\lambda}$

to the study of a pseudo-differential operator on the boundary similarly as in the case
of Problem $(*)$ . The Dirichlet problem:

$\left\{\begin{array}{ll}(A-\lambda)w=0 & in \Omega,\\w=\varphi & on \Gamma,\end{array}\right.$

has a unique solution $w\in H^{t.p}(\Omega)$ for any $\varphi eB^{t-1/p,p}(\Gamma)$ when $t\in R$ and $\lambda\geq 0$ . The
Poisson operator $P(\lambda)$ :

$P(\lambda):B^{t-1/p,p}(\Gamma)\rightarrow H^{t,p}(\Omega)$ ,
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is given by the formula that $P(\lambda)\varphi=w$ . Further the operator $P(\lambda)$ maps $B^{t-1\prime p.p}(\Gamma)$

isomorphically onto $N(A, t, p)=$ {$u\in H^{t,p}(\Omega);(A-\lambda)u=0$ in $\Omega$ } $(t\in R)$ and its inverse is
the trace operator on $\Gamma$ . We let

$T(\lambda):C^{\infty}(\Gamma)\rightarrow C^{\infty}(\Gamma)$

$\varphi$ $\mapsto LP(\lambda)\varphi$ , $\lambda\geq 0$ .
By Theorem 2.1, the operator $T(\lambda)$ is extended to a continuous linear operato]
$T(\lambda):B^{t-1/p.p}(\Gamma)\rightarrow B^{t-1-1/p.p}(\Gamma)(t\in R)$ . As in the case of the operator $T$, we introduce
a linear operator $\mathcal{T}(\lambda)$ in $B^{s-1/p.p}(\Gamma)(s\geq 2)$ as follows:

(a) The domain $\mathscr{D}(\mathcal{T}(\lambda))$ of $\mathcal{T}(\lambda)$ is the space
$\mathscr{D}(F(\lambda))=\{\varphi\in B^{s-1/p.p}(\Gamma);T(\lambda)eB^{s-1/p.p}(\Gamma)\}$ .

(b) $\mathcal{T}(\lambda)\varphi=T(\lambda)\varphi,$ $\varphi\in \mathscr{D}(\mathcal{T}(\lambda))$ .
We remark that the operator $\mathcal{T}(\lambda)$ coincides with the operator $F$ when $\lambda=0$ , and thal
the operator $\mathcal{T}(\lambda)$ is densely defined, closed in $B^{s-1\prime p.p}(\Gamma)$ .

Further, introducing an auxiliary variable $y$ of the unit circle

$S=R/2\pi Z$ ,

we consider the following problem $(*)substituted\sim$ for Problem $(*)$ :

$(*)\sim$ $\left\{\begin{array}{ll}\tilde{\Lambda}\tilde{u}\equiv(A+\partial^{2}/\partial y^{2})\tilde{u}=; & in \Omega\times S,\\L\tilde{u}\equiv a\frac{\partial\tilde{u}}{\partial v}+b\tilde{u}|_{\Gamma xS}=\tilde{\varphi} & on \Gamma\times S.\end{array}\right.$

Similarly, we reduce Problem $(\sim*)$ to the boundary $\Gamma\times S$. The Dirichlet problem

$\left\{\begin{array}{l}\Lambda\tilde{w}=0in\\\tilde{w}=\tilde{\varphi}on\end{array}\right.\sim$ $\Gamma\times S\Omega\times S$

,

has a unique solution $\tilde{w}\in H^{t,p}(\Omega\times S)$ for any $\tilde{\varphi}\in B^{t-1\prime p,p}(\Gamma\times S)(t\in R)$ . The operator
$\tilde{P}:B^{t-1/p,p}(\Gamma\times S)\rightarrow H^{t.p}(\Omega\times S)$ is defined by the formula $\tilde{P}\tilde{\varphi}=\tilde{w}$ . Further the operator
$\tilde{P}$ maps $B^{t-1/p.p}(\Gamma\times S)$ isomorphically onto $N(\tilde{\Lambda}, t, p)=\{\tilde{u}\in H^{t.p}(\Omega\times S);\tilde{\Lambda}\tilde{u}=0$ in
$\Omega\times S\}(t\in R)$ and its inverse is the trace operator on $\Gamma\times S$. We let

$\tilde{T}:C^{\infty}(\Gamma\times S)\rightarrow C^{\infty}(\Gamma\times S)$

$\tilde{\varphi}\mapsto L\tilde{P}\tilde{\varphi}$ .
Then we can write

$\tilde{T}=a\tilde{\Pi}+b$ ,

where $\tilde{\Pi}\tilde{\varphi}=(\partial/\partial v)(\tilde{P}\tilde{\varphi})|_{\Gamma xS}$ . Then, the operator $\tilde{\Pi}$ is a classical pseudo-differential
operator offirst order on $\Gamma\times S$. The symbol ofthe operator $\tilde{\Pi}$ is given by the formula
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$[\tilde{p}_{1}(x^{\prime}, \xi^{\prime}, y, \eta)+\sqrt{-1}\tilde{q}_{1}(x^{\prime}, \xi^{\prime}, y, \eta)]$

$+[\tilde{p}_{0}(x^{\prime}, \xi^{\prime},y, \eta)+\sqrt{-1}\tilde{q}_{0}(x^{\prime}, \xi^{\prime}, y, \eta)]$

$+terms$ of order $\leq-1$

where $\tilde{p}_{1}(x^{\prime}, \xi^{\prime}, y, \eta)\geq\tilde{c}_{0}(|\xi^{\prime}|^{2}+\eta^{2})^{1/2}$ on $T^{*}(\Gamma\times S)\backslash \{0\}$ with some constant $\tilde{c}_{0}>0$ .
Hence, we find that the operator $\tilde{T}=a\tilde{\Pi}+b$ is a classical pseudo-differential operator
of first order on $\Gamma\times S$ and that the symbol $ t(x^{\prime}, \xi^{\prime}, y, \eta)\sim$ of $\tilde{T}$ is given by the formula

$a(x^{\prime})[\tilde{p}_{1}(x^{\prime}, \xi^{\prime},y, \eta)+\sqrt{-1}\tilde{q}_{1}(x^{\prime}, \xi^{\prime},y, \eta)]$

$+\{b(x^{\prime})+a(x^{\prime})[\tilde{p}_{0}(x^{\prime}, \xi^{\prime},y, \eta)+\sqrt{-1}\tilde{q}_{0}(x^{\prime}, \xi^{\prime},y, \eta)]\}$

$+terms$ of order $\leq-1$ .
Further, by Theorem 2.1, the operator $\tilde{T}$ is extended to a continuous linear operator
$\tilde{T}:B^{t-1/p.p}(\Gamma\times S)\rightarrow B^{t-1-1/p.p}(\Gamma\times S)(teR)$ . As in the case of $T$, we find that for
$(x^{\prime}, y)e\Gamma$ and multi-indices $\alpha,$

$\beta$ there exist constants $\tilde{C}>0$ and $\tilde{C}^{\prime}>0$ such that
$|\partial_{\xi}^{\alpha}\partial_{x’.y}^{\beta^{\sim}}t(x^{\prime}, \xi^{\prime},y, \eta)|$

$\leq\tilde{C}|t(x^{\prime}, \xi^{\prime},y, \eta)|(1+(|\xi^{\prime}|^{2}+\eta^{2})^{1/2})^{-|\alpha|+(1/2)|\beta|}\sim$ ,

$|t(x^{\prime}, \xi^{\prime},y, \eta)|^{-1}\leq\tilde{C}\sim$

for $(|\xi^{\prime}|^{2}+\eta^{2})^{1/2}\geq C^{\prime}$ . By noting Remark of Theorems 2.1 and 2.2, it follows from
Theorems 2.1 and 2.2 that there exists a parametrix for $\tilde{T}$ in $L_{1,1/2}^{O}(\Gamma\times S)$ , and that the
parametrix is bounded in $B^{s,p}(\Gamma\times S)$ for all $s\in R$ . Hence it follows that the condition
that $\tilde{\varphi}\in \mathscr{D}^{\prime}(\Gamma\times S)$ and $\tilde{T}\tilde{\varphi}\in B^{s,p}(\Gamma\times S)$ implies that $\tilde{\varphi}\in B^{s.p}(\Gamma\times S)$ for all $s\in R$, and that

$|\tilde{\varphi}|_{s,p}\leq\tilde{C}_{s.t}(|\tilde{T}\tilde{\varphi}|_{s.p}+|\tilde{\varphi}|_{t,p})$ , $t<s$

with some constant $\tilde{C}_{s.t}>0$ .
As in the case of the operator $T$, we introduce a linear operator ff in $B^{s-1/p,p}(\Gamma\times S)$

$(s\geq 2)$ as follows:
(a) The domain $\mathcal{D}(ff)$ of a is the space

$\mathscr{D}(\tilde{\mathcal{T}})=\{\tilde{\varphi}\in B^{s-1/p,p}(\Gamma\times S);\tilde{T}\tilde{\varphi}\in B^{s-1/p,p}(\Gamma\times S)\}$ .
(b) $ff_{\tilde{\varphi}=\tilde{T}\tilde{\varphi},\tilde{\varphi}e\mathcal{D}(ff)}$ .

We remark that the operator $F$ is densely defined, closed in $B^{s-1\prime p.p}(\Gamma\times S)$ .
Here, we recall that a densely defined, closed linear operator $F$ from a Banach

space $X$ to itself is called a Fredholm operator if the following three conditions are
satisfied:
(1) The null space $\mathscr{N}(F)$ of $F$ has finite dimension.
(2) $Therange9(F)$ ofFis closed in X.
(3) The range $\mathscr{B}(F)$ has finite codimension in $X$.
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In this case, we introduce the index of $F$ by the following formula:

ind$F=\dim J(F)$ -codim$a(F)$ .
Now, we have obtained that the operator $\mathscr{A}$ maps $H^{s.p}(\Omega)$ injectively intc

$H^{s-2,p}(\Omega)\times B_{\langle a,b)}^{s-1-1/p.p}(\Gamma)$ , that is, we have $dim.\parallel(\mathscr{A})=0$ . This implies thal
dim $J(\mathcal{T})=0$ from the definition of $\mathcal{T}$ . Hence, the surjectivity of $d$ follows from
the following four assertions:

PROPOSmON 4.1. inda is finite.
PROPOSmON 4.2. Ifind $f$ isfinite, then there exists afinite subset $K\subset Z$ such thai

ind.$\mathcal{T}(\lambda^{\prime})=0$ for all $\lambda^{\prime}=l^{2}$ with $l\in Z\backslash K$.
PROPOSmON 4.3. ind $\mathcal{T}(\lambda)=ind\mathcal{T}(\mu)$ for all $\lambda,$ $\mu\geq 0$ .
PROPOSITION 4.4. If the operator $\mathcal{T}$ in $B^{s-1/p,p}(\Gamma)$ with domain $\mathscr{D}(F)$ is surjective,

then the map $d:H^{s,p}(\Omega)\rightarrow H^{s-2,p}(\Omega)\times B_{(a,b)}^{s-1-1/p,p}(\Gamma)$ is surjective.

In fact, combining Propositions 4.1 and 4.2, we have that ind $F(\lambda^{\prime})=0$ for all
$\lambda^{\prime}=l^{2}$ satisfying $l\in Z\backslash K$. Hence, it follows from Proposition 4.3 that ind $\mathcal{T}=0$ . Since
we have already obtained that $\dim\Lambda^{r}(\mathcal{T})=0$, we have that codim $a(\mathcal{T})=0$ , that is, the
operator $\mathcal{T}$ is $su\dot{q}\infty tive$ . By Proposition 4.4, we find that the operator $d$ is surjective.

We shall prove the above propositions. First we prove Proposition 4.1. We use the
following result in the proof of Proposition 4.1.

LEMMA 4.5 (Peetre). Let $X,$ $Y$ be Banach spaces, $X\subset Z$ a compact injection and $F$

a closed linear operatorfrom $X$ into $Y$ with domain $\mathscr{D}(F)$ . Then, thefollowing two assertions
are equivalent:

(i) $\dim J(F)<\infty$ and $9(F)$ ts closed in Y.
(ii) There exists a constant $C>0$ such that

$\Vert x\Vert_{X}\leq C(\Vert Fx\Vert_{Y}+\Vert x\Vert_{Z})$ , $x\in \mathscr{D}(F)$ .
Applying Lemma 4.5 to $F=I,$ $X=Y=B^{s-1/p,p}(\Gamma\times S),$ $Z=B^{t,p}(\Gamma\times S),$ $t<s-1/p$ ,

we have $\dim J(ff)<\infty$ and $R(\ovalbox{\tt\small REJECT})$ is closed in $B^{s-1\prime p.p}(\Gamma\times S)$ .
We consider the adjoint operator $\ovalbox{\tt\small REJECT}*$ of $I$ . Let $ t(x^{\prime}, \xi^{\prime},y, \eta)^{*}k\sim$ a symbol of $\tau*$ .

Using a well known asymptotic expansion formula with regard to symbols of adjoint
operators, we have

$t(x^{\prime}, \xi^{\prime},y, \eta)^{*}\sim\sim\sum_{\alpha\geq 0}\frac{1}{\alpha!}\partial_{\xi}^{\alpha}D_{x’.y}^{\beta}(\sim_{t}(x^{\prime}, \xi^{\prime},y, \eta))\overline{\sim}$ ,

where $D_{x’.y}=-\sqrt{-1}\partial_{x^{\prime}.y}$ . By an argument as in the case of $\tilde{T}$, we find that
$|\tilde{\psi}|_{-s+1\prime p.p^{\prime}}\leq\tilde{C}^{*}(|\tilde{T}\tilde{\psi}|_{-s+1/p.p},+|\tilde{\psi}|_{t,p},)$ , $\tilde{\psi}\in \mathscr{D}(ff*)$

with some constant $\theta>0$ , where $p^{\prime}=p/(p-1)$ and $t<-s+1/p$ . By applying Lemma
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4.5 to $F=F*,$ $x=Y=B^{-s+1/p,p}’(\Gamma\times S),$ $Z=B^{t,p}’(\Gamma\times S),$ $t<-s+1/p$ , and by the closed
range theorem, it follows that

$co\dim \mathscr{B}(\tilde{\mathcal{T}})=\dim \mathscr{N}(\tilde{\mathcal{T}}^{*})<\infty$ .

Hence we have

ind $\tilde{\mathcal{T}}=\dim \mathscr{N}(\tilde{\mathcal{T}})-co\dim \mathscr{B}(\neq)<\infty$ ,

which implies that the proof of Proposition 4.1 is complete.

We can prove Propositions 4.2 and 4.3 similarly as in Section 8.4 of [14] and
Corollary 5.3 of [13], respectively. Next, we prove Proposition 4.4.

$PR\infty F$ OF PROPOSmON 4.4. Let $f\in H^{s-2,p}(\Omega),$ $\varphi eB_{\{a,b)}^{s-1-1/p.p}(\Gamma)$ where $\varphi=a\varphi_{1}+$

$b\varphi_{2}$ with $\varphi_{1}eB^{s-1/p,p}(\Gamma)$ and $\varphi_{2}\in B^{s-1-1/p,p}(\Gamma)$ . Combining Theorems 3.1 and 3.3 of
[15], we have that the Neumann problem:

$\left\{\begin{array}{l}Av=f\\\frac{\partial v}{\partial v}=\varphi_{1}\end{array}\right.$

$inon$ $\Gamma\Omega$

,

has a unique solution $v\in H^{s.p}(\Omega)$ . Since the operator $\mathcal{T}$ is surjective, there exists
$\psi\in B^{s-1/p,p}(\Gamma)$ such that $\mathcal{T}\psi=b(v|_{\Gamma}-\varphi_{2})$ . We let $ w=P\psi$ . Then it follows that

$\left\{\begin{array}{ll}w\in H^{s,p}(\Omega), & \\Aw=0 & in \Omega,\\Lw=b(v|_{\Gamma}-\varphi_{2}) & on \Gamma.\end{array}\right.$

Let $u=v-w$ . We have

$\left\{\begin{array}{ll}u\in H^{s,p}(\Omega), & \\Au=f & in \Omega,\\Lu=a\varphi_{1}+b\varphi_{2} & on \Gamma.\end{array}\right.$

This proves that the mapping $d$ is surjective from $H^{s,p}(\Omega)$ onto $ H^{s-2.p}(\Omega)\times$

$B_{\langle a,b)}^{s-1-1/p,p}(\Gamma)$ . The proof of Proposition 4.4 is complete.

Finally, we can trivially prove that the operator $\mathscr{A}$ is continuous. Hence, by the
closed graph theorem, we have that the inverse of $\mathscr{A}$ is continuous. We have obtained
that the operator $\mathscr{A}$ is homeomorphic.

\S 5. Proof of Theorem 2.

(i) This section is devoted to the proof of Theorem 2. We start with the proof
of the assertion (1.1). We use the method due to Taira ([13], Theorem 7.3). By Green’s
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on $\Gamma$ .

formula, we have that for $u,$ $ veC^{2}(\Omega\gamma$

$\int\int_{\Omega}$ (Au $\cdot\overline{v}-u\cdot\overline{A^{*}v}$) $ d\kappa=-\int_{\Gamma}u\{\overline{\frac{\partial v}{\partial v}}-(\sum_{i=1}^{N}b^{i}n_{i})\overline{v}\}d\sigma+\int_{\Gamma}\frac{\partial u}{\partial v}\cdot\overline{v}d\sigma$ .

Here $ d\sigma$ is the surface element on $\Gamma$ . If $u$ and $v$ satisfy the boundary conditions

$a+bu=0\underline{\partial u}$ on $\Gamma$ ,
$\partial v$

$a\frac{\partial v}{\partial v}+\{b-a(\sum_{i=1}^{N}b^{i}n_{i})\}v=0$ on $\Gamma$ ,

respectively, these conditions are represented as follows:

$\left(\begin{array}{l}\frac{\partial u}{\partial v}u\\\overline{\frac{\partial v}{\partial v}}-(\sum_{i=1}^{N}b^{i}n_{i})\overline{v}\overline{v}\end{array}\right)\left(\begin{array}{l}a\\b\end{array}\right)=\left(\begin{array}{l}0\\0\end{array}\right)$ on $\Gamma$ .

Since $(a, b)\neq(O, 0)$ on $\Gamma$, we have

det $\left|\begin{array}{l}\frac{\partial u}{\partial v}u\\\overline{\frac{\partial v}{\partial v}}-(\sum_{i=1}^{N}b^{i}n_{i})\overline{v}\overline{v}\end{array}\right|=0$ on $\Gamma$ .

That is,

$\frac{\partial u}{\partial v}\overline{v}-u\{\overline{\frac{\partial v}{\partial v}}-(\sum_{i=1}^{N}b^{i}n_{i})\overline{v}\}=0$

Hence we have

\langle Au, $\overline{v}\rangle$ $=\langle u, \overline{A^{*}v}\rangle$ for $u\in C^{2}(\Omega)\cap \mathscr{D}(A_{p})$ , $v\in C^{2}(\Omega)\cap \mathscr{D}(A_{p^{\prime}})$ .
Here $\langle$ $\rangle$ denotes the pairing of $L^{p}(\Omega)\times L^{p^{\prime}}(\Omega)$ . Since the spaoes $C^{2}(\emptyset\cap \mathscr{D}(A_{p})$ and
$C^{2}(\Omega)\cap \mathscr{D}(A_{p}.)$ are dense in $\mathscr{D}(A_{p})$ with norm $\Vert\cdot\Vert_{2,p}$ and $\mathscr{D}(A_{p},)$ with norm $\Vert\cdot\Vert_{2,p},$ ,
respectively, we obtain

\langle Au, $\overline{v}\rangle$ $=\langle u, \overline{A^{*}v}\rangle$ for $u\in \mathscr{D}(A_{p})$ and $ve\mathscr{D}(A_{p’})$ .
This proves that $A_{p^{\prime}}\subset A_{p}^{*}$ . Here $A_{p}^{*}$ denotes the adjoint operator of $A_{p}$ .

Next we shall show that $A_{p^{\prime}}=A_{p}^{*}$ . By virtue of the condition (A.4), we can apply
Theorem 1 with $s=2$ to $A_{p^{\prime}}$ as well as $A_{p}$, so that it follows that there exists a constant
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$\lambda<0$ such that

$(\lambda+A_{p},)$ : $\mathcal{D}(A_{p},)\rightarrow L^{p^{\prime}}(\Omega)$ ,

$(\lambda+A_{p})$ : $\mathcal{D}(A_{p})\mapsto L^{p}(\Omega)$ ,

are both bijective. Therefore, for any $v\in \mathcal{D}(A_{p}^{*})$ , there exists $v_{0}\in \mathcal{D}(A_{p’})$ such that

$(\lambda+A_{p’})v_{0}=(\lambda+A_{p}^{*})v$ .

For any $u\in \mathcal{D}(A_{p})$ , we have

$\langle(\lambda+A_{p})u,\overline{v-v_{0}}\rangle=\langle u, \overline{(\lambda+A_{p},)v_{0}-(\lambda+A_{p}^{*})v}\rangle=0$ .

Since the operator $\lambda+A_{p}$ is bijective, this implies that $v=v_{0}$ . Hence we obtain that
$A_{p’}=A_{p}^{*}$ . The proof of the assertion (1.1) is complete.

Secondly we shall prove the assertion (1.2). Let $ 1<p<\infty$ , and let $\lambda_{p}$ be one of

eigenvalues of $A_{p}$, and $u_{p}$ an eigenfunction for the eigenvalue $\lambda_{p}$ . We can write $A_{p}u_{p}=\lambda_{p}u_{p}$ .
This implies that

$\left\{\begin{array}{ll}u_{p}\in H^{2.p}(\Omega), & \\(A-\lambda_{p})u_{p}=0 & in \Omega,\\Lu_{p}=0 & on \Gamma.\end{array}\right.$

By Theorem 3.6 we have $u_{p}\in H^{s.p}(\Omega)$ for all $s\geq 2$ . From the Sobolev imbedding theorem,

it follows that $u_{p}\in C^{\infty}(\Omega)$ . This implies that $u_{p}\in \mathscr{D}(A_{q})$ for all $ 1<q<\infty$ . This proves
that the eigenfunctions are common to all operators $A_{p}(1<p<\infty)$ , and further this

implies that the eigenvalue $\lambda_{p}$ of $A_{p}$ is an eigenvalue of $A_{q}$ . Hence, it follows that the
eigenvalues are also common to all operators $A_{p}(1<p<\infty)$ . We have finished the proof
of the assertion (1.2).

Thirdly we shall prove the assertion (1.3). In view of the assertion (1.2), we shall
show the assertion (1.3) under the situation that $p=2$ . We shall prove that

${\rm Re}(A_{2}u, u)\leq K\Vert u\Vert_{2}^{2}$ , $ue\mathcal{D}(A_{2})$ ,

with some constant $K$. Here $(, )$ is the inner product in $L^{2}(\Omega)$ .
By the divergence theorem, for $u\in C^{\infty}(\Omega)\cap \mathscr{D}(A_{2})$ , we have

$-2{\rm Re}(A_{2},u)=-2u,u.)+\overline{(A_{2}u,u)}\}=\int\int_{\Omega}N\sum_{i.j=1}^{u}a^{ij}(x)\frac{\partial u\{(A}{\partial x_{i}}(x)\overline{\frac{\partial u}{\partial x_{j}}(x)}dx+\int\int_{\Omega}\sum_{i,j=1}^{N}a^{ij}(x)\overline{\frac{\partial u}{\partial x_{i}}(x)}\cdot\frac{\partial u}{\partial x_{j}}(x)d\kappa$

$-\int_{\Gamma}\{\frac{\partial u}{\partial v}(x^{\prime})\cdot\overline{u(x^{\prime})}+\overline{\frac{\partial u}{\partial v}(x^{\prime})}\cdot u(x^{\prime})\}d\sigma+\int\int\sum_{\Omega^{j=1}}^{N}\frac{\partial b^{j}}{\partial x_{j}}(x)|u(x)|^{2}dx$
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$-\int_{\Gamma}\sum_{j=1}^{N}b^{j}(x^{\prime})n_{j}|u(x^{\prime})|^{2}d\sigma-2\iint_{\Omega}c(x)|u(x)|^{2}dx$

$\geq-\int_{\Gamma}\{\frac{\partial u}{\partial v}(x^{\prime})\cdot\overline{u(x^{\prime})}+\overline{\frac{\partial u}{\partial v}(x^{\prime})}\cdot u(x^{\prime})+\sum_{j=1}^{N}b^{j}(x^{\prime})n_{j}|u(x^{\prime})|^{2}\}d\sigma$

$-2\int\int_{\Omega}\{c(x)-\frac{1}{2}\sum_{j=1}^{N}\frac{\partial b^{j}}{\partial x_{j}}(x)\}|u(x)|^{2}dx$ .

We estimate the first term of the right-hand side as follows.

$-\int_{\Gamma}\{\frac{\partial u}{\partial v}(x^{\prime})\cdot\overline{u(x^{\prime})}+\overline{\frac{\partial u}{\partial v}(x^{\prime}})\cdot u(x^{\prime})+\sum_{j=1}^{N}b^{j}(x^{\prime})n_{j}|u(x^{\prime})|^{2}\}d\sigma$

$=-\int_{\Gamma\backslash \Gamma_{O}}\{\frac{\partial u}{\partial v}(x^{\prime})\cdot\overline{u(x^{\prime})}+\overline{\frac{\partial u}{\partial v}(x^{\prime}})\cdot u(x^{\prime})+\sum_{j=1}^{N}b^{j}(x^{\prime})n_{j}|u(x^{\prime})|^{2}\}d\sigma$

$=\int_{\Gamma\backslash \Gamma_{0}}\{\frac{2b(x^{\prime})}{a(x’)}\sum_{j=1}^{N}b^{j}(x^{\prime})n_{j}\}|u(x^{\prime})|^{2}d\sigma\geq 0$ ,

because the conditions (A.1) and (A.4) are satisfied.
Next, we set

$ K=\sup_{\Omega}(c(x)-\frac{1}{2}\sum_{j=1}^{N}\frac{\partial b^{j}}{\partial x_{j}}(x))<\infty$ .

And, we obtain that

$-2{\rm Re}(A_{2}u, u)\geq-2K\Vert u\Vert_{2}^{2}$ , $u\in C^{\infty}(\emptyset\cap \mathscr{D}(A_{2})$ ,

that is,

${\rm Re}(A_{2}u, u)\leq K\Vert u\Vert_{2}^{2}$ , $u\in C^{\infty}(\emptyset\cap \mathscr{D}(A_{2})$ .
Since the spaoe $C^{\infty}(\emptyset\cap \mathscr{D}(A_{2})$ is dense in $\mathscr{D}(A_{2})$ in the $\Vert\cdot\Vert_{2.2}$ norm, it follows that

${\rm Re}(A_{2}u, u)\leq K\Vert u\Vert_{2}^{2}$ , $u\in \mathscr{D}(A_{2})$ .
This proves the assertion (1.3).
(ii) From the assertion (1.2), we shall prove the assertions $(1.4)-(1.8)$ when $p=2$ .

We need the following theorem to show these assertions.
THEOREM 5.1. Let $ 1<p<\infty$ . Assume that the conditions (A.1) and (A.2) are

satisfied. Then, we have that for any $\epsilon>0$, there exists a constant $r(\epsilon)>0$ such that the
resolvent set $\rho(A_{p})$ contains the set $\Sigma(\epsilon)=\{\lambda=r^{2}e^{i\theta} ; r\geq r(\epsilon), -\pi+\epsilon\leq\theta\leq\pi-\epsilon\}$ , and that
the resolvent $(A_{p}-\lambda)^{-1}$ satisfies the estimate:
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$\Vert(A_{p}-\lambda)^{-1}\Vert\leq\frac{C(\epsilon)}{|\lambda|}$ , $\lambda\in\Sigma(\epsilon)$ ,

with some constant $C(\epsilon)>0$ depending on $\epsilon$ .
We can similarly prove Theorem 5.1 as in Theorem 6.1 of [15].

First, the assertion (1.4) immediately follows by Theorem 5.1. Secondly, by
Theorem 3.6 we obtain that $\mathcal{D}((A_{2})^{k})\subset H^{2k,2}(\Omega),$ $k=1,2,$ $\cdots$ . Hence the assertions (1.5)
and (1.7) follow from the assertion (1.4), by applying Theorem 15.1 of Agmon [2]. The
assertion (1.6) immediately follows by the assertion (1.5). Finally we shall prove the
assertion (1.8). Since we have the assertion (1.4), it follows from Theorem 16.5 ofAgmon
[2] that the generalized eigenfunctions are complete in $L^{2}(\Omega)$ . And since, by Theorem
1, Theorem of Agmon [1] holds in the case that $a(x^{\prime})\geq 0$ on $\Gamma$, the assertion (1.8)
follows from Theorem of Agmon [1].

The proof of Theorem 2 is now complete.
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