Finite Type Minimal 2-Spheres in a Complex Projective Space

Yoichiro MIYATA

Tokyo Metropolitan University
(Communicated by M. Sakai)

§1. Introduction.

Let M be a compact C^{∞}-Riemannian manifold, $C^{\infty}(M)$ the space of all smooth functions on M, and Δ the Laplacian on M. The Δ is a self-adjoint elliptic differential operator acting on $C^{\infty}(M)$, which has an infinite discrete sequence of eigenvalues:

$$
\operatorname{Spec}(M)=\left\{0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{k}<\cdots \uparrow \infty\right\} .
$$

Let $V_{k}=V_{k}(M)$ be the eigenspace of Δ corresponding to the k-th eigenvalue λ_{k}. Then V_{k} is finite-dimensional. We define an inner product (,) on $C^{\infty}(M)$ by

$$
(f, g)=\int_{M} f g d V
$$

where $d V$ denotes the volume element on M. Then $\sum_{t=0}^{\infty} V_{t}$ is dense in $C^{\infty}(M)$ and the decomposition is orthogonal with respect to the inner product (,). Thus we have

$$
C^{\infty}(M)=\sum_{t=0}^{\infty} V_{t}(M) \quad \text { (in } L^{2} \text {-sense) }
$$

Since M is compact, V_{0} is the space of all constant functions which is 1 -dimensional.
Let \tilde{M} be a compact C^{∞}-Riemannian manifold, and assume that M is a submanifold of \tilde{M} which is immersed by an isometric immersion φ. We have the decomposition

$$
C^{\infty}(\tilde{M})=\sum_{s=0}^{\infty} V_{s}(\tilde{M}) \quad \text { (in } L^{2} \text {-sense) }
$$

with respect to the Laplacian $\Delta_{\tilde{M}}$ of \tilde{M}. We denote by φ^{*} the pull-back, i.e., φ^{*} is an R-linear map of $C^{\infty}(\tilde{M})$ into $C^{\infty}(M)$ such that

$$
\left(\varphi^{*} F\right)(p)=F(\varphi(p)), \quad p \in M, \quad F \in C^{\infty}(\tilde{M})
$$

For each integer $s, \varphi^{*} V_{s}(\tilde{M})$ is a subspace of $C^{\infty}(M)$. Then we have a decomposition

$$
\varphi^{*} V_{s}(\tilde{M}) \subset \sum_{t=0}^{\infty} W_{t}, \quad W_{t}=W_{t}(M, \tilde{M}, \varphi, s) \subset V_{t}(M)
$$

where each W_{t} is the minimal subspace of $V_{t}(M)$ such that $\sum_{t=0}^{\infty} W_{t}$ contains $\varphi^{*} V_{s}(\tilde{M})$.
We say that φ (or M) is of finite-type with respect to $V_{s}(\tilde{M})$, if $\#\left\{t \geq 1 \mid W_{t} \neq(0)\right\}$ is finite, and if it is not finite, we say that φ (or M) is of infinite-type with respect to $V_{s}(\tilde{M})$. If $\#\left\{t \geq 1 \mid W_{t} \neq(0)\right\}$ is equal to k, then we say that φ (or M) is of k-type with respect to $V_{s}(\tilde{M})$, and that φ (or M) is of order $\left\{t \geq 1 \mid W_{t} \neq(0)\right\}$ with respect to $V_{s}(\tilde{M})$. Furthermore, we say that φ (or M) is of mass-symmetric with respect to $V_{s}(\tilde{M})$ if $W_{0}=(0)$.

In this paper, we consider the case where \tilde{M} is an n-dimensional complex projective space $C P^{n}(4)$ of constant holomorphic sectional curvature 4 , and $s=1$. So we omit the terms "with respect to $V_{1}\left(C P^{n}(4)\right)$ " in conditions for immersions of M into $C P^{n}(4)$. These definitions are compatible with those by B. Y. Chen in [4].

A submanifold M of $C P^{n}(4)$ is said to be full, if M is not contained in any totally geodesic complex submanifold of $C P^{n}(4)$. In [6], A. Ros shows that a 1-type complex submanifold of $C P^{n}(4)$ is a totally geodesic Kähler submanifold, so that it is of order $\{1\}$. He also shows that an m-dimensional 1-type totally real minimal submanifold of $C P^{n}(4)$ is a totally real minimal submanifold of $C P^{m}(4)$ which is a totally geodesic Kähler submanifold of $C P^{n}(4)$. In [9, 11], S. Udagawa shows that a full Kähler submanifold $\boldsymbol{C} \boldsymbol{P}^{n}(4)$ is of 2-type if and only if it is Einstein, so that it is of order $\{1,2\}$. He also studies compact Hermitian symmetric submanifolds of degree 3 in $\boldsymbol{C P}^{\boldsymbol{n}}(4)$. Here, for a Kähler submanifold M of $C P^{n}(4)$, we say that M is of degree k if the pure part of the $(k-2)$-nd covariant derivative of h is not zero and the pure part of the ($k-1$)-st covariant derivative of h is zero, where h is the second fundamental form. He shows that compact irreducible Hermitian symmetric submanifolds of degree 3 in $C P^{n}(4)$ are of order $\{1,2,3\}$. Moreover, we can see in [10] that there exists a compaet Hermitian symmetric submanifold of degree 3 in $C P^{n}(4)$ which has different order, but it is reducible.

One of the most typical examples of irreducible submanifolds in $C P^{n}(4)$ is a 2-sphere. Let $S^{2}(c)$ be the 2-sphere of constant curvature $c>0$. S. Bando and Y. Ohnita in [1] gave the family $\left\{\varphi_{n, k}\right\}$ of all full isometric minimal immersions of $S^{2}(c)$ into $C P^{n}(4)$, using irreducible unitary representations of $S U(2)$. Independently, in [2], J. Bolton, G. R. Jensen, M. Rigoli and L. M. Woodward gave this family $\left\{\varphi_{n, k}\right\}$, using the method of harmonic sequence. They called this family the Veronese sequence.

The purpose of this paper is to give the type of minimal 2 -spheres of constant curvature in $C P^{n}(4)$, and to characterize them in terms of the type.

We obtain the following main results.
Theorem A. (1) $\varphi_{n, k}$ is of at most n-type and mass-symmetric. For integers n, k, l with $n \geq 1,0 \leq k, l \leq n$, define

$$
q_{l}^{k}=\frac{1}{l!} \sum_{m=0}^{l}(-1)^{m}\binom{l}{m} \prod_{j=1}^{l}(k+j-m)(n-k-j+m+1) .
$$

Then the order of $\varphi_{n, k}$ is $\left\{l \mid 1 \leq l \leq n, q_{l}^{k} \neq 0\right\}$.
(2) A holomorphic imbedding $\varphi_{n, 0}$ and its antipodal $\varphi_{n, n}$ are of n-type and of order $\{1,2,3, \cdots, n\}$.
(3) If n is even, then a totally real minimal immersion $\varphi_{n, n / 2}$ is of $n / 2$-type and of order $\{2,4,6, \cdots, n\}$.

Remark. Generic $\varphi_{n, k}$ is of n-type except for totally real $\varphi_{2 k, k}$.
Proposition B. If a compact submanifold in $C P^{n}(4)$ is mass-symmetric, then it is fully immersed.

Theorem C. Let S^{2} be ak-type, mass-symmetric, minimal 2-sphere in $C P^{n}$ (4). Then n satisfies $n \leq 2 k$.

Theorem D. If a mass-symmetric, minimal 2-sphere S^{2} in $C^{n}(4)$ is of at most 2-type, then S^{2} is of constant curvature, so that the immersion is congruent to either $\varphi_{1,0}, \varphi_{1,1}, \varphi_{2,0}, \varphi_{2,1}, \varphi_{2,2}$ or $\varphi_{4,2}$.

Let M be a compact surface in $C P^{n}(4)$, and $z=x+i y$ an isothermal coordinate in M. We call the angle θ between $J \partial / \partial x$ and $\partial / \partial y$ the Kähler angle, where J is the complex structure of $C P^{n}(4) . M$ is holomorphic (resp. anti-holomorphic) in $C P^{n}(4)$ if and only if θ is equal to 0 (resp. π). M is totally real in $C P^{n}(4)$ if and only if θ is equal to $\pi / 2$.

Theorem E. Let S^{2} be a mass-symmetric, minimal 2-sphere in $C P^{n}(4)$. If S^{2} is of at most 3-type and with constant Kähler angle, then S^{2} is of constant curvature, so that the immersion is congruent to either $\varphi_{n, k}(n=1,2,3,0 \leq k \leq n), \varphi_{4,2}$ or $\varphi_{6,3}$.

Remark. In [2], J. Bolton, G. R. Jensen, M. Rigoli and L. M. Woodward show that, without the assumption of 3-type, Theorem E remains true if $n \leq 4$ and the immersion is neither holomorphic, antiholomorphic nor totally real.

The author wishes to thank Professors K. Ogiue and Y. Ohnita for many valuable comments and suggestions.

§ 2. Preliminaries.

Let M be a compact C^{∞}-Riemannian manifold, $C^{\infty}(M)$ the space of all smooth functions on M, and Δ the Laplacian on M. In a natural manner, Δ can act on R^{N}-valued functions on M. We assume that M is a submanifold of an N-dimensional Euclidean space $\boldsymbol{R}^{\boldsymbol{N}}$ with an isometric immersion F. Then an $\boldsymbol{R}^{\boldsymbol{N}}$-valued function F has the decomposition

$$
F=F_{0}+\sum_{k=1}^{\infty} F_{k}, \quad \Delta F_{k}=\lambda_{k} F_{k},
$$

where F_{0} is a constant map and λ_{k} is the k-th eigenvalue of Δ. Here, the center of mass of M in R^{N} is equal to F_{0}. We say that F (or M) is of finite-type, if $\#\left\{t \geq 1 \mid F_{t} \neq 0\right\}$ is finite, and if it is not finite, we say that F (or M) is of infinite-type. If $\#\left\{t \geq 1 \mid F_{t} \neq 0\right\}$ is equal to k, then we say that F (or M) is of k-type, and that F (or M) is of order $\left\{t \geq 1 \mid F_{t} \neq 0\right\}$. B. Y. Chen in [4] showed the following:

Theorem 2.1. Let $\boldsymbol{F}: M \rightarrow \boldsymbol{R}^{\boldsymbol{N}}$ be an isometric immersion of a compact Riemannian manifold M into R^{N}. Then F is of finite-type if and only if there exists a polynomial $P(x)$ and some constant F_{0} in R^{N} satisfying

$$
\begin{equation*}
P(\Delta)\left(F-F_{0}\right)=0 . \tag{2.1}
\end{equation*}
$$

Moreover, F is of k-type if and only if there exists a polynomial $P(x)$ of degree k and some constant F_{0} in R^{N} satisfying (2.1), and any polynomial $P(x)$ of degree $<k$ and any constant F_{0} in \boldsymbol{R}^{N} do not satisfy (2.1).

The natural Hermitian inner product in C^{n+1} is defined by

$$
\begin{equation*}
\langle v, w\rangle=\sum_{i=0}^{n} v_{i} \overline{w_{i}}, \quad v=^{t}\left(v_{0}, \cdots, v_{n}\right), \quad w={ }^{t}\left(w_{0}, \cdots, w_{n}\right) . \tag{2.2}
\end{equation*}
$$

The unitary group $U(n+1)$ is the group of all linear transformations on C^{n+1} leaving the Hermitian inner product (2.2) invariant. An n-dimensional complex projective space $C P^{n}$ is the orbit space of $C^{n+1}-\{0\}$ under the action of the group $C^{*}=C-\{0\} ; z \rightarrow$ $\lambda z\left(\lambda \in C^{*}\right)$. Let $\pi: C^{n+1}-\{0\} \rightarrow C P^{n}$ be the natural projection. Denote by \mathscr{H}_{z} and \mathscr{V}_{z}, the horizontal and the vertical spaces of π at $z \in C^{n+1}-\{0\}$, respectively, so that

$$
\begin{gathered}
T_{z}\left(C^{n+1}-\{0\}\right)=\mathscr{H}_{z} \oplus \mathscr{V}_{z} \\
\mathscr{H}_{z}=\left\{v \in C^{n+1} \mid\langle v, z\rangle=0\right\}, \quad \mathscr{V}_{z}=\{\lambda z \mid \lambda \in C\} .
\end{gathered}
$$

Then $\pi_{*}: \mathscr{H}_{z} \rightarrow T_{\pi(z)} C P^{n}$ is a linear isomorphism over C. The Fubini-Study metric \tilde{g} of constant holomorphic sectional curvature \tilde{c} in $C P^{n}$ is given by

$$
\tilde{g}\left(\pi_{*}(v), \pi_{*}(w)\right)=\frac{4}{\tilde{c}} \operatorname{Re} \frac{\langle v, w\rangle}{|z|^{2}}, \quad z \in C^{n+1}-\{0\}, \quad v, w \in \mathscr{H}_{z},
$$

where $|z|^{2}=\langle z, z\rangle . U(n+1)$ acts on $C P^{n}$ as follows:

$$
U \pi(z)=\pi(U z), \quad U \in U(n+1), \quad z \in C^{n+1}-\{0\},
$$

so that this action leaves the metric \tilde{g} invariant. We denote by $\boldsymbol{C P}{ }^{\boldsymbol{n}}(\tilde{c})$ an n-dimensional complex projective space equipped with the metric $\tilde{\boldsymbol{g}}$.

Let $H M(n+1, C)$ be the set of all Hermitian $(n+1, n+1)$-matrices over C, which can be identified with $\boldsymbol{R}^{\boldsymbol{N}}, N=(n+1)^{2}$. For $X, Y \in H M(n+1, C)$, the natural inner product is given by

$$
\begin{equation*}
(X, Y)=\frac{2}{\tilde{c}} \operatorname{Re}(\operatorname{tr} X Y) \tag{2.3}
\end{equation*}
$$

$U(n+1)$ acts on $H M(n+1, C)$ by $X \rightarrow U X U^{*}, U \in U(n+1), X \in H M(n+1, C)$, where $U^{*}={ }^{t} \bar{U}$, so that this action leaves the inner product (2.3) invariant. Define two linear subspaces of $H M(n+1, C)$ as follows:

$$
\begin{aligned}
& H M_{0}=H M_{0}(n+1, C)=\{X \in H M(n+1, C) \mid \operatorname{tr} X=0\} \\
& H M_{R}=H M_{R}(n+1, C)=\{a I \mid a \in R\}
\end{aligned}
$$

where I is the $(n+1, n+1)$-identity matrix. Both of them are invariant under the action of $U(n+1)$, and irreducible. We get the orthogonal decomposition of $H M(n+1, C)$ as follows:

$$
H M(n+1, C)=H M_{0} \oplus H M_{R}
$$

It is well-known that $H M_{0}$ (resp. $H M_{R}$) is identified with the first eigenspace $V_{1}\left(C P^{n}(\tilde{c})\right)$ (resp. the set of all constant functions, i.e., $V_{0}\left(C P^{n}(\tilde{c})\right)$). The first standard imbedding Ψ of $C P^{n}(\tilde{c})$ is defined by

$$
\begin{equation*}
\Psi(\pi(z))=\frac{1}{|z|^{2}} z z^{*} \in H M(n+1, C), \quad z \in C^{n+1}-\{0\} \tag{2.4}
\end{equation*}
$$

Ψ is $U(n+1)$-equivariant and the image of $C P^{n}(\tilde{c})$ under Ψ is given as follows:

$$
\Psi\left(C P^{n}(\tilde{c})\right)=\left\{A \in H M(n+1, C) \mid A^{2}=A, \operatorname{tr} A=1\right\}
$$

so that it is contained fully in a hyperplane

$$
\begin{aligned}
H M_{1}=H M_{1}(n+1, C) & =\{A \in H M(n+1, C) \mid \operatorname{tr} A=1\} \\
& =\left\{\left.A+\frac{1}{n+1} I \right\rvert\, A \in H M_{0}\right\}
\end{aligned}
$$

of $H M(n+1, C)$. Denote by $S^{N-2}(\tilde{c}(n+1) /(2 n))$ the hypersphere in $H M_{1}(n+1, C)$ centered at $(1 /(n+1)) I$ with radius $\sqrt{2 n /(\tilde{c}(n+1))}$. Thus we obtain that Ψ is a minimal immersion of $C P^{n}(\tilde{c})$ into $S^{N-2}(\tilde{c}(n+1) /(2 n))$, and that the center of mass of $C P^{n}(\tilde{c})$ is $(1 /(n+1)) I$. In fact, Ψ satisfies the equation $\Delta \Psi=\tilde{c}(n+1)(\Psi-(1 /(n+1)) I)$, so that Ψ is of order 1. Moreover, all coefficients of $\Psi-(1 /(n+1)) I$ span the first eigenspace $V_{1}\left(C P^{n}(\tilde{c})\right)$. For details, see [4].

From now on, we assume that M is a submanifold of $C P^{n}(\tilde{c})$ with an isometric immersion φ. Then $F=\Psi \circ \varphi$ is an isometric immersion of M into $H M(n+1, C)$, and the set of all coefficients of $F-(1 /(n+1)) I$ spans the pull-back $\varphi^{*} V_{1}\left(C P^{n}(\tilde{c})\right)$. Therefore,
the conditions "of finite-type", "of infinite-type", "of k-type" and "mass-symmetric" for φ defined in § 1 are compatible with those for F, and so is "order", so that we obtain the following proposition:

Proposition 2.2. Let $\varphi: M \rightarrow C P^{n}(\tilde{c})$ be an isometric immersion of a compact Riemannian manifold M into $C^{n}(\tilde{c})$. Then φ is mass-symmetric and of finite-type if and only if there exists a polynomial $P(x)$ satisfying

$$
\begin{equation*}
P(\Delta)\left(F-\frac{1}{n+1} I\right)=0 \tag{2.5}
\end{equation*}
$$

where $F=\Psi \circ \varphi$. Moreover, φ is mass-symmetric and of k-type if and only if there exists a polynomial $P(x)$ of degree k satisfying (2.5), and any polynomial $P(x)$ of degree $<k$ do not satisfy (2.5).

Remark. φ is mass-symmetric if and only if the center of mass of M in $H M(n+1, C)$ is equal to that of $C P^{n}(\tilde{c})$.

Now we prove Proposition B. Let M be a compact Riemannian submanifold of $C P^{n}(\tilde{c})$, which is fully contained in a totally geodesic complex submanifold $C^{\boldsymbol{m}}(\tilde{c})$ of $C P^{n}(\tilde{c})$. We can assume that

$$
\Psi\left(C P^{m}(\tilde{c})\right)=\left\{\left.\left(\begin{array}{ll}
A^{\prime} & 0 \\
0 & 0
\end{array}\right) \right\rvert\, A^{\prime} \in H M(m+1, C), A^{\prime 2}=A^{\prime}, \operatorname{tr} A^{\prime}=1\right\}
$$

Let $\varphi: M \rightarrow C P^{n}(\tilde{c})$ be an isometric immersion, and for $x \in M$, set $\Psi \circ \varphi(x)=A(x)=$ $\left(\begin{array}{cc}A^{\prime}(x) & 0 \\ 0 & 0\end{array}\right)$. Then the center of mass of M is given by

$$
\frac{1}{\operatorname{vol}(M)} \int_{x \in M} A(x) d v_{M}=\frac{1}{\operatorname{vol}(M)}\left(\begin{array}{cc}
\int_{x \in M} A^{\prime}(x) d v_{M} & 0 \\
0 & 0
\end{array}\right)
$$

If M is mass-symmetric in $C^{n}(\tilde{c})$, then this is equal to $(1 /(n+1)) I$. Therefore, we get $m=n$ so that M is full in $C^{n}(\tilde{c})$.

§3. Minimal 2-spheres with constant curvature in $C P^{n}(\tilde{c})$.

The purpose of this section is to prove Theorem A. First, we review S. Bando and Y. Ohnita's results for minimal 2 -spheres of constant curvature.
$S U(2)$ is defined by

$$
S U(2)=\left\{\left(\begin{array}{cc}
a & b \\
-\bar{b} & \bar{a}
\end{array}\right)\left|a, b \in C,|a|^{2}+|b|^{2}=1\right\}\right.
$$

The Lie algebra $\mathfrak{s u}(2)$ of $S U(2)$ is given by

$$
\mathfrak{s u}(2)=\left\{\left.\left(\begin{array}{cc}
\sqrt{-1} x & y \\
-\bar{y} & -\sqrt{-1} x
\end{array}\right) \right\rvert\, x, y^{\prime}, y^{\prime \prime} \in \boldsymbol{R}, y=y^{\prime}+\sqrt{-1} y^{\prime \prime}\right\}
$$

Define a basis $\left\{\varepsilon_{0}, \varepsilon_{1}, \varepsilon_{2}\right\}$ of $\mathfrak{s u}(2)$ by

$$
\varepsilon_{0}=\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right), \quad \varepsilon_{1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \varepsilon_{2}=\left(\begin{array}{cc}
0 & \sqrt{-1} \\
\sqrt{-1} & 0
\end{array}\right)
$$

Then these satisfy

$$
\left[\varepsilon_{0}, \varepsilon_{1}\right]=2 \varepsilon_{2}, \quad\left[\varepsilon_{1}, \varepsilon_{2}\right]=2 \varepsilon_{0}, \quad\left[\varepsilon_{2}, \varepsilon_{0}\right]=2 \varepsilon_{1}
$$

Let V_{n} be an $(n+1)$-dimensional complex vector space of all complex homogeneous polynomials of degree n with respect to z_{0}, z_{1}. We define a Hermitian inner product \langle,$\rangle of V_{n}$ in such a way that

$$
\left\{u_{k}^{(n)}=z_{0}^{k} z_{1}^{n-k} / \sqrt{k!(n-k)!} \mid 0 \leq k \leq n\right\}
$$

is a unitary basis for V_{n}. We define a real inner product by $()=,\operatorname{Re}\langle$,$\rangle . A unitary$ representation ρ_{n} of $S U(2)$ on V_{n} is defined by

$$
\rho_{n}(g) f\left(z_{0}, z_{1}\right)=f\left(\left(z_{0}, z_{1}\right) g\right)=f\left(a z_{0}-b z_{1}, b z_{0}+\bar{a} z_{1}\right)
$$

for $g \in S U(2)$ and $f \in V_{n}$. We also denote by ρ_{n} the action of $\mathfrak{s u}(2)$ on V_{n}, so that

$$
\begin{align*}
\rho_{n}(X)\left(u_{k}^{(n)}\right)= & (k-(n-k)) \sqrt{-1} x u_{k}^{(n)} \tag{3.1}\\
& -\sqrt{k(n-k+1)} \bar{y} u_{k-1}^{(n)}+\sqrt{(k+1)(n-k)} y u_{k+1}^{(n)}
\end{align*}
$$

for $0 \leq k \leq n$ and $X \in \mathfrak{s u}(2)$. It is well-known that $\left\{\left(\rho_{n}, V_{n}\right) \mid n=0,1,2, \cdots\right\}$ is the set of all inequivalent irreducible unitary representations of $S U(2)$.

Put $T=\left\{\exp \left(t \varepsilon_{0}\right) \in \mathfrak{s u}(2) \mid t \in R\right\}$ and we have $S^{2}=C P^{1}=S U(2) / T$. We identify the tangent space of S^{2} at $o=\{T\} \in S^{2}=S U(2) / T$ with a subspace $\mathfrak{m}=\operatorname{span}\left\{\varepsilon_{1}, \varepsilon_{2}\right\}$ of $\mathfrak{s u}(2)$. We fix a complex structure on S^{2} so that $\varepsilon_{1}-\sqrt{-1} \varepsilon_{2}$ is a vector of type (1,0). Let g_{c} be an $S U(2)$-invariant Riemannian metric on S^{2} defined by

$$
g_{c}(X, Y)=-\frac{2}{c} \operatorname{tr} X Y
$$

for X and $Y \in \mathfrak{m}$ and c is a positive constant. It is the restriction of $S U(2)$-invariant inner product on $\mathfrak{s u}(2)$. Clearly, $\left\{(\sqrt{c} / 2) \varepsilon_{1},(\sqrt{c} / 2) \varepsilon_{2}\right\}$ forms an orthonormal basis of $\mathfrak{m} \cong T_{o} S^{2}$ and $\left(S^{2}, g_{c}\right)$ has the constant curvature c, so that we denote this by $S^{2}(c)$. The spectrum of the Laplacian Δ of $S^{2}(c)$ is given by $\operatorname{Spec}\left(S^{2}(c)\right)=\left\{\lambda_{l}=c l(l+1) \mid l \geq 0\right\}$.

Put $S^{2 n+1}=\left\{v \in V_{n} \mid\langle v, v\rangle=4 / \tilde{c}\right\}$ where \tilde{c} is a positive constant. Let $\pi: S^{2 n+1} \rightarrow$ $C P^{n}(\tilde{c})$ be the Hopf fibration, so that the action of $\rho_{n}(S U(2))$ on $S^{2 n+1}$ induces the action on $C P^{n}(\tilde{c})$ through π. Thus, for any non-negative integers n and k with $0 \leq k \leq n$,
denote by $\varphi_{n, k}$ the $S U(2)$-equivariant mapping of a Riemann sphere $S^{2}(c)$ into $C P^{n}(\tilde{c})$ defined by

$$
\begin{equation*}
\varphi_{n, k}: S^{2}(c)=S U(2) / T \in g T \mapsto \pi\left(\rho_{n}(g) \frac{2}{\sqrt{\tilde{c}}} u_{k}^{(n)}\right) \in C P^{n}(\tilde{c}) \tag{3.2}
\end{equation*}
$$

Bando and Ohnita in [1] show the following:
Theorem 3.1. (1) $\varphi_{n, k}$ is a full isometric immersion.
(2) c is equal to $\tilde{c} /(2 k(n-k)+n)$.
(3) $\varphi_{n, k}$ is a minimal immersion.
(4) (a) If $k=0$ (resp. $k=n$), then $\varphi_{n, k}$ is holomorphic (resp. anti-holomorphic).
(b) If n is even and $k=n / 2$, then $\varphi_{2 k, k}$ is totally real and $\varphi_{2 k, k}\left(S^{2}(c)\right)$ is contained in a totally geodesic totally real submanifold $\boldsymbol{R} P^{2 k}(\tilde{c} / 4)$ of $\boldsymbol{C P}{ }^{2 k}(\tilde{c})$.
(c) Otherwise, $\varphi_{n, k}$ is neither holomorphic, anti-holomorphic nor totally real.

$$
\begin{equation*}
\varphi_{n, k}\left(S^{2}(c)\right)=\varphi_{n, n-k}\left(S^{2}(c)\right) . \tag{5}
\end{equation*}
$$

Moreover, they show the following rigidity theorem.
Theorem 3.2. Let $\varphi: S^{2}(c) \rightarrow C P^{n}(\tilde{c})$ be a full isometric minimal immersion. Then there exists an integer k with $0 \leq k \leq n$ such that $c=\tilde{c} /(2 k(n-k)+n)$ and φ is congruent to $\varphi_{n, k}$ up to a holomorphic isometry of $C P^{n}(\tilde{c})$.

We identify V_{n} with C^{n+1} such that $\left\{u_{0}^{(n)}, u_{1}^{(n)}, \cdots, u_{n}^{(n)}\right\}$ is the canonical basis of C^{n+1}, so that we can regard $\rho_{n}(g), g \in S U(2)$, as an element of $U(n+1)$.

Put $\tilde{V}=H M(n+1, C)$. Let $\tilde{\rho}: S U(2) \rightarrow G L(\tilde{V})$ be a real representation defined by $\tilde{\rho}(g) X=\rho_{n}(g) X \rho_{n}(g)^{*}$ for $g \in S U(2)$ and $X \in \tilde{V}$. Let $\left(\tilde{\rho}, \tilde{V}^{c}\right)$ be the complexification of $(\tilde{\rho}, \tilde{V})$. It is easy to see that $\left(\tilde{\rho}, \tilde{V}^{c}\right)=(\tilde{\rho}, \mathfrak{g l}(n+1, C))$ is $S U(2)$-equivalent to $\left(\rho_{n} \otimes \rho_{n}, V_{n} \otimes V_{n}\right)$, since the dual representation $\left(\rho_{n}^{*}, V_{n}^{*}\right)$ of $\left(\rho_{n}, V_{n}\right)$ is $S U(2)$-equivalent to $\left(\rho_{n}, V_{n}\right)$. By Clebsch-Gordan's theorem, we have the following decomposition $\tilde{V}^{c}=$ $\tilde{V}_{0} \oplus \tilde{V}_{1} \oplus \cdots \oplus \tilde{V}_{n}$, where $\left(\tilde{\rho}, \tilde{V}_{l}\right)$ is $S U(2)$-equivalent to $\left(\rho_{2 l}, V_{2 l}\right)$ for each l with $0 \leq l \leq n$. Set $W_{l}=\tilde{V} \cap \tilde{V}_{l}$. Then each $\left(\tilde{\rho}, W_{l}\right)$ is an irreducible real representation, and \tilde{V} is decomposed into $\tilde{V}=W_{0} \oplus W_{1} \oplus \cdots \oplus W_{n}$. Let $C_{\tilde{\tilde{D}}}$ be the Casimir operator of $\tilde{\rho}$, which is a real operator on \tilde{V}^{c} defined by $C_{\tilde{\rho}}=\sum_{i=0}^{2} \tilde{\rho}\left((\sqrt{c} / 2) \varepsilon_{i}\right)^{2}$. Then each W_{l} is characterized by the eigenspace of $C_{\tilde{\rho}}$ in \tilde{V} with the eigenvalue $-c l(l+1)$.

Let \tilde{V}_{T} be the set of all $\tilde{\rho}(T)$-invariant elements of \tilde{V}, i.e., $\tilde{V}_{T}=\{v \in \tilde{V} \mid \tilde{\rho}(t) v=v$ for any $t \in T\}$. For integers i and j with $0 \leq i, j \leq n$, let $E_{i j}$ be the matrix in \tilde{V}^{c} whose $(i+1, j+1)$-coefficient is 1 and others are zero, so that $E_{i j}$ is equal to $u_{i}^{(n)}\left(u_{j}^{(n)}\right)^{*}$ and \tilde{V} is spanned by $\left\{E_{i i},(1 / 2)\left(E_{i j}+E_{j i}\right),(\sqrt{-1} / 2)\left(E_{i j}-E_{j i}\right) \mid 0 \leq i<j \leq n\right\}$ over R. By the definition, for $t=\left(\begin{array}{cc}e^{i \theta} & 0 \\ 0 & e^{-i \theta}\end{array}\right) \in T$, we get $\rho_{n}(t) u_{k}^{(n)}=e^{i(2 k-n) \theta} u_{k}^{(n)}$. Therefore, we obtain \tilde{V}_{T} is spanned by $\left\{E_{i i} \mid 0 \leq i \leq n\right\}$ over R, i.e., \tilde{V}_{T} is the set of all diagonal matrices in \tilde{V}. Since $\left(\rho_{2 l}, V_{2 l}\right)$ is a spherical representation, $\tilde{V}_{T} \cap W_{l}$ is 1 -dimensional, so that there exists an
element Q_{l} such that $\tilde{V}_{T} \cap W_{l}=\boldsymbol{R}\left\{Q_{l}\right\}$. Since $C_{\tilde{\rho}}$ and $\tilde{\rho}(S U(2))$ are commutable, \tilde{V}_{T} is invariant under $C_{\tilde{p}}$. Therefore, each Q_{l} is characterized by an eigenvector of $C_{\tilde{\rho}}$ in \tilde{V}_{T} with the eigenvalue $-c l(l+1)$.

For $v \in \tilde{V}_{T}, f_{v}$ denotes a \tilde{V}-valued function on S^{2} defined by $f_{v}(g o)=\tilde{\rho}(g) v$ for $g \in S U(2)$. Then the action of Δ for f_{v} is give by $\Delta f_{v}=f_{-c_{\gamma v}}$. Thus, v has the decomposition $v=\sum_{l=0}^{n} v_{l}, v_{l} \in W_{l} \cap \tilde{V}_{T}$ if and only if f_{v} is the sum of the λ_{l}-eigenfunctions $f_{v_{i}}$. Now, we define the order of $f_{v}\left(\right.$ or $\left.v \in \tilde{V}_{T}\right)$ by $\operatorname{Ord}\left(f_{v}\right)=\operatorname{Ord}(v)=\left\{l \mid 1 \leq l \leq n, v_{i} \neq 0\right\}$.

For integers n and k with $0 \leq k \leq n$, we set $F_{n, k}=\Psi \circ \varphi_{n, k}$. By the definition of $\varphi_{n, k}$, we get $F_{n, k}=f_{E_{k k}}$. Since $E_{k k} \in \tilde{V}_{T}$, we have $\operatorname{Ord}\left(F_{n, k}\right)=\left\{l \mid 1 \leq l \leq n,\left(E_{k k}, Q_{i}\right) \neq 0\right\}$, so that $\varphi_{n, k}$ is at most n-type. Put $Q_{l}=\sum_{k=0}^{n} q_{l}^{k} E_{k k}, q_{l}^{k} \in \boldsymbol{R}$. Then the order of $\varphi_{n, k}$ is given by $\left\{l \mid 1 \leq l \leq n, q_{l}^{k} \neq 0\right\}$.

We can easily see that the identity matrix I in \tilde{V} is a 0 -eigenvector of $C_{\tilde{p}}$, and so we put $Q_{0}=I$. Since the W_{0}-part of $E_{k k}$ is equal to $(1 /(n+1)) I$, the constant term of $F_{n, k}-(1 /(n+1)) I=f_{E_{k k}-(1 /(n+1)) I}$ vanishes. Therefore, $\varphi_{n, k}$ is always mass-symmetric.

To prove Theorem $A(1)$, we shall give q_{l}^{k} explicitly. First, we restrict $C_{\tilde{p}}$ to \tilde{V}_{T}.
Lemma 3.3. For $A=\sum_{l=0}^{n} a_{l} E_{l l}$ and $B=\sum_{l=0}^{n} b_{l} E_{l l} \in \tilde{V}_{T}, B=C_{\tilde{\rho}} A$ if and only if

$$
b_{l}=-c\left\{(2 l(n-l)+n) a_{l}-l(n-l+1) a_{l-1}-(l+1)(n-l) a_{l+1}\right\}
$$

for $0 \leq l \leq n$.
Proof. By (3.1) we get

$$
\begin{aligned}
& \rho_{n}\left(\varepsilon_{1}\right) u_{l}^{(n)}=-\sqrt{l(n-l+1)} u_{l-1}^{(n)}+\sqrt{(l+1)(n-l)} u_{l+1}^{(n)}, \\
& \rho_{n}\left(\varepsilon_{2}\right) u_{l}^{(n)}=\sqrt{l(n-l+1)} \sqrt{-1} u_{l-1}^{(n)}+\sqrt{(l+1)(n-l)} \sqrt{-1} u_{l+1}^{(n)},
\end{aligned}
$$

so that

$$
\begin{aligned}
\rho_{n}\left(\varepsilon_{1}\right)^{2} u_{l}^{(n)}= & -(2 l(n-l)+n) u_{l}^{(n)}+\sqrt{l(l-1)(n-l+1)(n-l+2)} u_{l-2}^{(n)} \\
& +\sqrt{(l+1)(l+2)(n-l)(n-l-1)} u_{l+2}^{(n)}, \\
\rho_{n}\left(\varepsilon_{2}\right)^{2} u_{l}^{(n)}= & -(2 l(n-l)+n) u_{l}^{(n)}-\sqrt{l(l-1)(n-l+1)(n-l+2)} u_{l-2}^{(n)} \\
& -\sqrt{(l+1)(l+2)(n-l)(n-l-1)} u_{l+2}^{(n)} .
\end{aligned}
$$

Thus simple computation gives

$$
\begin{aligned}
& \sum_{i=1}^{2} \rho_{n}\left(\varepsilon_{i}\right)^{2} u_{l}^{(n)}=-2(2 l(n-l)+n) u_{l}^{(n)} \\
& u_{l}^{(n) *} \sum_{i=1}^{2} \rho_{n}\left(\varepsilon_{i}\right)^{2}=\left(\sum_{i=1}^{2} \rho_{n}\left(\varepsilon_{i}\right)^{2} u_{l}^{(n)}\right)^{*}=-2(2 l(n-l)+n) u_{l}^{(n) *}
\end{aligned}
$$

Since $E_{l l}=u_{l}^{(n)} u_{l}^{(n) *}$, we get

$$
\begin{aligned}
C_{\tilde{\rho}} A & =\frac{c}{4} \sum_{i=1}^{2} \tilde{\rho}\left(\varepsilon_{i}\right)^{2} \sum_{l=0}^{n} a_{l} u_{l}^{(n)} u_{l}^{(n) *} \\
\quad= & \frac{c}{4} \sum_{l=0}^{n} a_{l}\left\{\left(\sum_{i=1}^{2} \rho_{n}\left(\varepsilon_{i}\right)^{2} u_{l}^{(n)}\right) u_{l}^{(n) *}+2 \sum_{i=1}^{2}\left(\rho_{n}\left(\varepsilon_{i}\right) u_{l}^{(n)}\right)\left(\rho_{n}\left(\varepsilon_{i}\right) u_{l}^{(n)}\right)^{*}+u_{l}^{(n)}\left(\sum_{i=1}^{2} \rho_{n}\left(\varepsilon_{i}\right)^{2} u_{l}^{(n)}\right)^{*}\right\} \\
\quad= & c \sum_{l=0}^{n} a_{l}\left\{-(2 l(n-l)+n) u_{l}^{(n)} u_{l}^{(n) *}+l(n-l+1) u_{l-1}^{(n)} u_{l-1}^{(n) *}+(l+1)(n-l) u_{l+1}^{(n)} u_{l+1}^{(n) *}\right\} .
\end{aligned}
$$

This implies Lemma 3.3 immediately.
We identify \tilde{V}_{T} with R^{n+1} such that $\left\{E_{00}, E_{11}, \cdots, E_{n n}\right\}$ is the canonical basis of R^{n+1}. Define an $(n+1, n+1)$-matrix $R=\left(r_{i j}\right)_{0 \leq i, j \leq n}$ by

$$
r_{i j}= \begin{cases}-i(n-i+1), & \text { if } j=i-1 \\ 2 i(n-i)+n, & \text { if } j=i \\ -(i+1)(n-i), & \text { if } j=i+1 \\ 0, & \text { otherwise }\end{cases}
$$

and put $q_{l}={ }^{t}\left(q_{l}^{0}, q_{l}^{1}, \cdots, q_{l}^{n}\right)$. Then, from Lemma $3.3, q_{l}$ and R are corresponding to Q_{l} and $-(1 / c) C_{\tilde{p}}$, respectively. Therefore, each q_{l} is characterized by an eigenvector of R with the eigenvalue $l(l+1)$. Notice that $q_{0}=t(1,1, \cdots, 1)$ is a 0 -eigenvector of R.

In order to prove Theorem A (1), it is sufficient to show the following lemma.

Lemma 3.4. Let $q_{l}={ }^{t}\left(q_{l}^{0}, q_{l}^{1}, \cdots, q_{l}^{n}\right), 1 \leq l \leq n$, be a vector in R^{n+1} defined by

$$
\begin{equation*}
q_{l}^{k}=\frac{1}{l!} \sum_{m=0}^{l}(-1)^{m}\binom{l}{m} \prod_{j=1}^{l}(k+j-m)(n-k-j+m+1) . \tag{3.3}
\end{equation*}
$$

Then for each l with $0 \leq l \leq n, q_{l}$ is an eigenvector of R with an eigenvalue $l(l+1)$.
To prove this lemma, we need some lemmas. Put $r_{j}=j(n-j+1)$, so that

$$
R=\left(\begin{array}{ccccc}
r_{0}+r_{1} & -r_{1} & & & 0 \\
-r_{1} & r_{1}+r_{2} & -r_{2} & & \\
& -r_{2} & \ddots & \ddots & \\
& & \ddots & r_{n-1}+r_{n} & -r_{n} \\
0 & & & & -r_{n}
\end{array}\right)
$$

It is easy to see that

$$
\begin{equation*}
r_{k+l}+r_{k-l}-2 r_{k}=-2 l^{2}, \quad \text { for all } k, l \tag{3.4}
\end{equation*}
$$

In particular, we have

$$
\begin{equation*}
r_{k+1}+r_{k-1}-2 r_{k}=-2, \quad \text { for all } k \tag{3.5}
\end{equation*}
$$

Lemma 3.5. (1) For any integers k, l and p with $0 \leq p \leq l$, we have

$$
\begin{equation*}
r_{k+l-p}=-(l-p)(l-p+1)+(l-p+1) r_{k}-(l-p) r_{k-1} . \tag{3.6}
\end{equation*}
$$

For any k and p with $p \geq 1$, we have

$$
\begin{equation*}
p r_{k}-(p+1) r_{k-1}=-p(p+1)-r_{k-p-1} . \tag{3.7}
\end{equation*}
$$

(2) For any integers k, l and p with $0 \leq p \leq l$, we have

$$
\begin{equation*}
r_{k-l+p}=-(l-p)(l-p+1)+(l-p+1) r_{k}-(l-p) r_{k+1} . \tag{3.8}
\end{equation*}
$$

For any k and p with $p \geq 1$, we have

$$
\begin{equation*}
p r_{k}-(p+1) r_{k+1}=-p(p+1)-r_{k+p+1} . \tag{3.9}
\end{equation*}
$$

Proof. We shall prove (1). We get

$$
\begin{aligned}
r_{k+l-p}= & \left(r_{k+l-p}-2 r_{k+l-p-1}+r_{k+l-p-2}\right) \\
& +2\left(r_{k+l-p-1}-2 r_{k+l-p-2}+r_{k+l-p-3}\right) \\
& +3\left(r_{k+l-p-2}-2 r_{k+l-p-3}+r_{k+l-p-4}\right)+\cdots \\
& +(l-p-1)\left(r_{k+2}-2 r_{k+1}+r_{k}\right) \\
& +(l-p)\left(r_{k+1}-2 r_{k}+r_{k-1}\right) \\
& +(l-p+1) r_{k}-(l-p) r_{k-1},
\end{aligned}
$$

which, together with (3.5), implies

$$
\begin{aligned}
r_{k+l-p} & =-2(1+2+\cdots+(l-p))+(l-p+1) r_{k}-(l-p) r_{k-1} \\
& =-(l-p)(l-p+1)+(l-p+1) r_{k}-(l-p) r_{k-1} .
\end{aligned}
$$

Next, we show (3.7). Similarly, we get

$$
\begin{aligned}
p r_{k}-(p+1) r_{k-1}= & p\left(r_{k}-2 r_{k-1}+r_{k-2}\right) \\
& +(p-1)\left(r_{k-1}-2 r_{k-2}+r_{k-3}\right) \\
& +(p-2)\left(r_{k-2}-2 r_{k-3}+r_{k-4}\right)+\cdots \\
& +2\left(r_{k-p+2}-2 r_{k-p+1}+r_{k-p}\right) \\
& +\left(r_{k-p+1}-2 r_{k-p}+r_{k-p-1}\right) \\
& -r_{k-p-1},
\end{aligned}
$$

which, together with (3.5), implies

$$
\begin{aligned}
p r_{k}-(p+1) r_{k-1} & =-2(p+(p-1)+\cdots+2+1)-r_{k-p-1} \\
& =-p(p+1)-r_{k-p-1} .
\end{aligned}
$$

(2) is proved similarly.

Lemma 3.6. (1) For each $p=0,1, \cdots,[(l-2) / 2]$, we have

$$
\begin{align*}
-l(l+1) & \sum_{m \in I_{p}}(-1)^{m}\binom{l-1}{m} \prod_{\substack{1 \leq j \leq l \\
j \neq m+1}} r_{k+j-1-m} \tag{3.10}\\
= & \sum_{m \in J_{p}}(-1)^{m}\binom{l+1}{m} \prod_{1 \leq j \leq l} r_{k+j-m} \\
& +(-1)^{p+2}\binom{l}{p+1} r_{k+l-p-1} \cdots r_{k+1} r_{k-1} \cdots r_{k-p-1} \\
& +(-1)^{l-p-1}\binom{l}{l-p-1} r_{k+p+1} \cdots r_{k+1} r_{k-1} \cdots r_{k-l+p+1}
\end{align*}
$$

where $I_{p}=\{0,1, \cdots, p, l-p-1, \cdots, l-1\}$ and $J_{p}=\{0,1, \cdots, p+1, l-p, \cdots, l+1\}$.
(2) We have

$$
\begin{align*}
-l(l+1) & \sum_{m=0}^{l-1}(-1)^{m}\binom{l-1}{m} \prod_{\substack{l \leq j \leq l \\
j \neq m+1}} r_{k+j-1-m} \tag{3.11}\\
& =\sum_{m=0}^{l+1}(-1)^{m}\binom{l+1}{m} \prod_{1 \leq j \leq l} r_{k+j-m}
\end{align*}
$$

Proof. (1) We shall prove (3.10) by induction on p. Assume $p=0$. By (3.6), we get

$$
r_{k+l}=-l(l+1)+(l+1) r_{k}-l r_{k-1},
$$

which implies

$$
\begin{align*}
& -l(l+1) r_{k+l-1} \cdots r_{k+1}=r_{k+l} \cdots r_{k+1} \tag{3.12}\\
& \quad-(l+1) r_{k+l-1} \cdots r_{k}+l r_{k+l-1} \cdots r_{k+1} r_{k-1} .
\end{align*}
$$

Similarly, from (3.8), we get

$$
\begin{align*}
& -l(l+1) r_{k-1} \cdots r_{k-l+1}=r_{k-1} \cdots r_{k-l} \tag{3.13}\\
& \quad-(l+1) r_{k} \cdots r_{k-l+1}+l r_{k+1} r_{k-1} \cdots r_{k-l+1}
\end{align*}
$$

From (3.12) and (3.13), we obtain (3.10).
We assume $p>0$. From (3.6) and (3.7), we have
(3.14)

$$
\begin{aligned}
&\binom{l}{p} r_{k+l-p}-\binom{l+1}{p+1} r_{k} \\
&=\binom{l}{p+1} p r_{k}-\binom{l}{p+1}(p+1) r_{k-1}-\binom{l}{p}(l-p)(l-p+1) \\
&=-l(l+1)\binom{l-1}{p}-\binom{l}{p+1} r_{k-p-1} .
\end{aligned}
$$

Similarly, from (3.8) and (3.9), we have

$$
\begin{align*}
& \binom{l}{l-p} r_{k-l+p}-\binom{l+1}{l-p} r_{k} \tag{3.15}\\
& \\
& =-l(l+1)\binom{l-1}{l-p-1}-\binom{l}{l-p-1} r_{k+p+1}
\end{align*}
$$

By the assumption of induction, we obtain

$$
\begin{aligned}
& -l(l+1) \sum_{m \in I_{p}}(-1)^{m}\binom{l-1}{m} \prod_{\substack{l \leq j \leq l \\
j \neq m+1}} r_{k+j-1-m}-\sum_{m \in J_{p}}(-1)^{m}\binom{l+1}{m} \prod_{1 \leq j \leq l} r_{k+j-m} \\
& -(-1)^{p+2}\binom{l}{p+1} r_{k+l-p-1} \cdots r_{k+1} r_{k-1} \cdots r_{k-p-1} \\
& -(-1)^{l-p-1}\binom{l}{l-p-1} r_{k+p+1} \cdots r_{k+1} r_{k-1} \cdots r_{k-l+p+1}, \\
& = \\
& (-1)^{p+1} r_{k+l-p-1} \cdots r_{k+1} r_{k-1} \cdots r_{k-p} \\
& \quad \times\left\{\binom{l}{p} r_{k+l-p}-\binom{l+1}{p+1} r_{k}+\binom{l}{p+1} r_{k-p-1}+l(l+1)\binom{l-1}{p}\right\} \\
& +(-1)^{l-p} r_{k+p} \cdots r_{k+1} r_{k-1} \cdots r_{k-l+p+1} \\
& \quad \times\left\{\binom{l}{l-p} r_{k-l+p}-\binom{l+1}{l-p} r_{k}+\binom{l}{l-p-1} r_{k+p+1}+l(l+1)\binom{l-1}{l-p-1}\right\}
\end{aligned}
$$

Combining (3.14) and (3.15), we obtain (3.10).
(2) Put $p=[(l-2) / 2]$. If l is even, we get $p=l / 2-1$. Then we obtain (3.11) from (3.10) immediately. Therefore, we assume that l is odd. In this case, we get $p=(l-3) / 2$ (or $l=2 p+3$), so that $I_{p} \cup\{p+1\}=\{0,1, \cdots, l-1\}$ and $J_{p} \cup\{p+2\}=\{0,1, \cdots, l+1\}$. From (3.10), we have

$$
\begin{aligned}
-l(l+1) & \sum_{m=0}^{l-1}(-1)^{m}\binom{l-1}{m} \prod_{\substack{1 \leq j \leq l \\
j \neq m+1}} r_{k+j-1-m}-\sum_{m=0}^{l+1}(-1)^{m}\binom{l+1}{m} \prod_{1 \leq j \leq l} r_{k+j-m} \\
= & -l(l+1)(-1)^{p+1}\binom{l-1}{p+1} \prod_{\substack{1 \leq j \leq l \\
j \neq p+2}} r_{k+j-p-2} \\
& -(-1)^{p+2}\binom{l+1}{p+2} \prod_{1 \leq j \leq l} r_{k+j-p-2} \\
& +(-1)^{p+2}\binom{l}{p+1} r_{k+l-p-1} \cdots r_{k+1} r_{k-1} \cdots r_{k-p-1} \\
& +(-1)^{l-p-1}\binom{l}{l-p-1} r_{k+p+1} \cdots r_{k+1} r_{k-1} \cdots r_{k-l+p+1} \\
= & (-1)^{p+2}\binom{2 p+3}{p+1} \underset{\substack{1 \leq j \leq l \\
j \neq p+2}}{ } r_{k+j-p-2}\left(2(p+2)^{2}-2 r_{k}+r_{k+p+2}+r_{k-p-2}\right)
\end{aligned}
$$

which, combined with (3.4), implies (3.11).
Proof of Lemma 3.4. For any n, k and l with $0 \leq k, l \leq n$, we get by simple computation,

$$
\begin{aligned}
l!q_{l}^{k}= & \sum_{m=0}^{l}(-1)^{m}\binom{l}{m} \prod_{j=1}^{l} r_{k+j-m} \\
= & \sum_{m=0}^{l-1}(-1)^{m}\binom{l-1}{m} \prod_{j=1}^{l} r_{k+j-m}+\sum_{m=1}^{l}(-1)^{m}\binom{l-1}{m-1} \prod_{j=1}^{l} r_{k+j-m} \\
= & \left(\sum_{m=0}^{l-1}(-1)^{m}\binom{l-1}{m} \prod_{\substack{1 \leq j \leq l \\
j \neq m+1}} r_{(k+1)+j-1-m}\right) r_{k+1} \\
& -\left(\sum_{m=0}^{l-1}(-1)^{m}\binom{l-1}{m} \prod_{\substack{1 \leq j \leq l \\
j \neq m+1}} r_{k+j-1-m}\right) r_{k}
\end{aligned}
$$

On the other hand, direct computation gives

$$
l!\left(q_{l}^{k}-q_{l}^{k-1}\right)=\sum_{m=0}^{l+1}(-1)^{m}\binom{l+1}{m} \prod_{1 \leq j \leq l} r_{k+j-m}
$$

which, combined with (3.11), implies

$$
\begin{aligned}
-l(l+1) l!q_{l}^{k} & =l!\left(q_{l}^{k+1}-q_{l}^{k}\right) r_{k+1}-l!\left(q_{l}^{k}-q_{l}^{k-1}\right) r_{k} \\
& =-l!\left(-r_{k} q_{l}^{k-1}+\left(r_{k}+r_{k+1}\right) q_{l}^{k}-r_{k+1} q_{l}^{k+1}\right)
\end{aligned}
$$

Therefore, we obtain $R q_{l}=l(l+1) q_{l}$.
To prove Theorem A (2) and (3), we need more detailed properties for q_{l}.
Lemma 3.7. (1) $q_{l}^{0}=n!/(n-l)!$ for all n and l with $0 \leq l \leq n$.
(2) $q_{l}^{n-k}=(-1)^{l} q_{l}^{k}$ for all n, l and k with $0 \leq k, l \leq n$.
(3) If n is even and l is odd with $0 \leq l \leq n$, then $q_{l}^{n / 2}=0$.
(4) If n and l are even with $0 \leq l \leq n$, then $q_{l}^{n / 2} \neq 0$.

Proof. (1) follows immediately from (3.3). Also from (3.3), we have

$$
l!q_{l}^{n-k}=\sum_{m=0}^{l}(-1)^{m}\binom{l}{m} \prod_{j=1}^{l} r_{n-k+j-m}
$$

Put $j^{\prime}=l-j+1$ and $m^{\prime}=l-m$, and we obtain

$$
\begin{aligned}
l!q_{l}^{n-k} & =\sum_{m^{\prime}=0}^{l}(-1)^{l-m^{\prime}}\binom{l}{l-m^{\prime}} \prod_{j^{\prime}=1}^{l} r_{k+j^{\prime}-m^{\prime}} \\
& =(-1)^{l} l!q_{l}^{k}
\end{aligned}
$$

So (2) holds. (2) implies (3) immediately.
Assume that $q_{l}^{n / 2}=0$, for some even n and l with $0 \leq l \leq n$. Put $k=n / 2-j$, $j=0,1, \cdots, n / 2$. Then (2) implies that $q_{l}^{n / 2+j}=q_{l}^{n / 2-j}$. From Lemma 3.4, we get

$$
\begin{aligned}
-\left(\frac{n}{2}\right)\left(\frac{n}{2}+1\right)\left(q_{l}^{n / 2-1}+q_{l}^{n / 2+1}\right) & =-r_{n / 2} q_{l}^{n / 2-1}+\left(r_{n / 2}+r_{n / 2+1}\right) q_{l}^{n / 2}-r_{n / 2+1} q_{l}^{n / 2+1} \\
& =l(l+1) q_{l}^{n / 2}=0
\end{aligned}
$$

These imply

$$
\begin{equation*}
q_{l}^{n / 2-1}=q_{l}^{n / 2}=q_{l}^{n / 2+1}=0 . \tag{3.16}
\end{equation*}
$$

Now, from Lemma 3.4, for any k, q_{l}^{k} satisfies

$$
-r_{k} q_{l}^{k-1}+\left(r_{k}+r_{k+1}\right) q_{l}^{k}-r_{k+1} q_{l}^{k+1}=l(l+1) q_{l}^{k}
$$

which, combined with (3.16), implies $q_{l}^{k}=0$ for all k with $0 \leq k \leq n$, i.e., $q_{l}=0$. This contradicts (1). Therefore, (4) holds.

From Lemma 3.7 (1) and (2), we have $q_{l}^{0} \neq 0$ and $q_{l}^{n} \neq 0$ so that the order of $\varphi_{n, 0}$ and $\varphi_{n, n}$ are $\{1,2, \cdots, n\}$. Similarly, from Lemma 3.7 (3) and (4), if n is even, then the order of $\varphi_{n, n / 2}$ is $\{2,4, \cdots, n\}$. So Theorem A (2) and (3) are proved completely.

By Theorem A (1), if integers n and k with $0 \leq k \leq n$ are explicitly given, then we can obtain the order of $\varphi_{n, k}$. The following proposition is used in the later section.

Proposition 3.8. For $n \leq 6$, the order of $\varphi_{n, k}$ is given as follows:

$\varphi_{n, k}$	order	type
$\varphi_{1,0}$ and $\varphi_{1,1}$	$\{1\}$	1-type
$\varphi_{2,0}$ and $\varphi_{2,2}$	$\{1,2\}$	2-type
$\varphi_{2,1}$	$\{2\}$	1-type
$\varphi_{3, k}(0 \leq k \leq 3)$	$\{1,2,3\}$	3-type
$\varphi_{4, k}(0 \leq k \leq 4, k \neq 2)$	$\{1,2,3,4\}$	4-type
$\varphi_{4,2}$	$\{2,4\}$	2-type
$\varphi_{5, k}(0 \leq k \leq 5)$	$\{1,2,3,4,5\}$	5-type
$\varphi_{6, k}(0 \leq k \leq 6, k \neq 1,3,5)$	$\{1,2,3,4,5,6\}$	6-type
$\varphi_{6,1}$ and $\varphi_{6,5}$	$\{1,3,4,5,6\}$	5-type
$\varphi_{6,3}$	$\{2,4,6\}$	3-type

Remark. From Lemmas 3.4 and 3.7 , we have $q_{l}^{1}=(-1)^{l} q_{l}^{n-1}=((n-1)!/$ $(n-l)!)(n-l(l+1))$. Therefore, we see that $\varphi_{n, 1}$ and $\varphi_{n, n-1}$ with $n=l(l+1)$ are of order $\{1,2, \cdots, l-1, l+1, \cdots, n\}$ and of $(n-1)$-type, and that other $\varphi_{n, 1}$ and $\varphi_{n, n-1}$ are of order $\{1,2, \cdots, n\}$ and of n-type.

§4. Minimal surfaces in $C P^{n}$ and harmonic sequence.

In this section, we consider minimal immersions of $S^{\mathbf{2}}$ into $C P^{n}$ in the context of harmonic maps.

Let M be a smooth manifold and V be a complex vector subbundle of the trivial bundle $\underline{C}^{n+1}=M \times C^{n+1}$ over M. Then V has a connection ∇, induced from the trivial connection on \underline{C}^{n+1}, given by $\nabla s=\pi_{V} d s$, where s is a section of V and $\pi_{V}: \underline{C}^{n+1} \rightarrow V$ denotes orthogonal projection onto V.

Let L be the universal line bundle over $C P^{n}$ defined by $L=\left\{(p, v) \in C P^{n} \times C^{n+1} \mid v \in\right.$ $p\}$ then both L and its orthogonal complement L^{\perp} have induced connections and Hermitian metrics. Let $T^{(1,0)} C P^{n}$ (resp. $\left.T^{(0,1)} C P^{n}\right)$ denote the (1, 0)-part (resp. (0, 1)-part) of the complexification $T C P^{n C}$ of $T C P^{n}$. Thus we have a Hermitian metric and a connection of $\operatorname{Hom}\left(L, L^{\perp}\right)$ and there is a canonical isomorphism $h: T^{(1,0)} C P^{n} \rightarrow$ $\operatorname{Hom}\left(L, L^{\perp}\right)$ given by $h(X) s=\pi_{L^{\perp}} d s(X)$, where $X \in T^{(1,0)} C P^{n}$ and s is a local section of L. Under this isomorphism, the complex structure, the metric and the connection on $\operatorname{Hom}\left(L, L^{\perp}\right)$ correspond respectively to the complex structure, the Fubini Study metric and the connection on $C P^{n}$ with constant holomorphic sectional curvature 4.

For a smooth manifold M, there is a bijective correspondence between (smooth) complex line subbundles of \underline{C}^{n+1} and smooth maps $\varphi: M \rightarrow C P^{n}$, given by $\varphi \leftrightarrow \varphi^{*} L$. Let $d^{(1,0)} \varphi: T M^{\boldsymbol{c}} \rightarrow T^{(1,0)} C \bar{P}^{\boldsymbol{n}}$ be the (1,0)-part of the derivative of φ. Then $h \circ d^{(1,0)} \varphi$ is a bundle map covering φ and the corresponding section δ of $\operatorname{Hom}\left(T M^{c} \otimes \varphi^{*} L, \varphi^{*} L^{\perp}\right)$
is given by $\delta(X \otimes s)=\pi_{L^{\perp}} d s(X)$, where a section s of $\varphi^{*} L$ is considered as C^{n+1}-valued function defined on M. If M is a Riemann surface, the holomorphic part

$$
\partial: T^{(1,0)} M \otimes \varphi^{*} L \rightarrow \varphi^{*} L^{\perp}
$$

of δ is given in terms of a local complex coordinate z on M by

$$
\partial(\partial / \partial z \otimes s)=\left(h \circ d^{(1,0)} \varphi(\partial / \partial z)\right)(s)=\pi_{L^{1}} d s(\partial / \partial z),
$$

and the antiholomorphic part

$$
\bar{\partial}: T^{(0,1)} M \otimes \varphi^{*} L \rightarrow \varphi^{*} L^{\perp}
$$

of δ is given by

$$
\partial(\partial / \partial \bar{z} \otimes s)=\left(h \circ d^{(1,0)} \varphi(\partial / \partial \bar{z})\right)(s)=\pi_{L^{\perp}} d s(\partial / \partial \bar{z}) .
$$

For any complex vector bundle V over the Riemann surface M, by KoszulMalgrange theorem, each connection on V determines a holomorphic structure on V. Thus we have holomorphic structures on $\varphi^{*} L$ and $\varphi^{*} L^{\perp}$, and Wolfson shows that φ is harmonic if and only if ∂ (resp. δ) is a holomorphic (resp. an antiholomorphic) bundle map. Using these ideas, for a harmonic map φ, Wolfson in [12] goes on to construct inductively an associated sequence

$$
\cdots, L_{-2}, L_{-1}, L_{0}, L_{1}, L_{2}, \cdots
$$

of complex line subbundles of \underline{C}^{n+1} and bundle maps

$$
\partial_{p}: T^{(1,0)} M \otimes L_{p} \rightarrow L_{p+1} \quad \text { and } \quad \delta_{p}: T^{(0,1)} M \otimes L_{p} \rightarrow L_{p-1}
$$

Here $L_{p}=\varphi_{p}^{*} L$ for a suitable harmonic map $\varphi_{p}: M \rightarrow C P^{n}$ and ∂_{p} (resp. $\bar{\delta}_{p}$) is essentially the map ∂ (resp. $\bar{\partial}$) defined above for the map φ_{p}. Then ∂_{p} (resp. ∂_{p}) is a holomorphic (resp. antiholomorphic) bundle map. If $\partial_{p} \equiv 0$ but $\partial_{p-1} \not \equiv 0$ (resp. $\partial_{p} \equiv 0$ but $\delta_{p+1} \not \equiv 0$) then the sequence terminates with L_{p} at the right (resp. left) hand end, and the corresponding harmonic map φ_{p} is antiholomorphic (resp. holomorphic). The set of points of M over which ∂_{p} (resp. $\bar{\delta}_{p}$) is singular is a set of isolated points and, except these points, $L_{p+1}\left(\right.$ resp. $\left.L_{p-1}\right)$ is the image of ∂_{p} (resp. $\bar{\delta}_{p}$). (Also, see $[2,3]$.)

We call the sequence $\left\{\varphi_{p}\right\}$ the harmonic sequence determined by φ with $\varphi=\varphi_{p}$ for some p, and the sequence $\left\{L_{p}\right\}$ the associated bundle sequence. φ_{p} is conformal if and only if L_{p+1} is orthogonal to L_{p-1}.

If the harmonic sequence $\left\{\varphi_{p}\right\}$ terminates at one end, then it terminates at both ends and all the elements of the associated bundle sequence $\left\{L_{p}\right\}$ are mutually orthogonal, i.e., L_{p} is orthogonal to L_{q} for $p \neq q$. If the harmonic sequence of φ satisfies this condition, φ is called isotropic, so that each φ_{p} is conformal. Moreover, in this case, φ is full in $C P^{n}$ if and only if the sequence $\left\{\varphi_{p}\right\}$ has length exactly $n+1$, which is equivalent to the fact that \underline{C}^{n+1} is an orthogonal sum of some $n+1$ consecutive bundles of the bundle sequence.

Now we need a local description of the harmonic sequence of an isotropic harmonic $\operatorname{map} \varphi$. Let z be a local complex coordinate on M. Then, for each p, we can choose a meromorphic local section f_{p} of L_{p} such that

$$
f_{p+1}=\partial_{p}\left(\partial / \partial z \otimes f_{p}\right)
$$

Define functions γ_{p} by

$$
\gamma_{p}= \begin{cases}\frac{\left|f_{p+1}\right|^{2}}{\left|f_{p}\right|^{2}}, & \text { if } f_{p} \not \equiv 0 \\ 0 & \text { if } f_{p} \equiv 0\end{cases}
$$

then we have

$$
\begin{align*}
& \frac{\partial}{\partial z} f_{p}=f_{p+1}+\frac{\partial}{\partial z} \log \left|f_{p}\right|^{2} f_{p} \tag{4.1}\\
& \frac{\partial}{\partial \bar{z}} f_{p}=-\gamma_{p-1} f_{p-1} \tag{4.2}
\end{align*}
$$

Since $\left(\partial^{2} / \partial z \partial \bar{z}\right) f_{p}=\left(\partial^{2} / \partial \bar{z} \partial z\right) f_{p}$, we have

$$
\begin{equation*}
\frac{\partial^{2}}{\partial z \partial \bar{z}} \log \left|f_{p}\right|^{2}=\gamma_{p}-\gamma_{p-1} \tag{4.3}
\end{equation*}
$$

and the unintegrated Plücker formulae

$$
\begin{equation*}
\frac{\partial^{2}}{\partial z \partial \bar{z}} \log \gamma_{p}=\gamma_{p+1}-2 \gamma_{p}+\gamma_{p-1} \tag{4.4}
\end{equation*}
$$

If φ is conformal, then φ is minimal if and only if φ is harmonic. Therefore, in order to prove Theorems C, D and E, we use the method of the harmonic sequence. Notice that in [2], J. Bolton, G. R. Jensen, M. Rigoli and L. M. Woodward show Theorems 3.1 and 3.2 using this method.

By Riemann-Roch theorem, every harmonic map of a 2 -sphere S^{2} into $C P^{n}$ is isotropic. Therefore, we will prove Theorems C, D and E for a compact isotropic minimal surface in $C P^{n}$.

From now on, we assume that $\varphi: M \rightarrow \boldsymbol{C P}{ }^{n}$ be an isotropic conformal minimal immersion of a compact Riemann surface M into $C P^{n}$, and that $\left\{\varphi_{p}\right\}$ is the corresponding sequence determined by φ with $\varphi=\varphi_{0}$. Then each φ_{p} is also an isotropic conformal minimal immersion of M (perhaps with isolated singularities). Let g_{p} and θ_{p} denote the induced metric of M by φ_{p} and the Kähler angle of φ_{p}, respectively. Let Δ_{p} and K_{p} denote the Laplacian and the Gaussian curvature of $\left(M, g_{p}\right)$, respectively. Then we have

$$
\begin{equation*}
g_{p}=\sigma_{p} d z d \bar{z}, \quad \sigma_{p}=\gamma_{p}+\gamma_{p-1} \tag{4.5}
\end{equation*}
$$

$$
\begin{gather*}
\tan ^{2} \frac{\theta_{p}}{2}=\frac{\gamma_{p-1}}{\gamma_{p}}, \tag{4.6}\\
\Delta_{p}=-\frac{4}{\sigma_{p}} \frac{\partial^{2}}{\partial z \partial \bar{z}} \tag{4.7}\\
K_{p}=-\frac{2}{\sigma_{p}} \frac{\partial^{2}}{\partial z \partial \bar{z}} \log \sigma_{p} \tag{4.8}
\end{gather*}
$$

Set $F_{p}=\Psi \circ \varphi_{p}$. By the definition of Ψ, we have

$$
\begin{equation*}
F_{p}=\frac{1}{\left|f_{p}\right|^{2}} f_{p} f_{p}^{*} \tag{4.9}
\end{equation*}
$$

From (4.1), (4.2) and (4.7), we will inductively show that

$$
\begin{equation*}
\Delta_{0}^{l} F_{0}=\sum_{|p|,|q| \leq l} \alpha^{p q} f_{p} f_{q}^{*} \tag{4.10}
\end{equation*}
$$

for any nonnegative integer l, where $\alpha^{p q}$ is a C-valued function on M. Note that a matrix $f_{p} f_{q}^{*}$ acts on C^{n+1} as $\left(f_{p} f_{q}^{*}\right) f_{r}=\left\langle f_{r}, f_{q}\right\rangle f_{p}$.

Theorem \mathbf{C} follows from the following theorem.
Theorem C^{\prime}. Let M be a compact, k-type, mass-symmetric, isotropic, minimal surface in $C P^{n}(4)$. Then n satisfies $n \leq 2 k$.

Proof. By Proposition 2.2, there exist real constants $a_{l}, 1 \leq l \leq k$, such that the matrix-valued function

$$
P=\Delta_{0}^{k} F_{0}+a_{1} \Delta_{0}^{k-1} F_{0}+\cdots+a_{k-1} \Delta_{0} F_{0}+a_{k}\left(F_{0}-(1 /(n+1)) I\right)
$$

is identically zero. Since φ is exactly k-type, we have $a_{k} \neq 0$. From (4.10), we get

$$
\begin{equation*}
P=\sum_{|p|,|q| \leq k} \alpha^{p q} f_{p} f_{q}^{*}-\frac{a_{k}}{n+1} I \tag{4.11}
\end{equation*}
$$

where $\alpha^{p q}$ is a C-valued function on M. Since φ is isotropic, f_{p} is orthogonal to f_{q} for $p \neq q$, so that (4.11) implies that if $|p| \geq k+1$, then $f_{p}=-\left((n+1) / a_{k}\right) P f_{p}=0$. By Proposition B, φ is isotropic and full. Therefore, there exist nonnegative integers l and l^{\prime} such that $n=l+l^{\prime}, f_{p} \neq 0$ for $-l^{\prime} \leq p \leq l$ and other f_{p} 's are identically zero. Thus we get $l, l^{\prime} \leq k$ so that $n \leq 2 k$.
(4.1), (4.2) and (4.9) imply that

$$
\begin{equation*}
\frac{\partial}{\partial z} F_{p}=\frac{1}{\left|f_{p}\right|^{2}} f_{p+1} f_{p}^{*}-\frac{\gamma_{p-1}}{\left|f_{p}\right|^{2}} f_{p} f_{p-1}^{*} \tag{4.12}
\end{equation*}
$$

$$
\begin{gather*}
\frac{\partial}{\partial \bar{z}} F_{p}=\frac{1}{\left|f_{p}\right|^{2}} f_{p} f_{p+1}^{*}-\frac{\gamma_{p-1}}{\left|f_{p}\right|^{2}} f_{p-1} f_{p}^{*} \tag{4.13}\\
\frac{\partial^{2}}{\partial z \partial \bar{z}} F_{p}=-\left(\gamma_{p}+\gamma_{p-1}\right) F_{p}+\gamma_{p} F_{p+1}+\gamma_{p-1} F_{p-1} \tag{4.14}
\end{gather*}
$$

which, combined with (4.7), yields

$$
\begin{equation*}
\Delta_{0} F_{p}=\left(t_{p}+t_{p-1}\right) F_{p}-t_{p} F_{p+1}-t_{p-1} F_{p-1} \tag{4.15}
\end{equation*}
$$

where $t_{p}=4 \gamma_{p} /\left(\gamma_{0}+\gamma_{-1}\right)$. After simple computation, these imply that

$$
\begin{align*}
\Delta_{0}^{2} F_{p}= & \Delta_{0}\left(t_{p}+t_{p-1}\right) F_{p} \tag{4.16}\\
& -\frac{4}{\sigma_{0}}\left(t_{p}+t_{p-1}\right)_{z}\left(F_{p}\right)_{\bar{z}}-\frac{4}{\sigma_{0}}\left(t_{p}+t_{p-1}\right)_{\bar{z}}\left(F_{p}\right)_{z}+\left(t_{p}+t_{p-1}\right) \Delta_{0} F_{p} \\
& -\Delta_{0} t_{p} F_{p+1}+\frac{4}{\sigma_{0}}\left(t_{p}\right)_{z}\left(F_{p+1}\right)_{\bar{z}}+\frac{4}{\sigma_{0}}\left(t_{p}\right)_{\bar{z}}\left(F_{p+1}\right)_{z}-t_{p} \Delta_{0} F_{p+1} \\
& -\Delta_{0} t_{p-1} F_{p-1}+\frac{4}{\sigma_{0}}\left(t_{p-1}\right)_{z}\left(F_{p-1}\right)_{\bar{z}}+\frac{4}{\sigma_{0}}\left(t_{p-1}\right)_{\bar{z}}\left(F_{p-1}\right)_{z}-t_{p-1} \Delta_{0} F_{p-1} .
\end{align*}
$$

Proposition 4.1. If a compact, mass-symmetric, isotropic, minimal surface M in CP ${ }^{n}(4)$ is of at most 2-type, then M has constant curvature and constant Kähler angle.

Proof. By Proposition 2.2, there exist real constants b and c such that the matrix-valued function

$$
P=\Delta_{0}^{2} F_{0}+b \Delta_{0} F_{0}+c\left(F_{0}-(1 /(n+1)) / I\right)
$$

is identically zero. Since φ is isotropic, f_{p} is orthogonal to f_{q} for $p \neq q$. Since $t_{0}+t_{-1}=4$, from (4.12), (4.13), (4.15) and (4.16), we have

$$
P f_{0}=\left(16+t_{0}^{2}+t_{-1}^{2}+4 b+c \frac{n}{n+1}\right) f_{0}-\frac{4}{\sigma_{0}}\left(t_{0}\right)_{z} f_{1}+\frac{4}{\sigma_{0}}\left(t_{-1}\right)_{z} \gamma_{-1} f_{-1}
$$

Since φ is not a constant map, we see that $f_{0} \neq 0$, and either f_{1} or f_{-1} is not identically zero. From $P \equiv 0$, we see that either $\left(t_{0}\right)_{\bar{z}}$ or $\left(t_{-1}\right)_{z}$ is vanishing. Since each t_{p} is a realvalued function, we see that either t_{0} or t_{-1} is constant, so that there exist real constants α and β such that

$$
\begin{equation*}
\alpha \gamma_{0}+\beta \gamma_{-1} \equiv 0 \tag{4.17}
\end{equation*}
$$

with $(\alpha, \beta) \neq(0,0)$ and both t_{0} and t_{-1} are constant. (4.6) and (4.17) imply that M has constant Kähler angle.

Since t_{0} and t_{-1} are constant, we have

$$
\Delta_{0}^{2} F_{0}=4 \Delta_{0} F_{0}-t_{0} \Delta_{0} F_{1}-t_{-1} \Delta_{0} F_{-1},
$$

so that

$$
\begin{gather*}
P f_{1}=\left(-4 t_{0}-\left(t_{1}+t_{0}\right) t_{0}-b t_{0}-c \frac{1}{n+1}\right) f_{1} \tag{4.18}\\
P f_{-1}=\left(-4 t_{-1}-\left(t_{-1}+t_{-2}\right) t_{-1}-b t_{-1}-c \frac{1}{n+1}\right) f_{-1} \tag{4.19}
\end{gather*}
$$

Assume that $f_{1} \not \equiv 0$. Then from (4.17), we have $\gamma_{0} \neq 0$ and $\gamma_{-1}=v \gamma_{0}$ with some constant $v>0$. Since $P \equiv 0$, (4.18) implies that t_{1} is constant so that there exists a constant μ such that $\gamma_{1}=\mu \gamma_{0}$. Then from (4.8) and (4.4), we get

$$
\begin{aligned}
K_{0} & =-\frac{2}{(1+v) \gamma_{0}} \frac{\partial^{2}}{\partial z \partial \bar{z}} \log (1+v) \gamma_{0} \\
& =-\frac{2}{(1+v) \gamma_{0}}\left(\gamma_{1}-2 \gamma_{0}+\gamma_{-1}\right) \\
& =-\frac{2(v+\mu-2)}{1+v}
\end{aligned}
$$

Therefore, M has constant curvature.
Similarly, from (4.19), even if $f_{-1} \not \equiv 0, M$ has constant curvature.
Proposition 4.2. Compact, totally real, minimal flat surfaces in $C^{n}(4)$ are never isotropic.

Proof. Let $\varphi: M \rightarrow C P^{n}$ be a totally real minimal immersion of a flat compact Riemann surface M in $C P^{n}$, and $\left\{\varphi_{p}\right\}$ the corresponding harmonic sequence determined by φ with $\varphi=\varphi_{0}$.

Since $\theta_{0}=\pi / 2$, (4.6) implies $\gamma_{0}=\gamma_{-1}$. Applying $\partial^{2} / \partial z \partial \bar{z}$, and using (4.4), we get $\gamma_{1}=\gamma_{-2}$. Since $K_{0}=0$, (4.8) implies $\gamma_{1}=\gamma_{0}$. Therefore, we have $\gamma_{1}=\gamma_{0}=\gamma_{-1}=\gamma_{-2}(\not \equiv 0)$ so that (4.6) and (4.8) imply that both φ_{1} and φ_{-1} are also totally real minimal immersions of M in $C P^{n}$, and the induced metrics are flat. Inductively, we obtain that each φ_{p} is totally real. Therefore, the sequence $\left\{\varphi_{p}\right\}$ never terminates so that φ is not isotropic.

In [5], Y. Ohnita showed the following:
Theorem 4.3. Let M be a minimal surface with constant curvature K immersed fully in CP ${ }^{n}$. Assume that the Kähler angle of M is constant. Then the following hold:
(1) If $K>0$, then there exists some k with $0 \leq k \leq n$ such that M is an open submanifold of $\varphi_{n, k}\left(S^{2}\right)$.
(2) If $K=0$ (i.e., M is flat), then M is totally real.
(3) $K<0$ is impossible.

Let $\varphi: M \rightarrow C P^{n}$ be a mass-symmetric, 2-type, isotropic, minimal immersion of a compact surface M in $C P^{n}(4)$. From Proposition B, φ is full. Then, from Propositions 4.1, 4.2 and Theorem 4.3, we obtain that M has positive constant curvature, and that $\varphi: M \rightarrow C P^{n}$ is congruent to $\varphi_{n, k}: S^{2} \rightarrow C P^{n}$ for some k with $0 \leq k \leq n$. On the other hand, from Theorem C^{\prime}, we get $n \leq 4$. Therefore, from Proposition 3.8, we obtain the following:

Theorem D^{\prime}. If a compact, mass-symmetric, isotropic, minimal surface M in CP ${ }^{n}$ (4) is of at most 2-type, then M is of positive constant curvature, so that the immersion is congruent to either $\varphi_{1,0}, \varphi_{1,1}, \varphi_{2,0}, \varphi_{2,1}, \varphi_{2,2}$ or $\varphi_{4,2}$.

Theorem \mathbf{D} follows immediately from this theorem.
Proposition 4.4. Let M be a compact, mass-symmetric, isotropic, minimal surface in CPn ${ }^{n}(4)$. If M is of at most 3-type and with constant Kähler angle, then M is of constant curvature.

Proof. From (4.6), both t_{0} and t_{-1} are constant so that we have

$$
\begin{aligned}
& \Delta_{0} F_{0}=4 F_{0}-t_{0} F_{1}-t_{-1} F_{-1}, \\
& \Delta_{0}^{2} F_{0}=4 \Delta_{0} F_{0}-t_{0} \Delta_{0} F_{1}-t_{-1} \Delta_{0} F_{-1}, \\
& \Delta_{0}^{3} F_{0}=4 \Delta_{0}^{2} F_{0}-t_{0} \Delta_{0}^{2} F_{1}-t_{-1} \Delta_{0}^{2} F_{-1} .
\end{aligned}
$$

By Proposition 2.2, there exist real constants a, b and c such that the matrix-valued function

$$
P=\Delta_{0}^{3} F_{0}+a \Delta_{0}^{2} F_{0}+b \Delta_{0} F_{0}+c\left(F_{0}-\frac{1}{n+1} I\right)
$$

is identically zero. Since the Kähler angle is constant, from (4.6), there exist real constants α and β such that $\alpha \gamma_{0}+\beta \gamma_{-1} \equiv 0$ with $(\alpha, \beta) \neq(0,0)$.

Assume that φ is not antiholomorphic. Then we have $f_{1} \not \equiv 0$ and $\gamma_{-1}=v \gamma_{0}$ for some $v>0$ so that from (4.8) and (4.4),

$$
K_{0}=-\frac{2}{(1+v) \gamma_{0}}\left(\gamma_{1}+(v-2) \gamma_{0}\right) .
$$

If $f_{2} \equiv 0$, then $\gamma_{1} \equiv 0$ so that M has constant curvature $K_{0}=-2(v-2) /(1+v)$. So we assume $f_{2} \not \equiv 0$. Simple computation implies

$$
P f_{2}=2 t_{0} t_{1}\left(t_{1}\right)_{z} f_{1}+\left(t_{0}\left(t_{1}\left(t_{2}+2 t_{1}+4\right)+\Delta t_{1}\right)+a t_{0} t_{1}-\frac{c}{n+1}\right) f_{2}-\frac{4}{\sigma_{0}} t_{0}\left(t_{1}\right)_{z} f_{3},
$$

and since $f_{1} \not \equiv 0$ and $f_{2} \not \equiv 0$, we have $t_{0} \neq 0$ and $t_{1} \neq 0$. Then $P \equiv 0$ implies $\left(t_{1}\right)_{z} \equiv 0$ so that t_{1} is constant and there exists a constant μ such that $\gamma_{1}=\mu \gamma_{0}$. Therefore, we obtain $K_{0}=-2(v+\mu-2) /(1+v)$ so that M has constant curvature.

Similarly, we see that if φ is not holomorphic, then M has constant curvature. Therefore, Proposition 4.4 is proved completely.

By an argument similar to Theorem D^{\prime}, Proposition 4.4 implies the following theorem, from which Theorem E follows immediately.

Theorem E^{\prime}. Let M be a compact, mass-symmetric, isotropic, minimal surface in $C^{n}(4)$. If M is of at most 3-type and with constant Kähler angle, then M is of positive constant curvature, so that the immersion is congruent to either $\varphi_{n, k}(n=1,2,3,0 \leq k \leq n)$, $\varphi_{4,2}$ or $\varphi_{6,3}$.

Remark. There exists a compact, mass-symmetric, finite-type minimal surface in $C P^{n}$ which is not isotropic. From example, a totally real flat minimal torus $T^{2}=$ $\pi\left(S^{1}(3) \times S^{1}(3) \times S^{1}(3)\right)$ in $C P^{2}(4)$ is mass-symmetric, 1-type and its harmonic sequence is a cyclic infinite sequence, where $\pi: \boldsymbol{C}^{3}-\{0\} \rightarrow \boldsymbol{C} \boldsymbol{P}^{2}$ is the projection.

References

[1] S. Bando and Y. Ohnita, Minimal 2-spheres with constant curvature in $P_{n}(C)$, J. Math. Soc. Japan 39 (1987), 477-487.
[2] J. Bolton, G. R. Jensen, M. Rigoli and L. M. Woodward, On conformal minimal immersions of S^{2} in CP ${ }^{n}$, Math. Ann. 279 (1988), 599-620.
[3] J. Bolton and L. M. Woodward, Congruence theorems for harmonic maps from a Riemann surface into $C P^{n}$ and S^{n}, J. London Math. Soc. (2) 45 (1992), 363-376.
[4] B. Y. Chen, Total Mean Curvature and Submanifolds of Finite Type, World Scientific (1984).
[5] Y. Ohnita, Minimal surfaces with constant curvature and Kähler angle in complex space forms, Tsukuba J. Math. 13 (1989), 191-207.
[6] A. Ros, Spectral geometry of CR minimal submanifolds in the complex projective space, Kodai Math. J. 6 (1983), 88-99.
[7] A. Ros, On spectral geometry of Kaehler submanifolds, J. Math. Soc. Japan 36 (1984), 433-448.
[8] T. TAKAhASHI, Isometric immersion of Riemannian homogeneous manifolds, Tsukuba J. Math. 12 (1988), 231-233.
[9] S. Udagawa, Spectral geometry of Kaehler submanifolds of a complex projective space, J. Math. Soc. Japan 38 (1986), 453-472.
[10] S. Udagawa, Spectral geometry of compact Hermitian symmetric submanifolds, Math. Z. 192 (1986), 57-72.
[11] S. Udagawa, Einstein parallel Kaehler submanifolds in a complex projective space, Tokyo J. Math. 9 (1986), 335-340.
[12] J. G. Wolfson, Harmonic sequences and harmonic maps of surfaces into complex Grassmann manifolds, J. Differential Geom. 27 (1988), 161-178.

Present Address:
Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa, Hachiot-shi, Tokyo, 192-03 Japan.

