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Introduction.

. Let G be a connected, reductive algebraic group defined over a finite field F, with
q elements of characteristic p and let F be the corresponding Frobenius endomorphism
of G. As usual, GF denotes the finite group of F-fixed points of G (GF =the group of
F -rational points). Let B be an F-stable Borel subgroup of G and U be its unipotent
radical. Then U is also F-stable and U¥ is a Sylow p-subgroup of G¥.

In [4] Gel'fand and Graev found that when G=SL, (or GL,) any irreducible
character of G* occurs with non-zero multiplicity in some induced characters A¢" where
A runs over all the linear characters of UF and if 4 is “in general position” then A% is
multiplicity-free. The latter “multiplicity-one theorem” holds for a general G (Yokonuma
[19], Steinberg [16]) but the former fact does not hold for a general G (e.g. Sp,).
However it seems that almost all the irreducible characters of G occur in Y, A"

R. Gow has initiated to investigate the rationality-properties of the characters A5~
in order to get informations about the Schur indices of the irreducible characters of
GF ([5, 6], also cf. [7]).

‘In the rest of this introduction we assume that p is not a bad prime for G for the
sake of simplicity. In [13] we studied the rationality of the A" generally and saw that
any A®" takes values in k= O(/(—1)®~D72Zp) (we assume that p+2) and is realizable in
-k, for any finite place v of k. From this it follows that if y is an irreducible character
of GF such that {y, A >sr=1 for some A or p{ x(1) then the Schur index my(x) of x
with respect to Q is at most two. In [14] we announced some more detailed results
when G is a simple algebraic group. Main purpose of this paper is to give their proofs.
when G is a twisted group. For the sake of simplicity we shall assume that G is
simply-connected. As the cases G=3D,, 2E4 are treated in [13] we assume here that
G=SU,,, or Spin,,.
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First we give some sufficient conditions subject for that all the A®" are realizable
in @; Theorem 1 (in §5) is a consequence of these results. In some cases (e.g. ¢ is square)
all the A" are realizable in @, for any prime number r+#p. Theorem 2 is a consequence
of this fact. A large part of Theorems 1, 2 are already proved in [13]. In Theorem 3
we treat the group GF=SU,.,(F,) when g is square.

Let G be general. As we have recalled above the Schur indices of many irreducible
characters of GF are at most two. (The author does not know examples of characters
of GF with the indices =3.) In certain cases (e.g. G=GL,, SL,,.1, CSps, SOs, G,) all
the indices are equal to one. But, generally, there are characters of the index equal to
two (e.g. SL,, Sp,, U,). In [6] Gow gave some sufficient conditions subject for the
existence of characters of the Schur index equal to two when G=SL,,. In Theorem 4
of our paper we shall give similar results when G=SU, , , Spin;;.. Our method is slightly
different from Gow’s one. Characters with the index equal to two will be found in some
29" where 1 is in general position.

In §1 we compute the inner products {(A¢", A" >;r where A are in general position.
The result will be used in the proof of Theorem 4. In §2, in order to study the rationality
of the 16" we study the rationality of the A2". Naturally we follow the method described
in Yamada [18], §3. Then certain subgroups L, M of BF will be introduced and the
rationality of the A2 will be reduced to that of the 1“. We have L=MU* (semidirect
product). In §3, we determine the structure of M completely. In §4 we calculate the
Hasse invariants of the Schur algebras associated with the irreducible components of
AL. The main results (Theorems 1, 2, 3, 4) are stated and proved in §5.

I wish to thank Professor Takeyoshi Sato for his kind advice. I also wish to thank
the referee for many kind advices to the original version of the paper. Finally, I wish
to dedicate this paper to Professor Tosiro Tsuzuku.

§1. Gelfand-Graev characters.

Let K be an algebraically closed field of characteristic p>0. Let G be a simple
algebraic group (over K) defined over F, with the Frobenius endomorphism F. We fix
an F-stable Borel subgroup B of G with the unipotent radical U and an F-stable maximal
torus T of B. Let R, R* and 4 be respectively the set of roots of G with respect to T,
the set of positive roots determined by B and the set of simple roots. For aeR, U,
denotes the root subgroup of G associated with a. Let p be the permutation on R defined
by FU,=U,, (x€ R); then p fixes R* and 4. Let I be the set of orbits of p on 4. For
eachiel, let U;=]],., U, (direct product). Let U. be the normal subgroup of U generated
by the U,, e R* —A. Then we have UF/UX =(U/U.)* =[], Uf. For each iel, we fix
a root 9, in i and we put ¢;=g'!l. Then, for each i, there is an isomorphism ¢; of Uf
with the additive group of F,, such that ¢tut™')=y,(t)¢,(«) for te T* and ue U. Hence
there is an isomorphism ¢ of UF/UF =[], UF with [],., F,, such that, for ue UF/U?
and te TF, we have
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S(tut™ ) =) (u:))ic1 (u=(u)ics> ;€ Uf (i€1)).

Now let A be the set of irreducible characters 4 of UF such that AIU F=1 and let
Ao be the set of 4 in A such that A|Uf #1 for all ieI. For A€ A, put I'; =1%". Then the
following lemma is well known:

LeMMA 1 (Gel’fand-Graev [4], Yokonuma [19], Steinberg [16]). Ifie Ay, thenT,
is multiplicity-free.
Let us compute the inner products {I';, I'; >~ for A€ A,. For a subset J of 4, put
T,= () Kera

aeJ

(we put Tx=T). If J is p-stable, then T, is an F-stable subgroup of T (perhaps
disconnected). By induction on | J|, we see that dim 7, =|4|—|J|. By a method similar
to the proof of the main theorem of [19], we can prove:

LEMMA 2 (cf. Yokonuma [19], Steinberg [16]). If A€ Ay, then there is a set S of
p-stable subsets J of A such that

<FA’F).>GF=Z |Tf|,
JeS

where S contains & and A.
Let Z be the centre of G and put c=| ZF|. (Note: Z=T,.)

ProPOSITION 1. If Ae A,, then we have
I, Tder=rig—1)+c

Jfor some positive integer r.

Proor. It suffices to prove that if J is a p-stable subset of 4 and J# 4, then g—1
divides | 77 |. Let J be such a set, and let 77 be the identity-component of T,. Then T9
is an F-stable subtorus of 7T and dim79=|4|—|J|. Let X=Mor(T, K*) and
X'=Mor(TY, K*). Then we have an exact sequence of modules:

re.

00— X' — X, x 50,

x —x|T?

where res is the restriction map and X” is the kernel of res. We note that J is contained
in X”'. From this sequence we get an exact sequence of vector spaces over R:

0-X"®R > X®R > X®X®R-0.

Here we have X® R={A4)x (the vector space over R spanned by 4); and, as
dimp X" @ R=dimg XQR—dimgX'@R=|4|—(4|—]J|)=|J| and J=X”, we have
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‘ X"@ R={J)g. Facts on X (resp. on X') by F{y)=xo F for ye X (resp. for y e X’); this
‘ action can be extended linearly to that of F on X® R (resp. on X’ ® R). Then we have:

|detyor(F—1)|
|dety gr(F—1)|

I(T7)|=|dety. g(F—1)|=

l_[(qi— 1)

iel

= (cf. [17], 11.10)
H (¢:—1)

iel
icJ

= ﬂ (¢i—1).

iel
ic4-J
Hence:
| T71=(T5 : (THHT) |=(T5 : (T7F) l;[ J(qi—l)-
Hence g—1 divides | TF | (cf. J# A).
Let Ae Ay. Let n4, - - -, n. be all the irreducible characters of Z*. For 1 <i<c, put
I, ;=Ind%ry(n;4). Then we have the following:

F).=_Z Fa,i:

i=1

ng—1)

c

1 ..
<F1,i’ F;.,j)GF=5u 7 (T, FA>GF=6ij{ + 1} (I=i,j=c).

§2. Schur algebras associated with ;.

First we quote from [18] some results concerning Schur algebras. We recall that
a Schur algebra is a simple direct summand of the group algebra of a finite group over
a field of characteristic zero.

Let H be a finite group and N be a normal subgroup of H. Let y be an irreducible
character of H which is induced by an irreducible character  of N. Let k be a field of
characteristic zero. We assume that k(y) =k, where k() is the field generated over k by
the values of y. Set L={feH |y =y for some 1(f)e Gal(k(y)/k)}. Let Nf; (i=0,
1, .-+, t—1; fo=1) be all the distinct cosets of N in L, and set 1(f;)=1; (to=1). Then

‘ LIN=~{zy, 74, * ' *, T,—, } =Gal(k(y)/k) and k(yX)=k ([18], Prop. 3.4). Furthermore let
| Sifi=niifyip meN, Wi,j))e{0,1, ---,t—1}. Suppose that y is a linear character
of N. Put B(z;, t;))=¥(n;) (i,j=0,1, ---,t—1). Then B is a factor set of Gal(k(y)/k)
‘ consisting of roots of unity, and the Schur algebra A(y'L, k) over k associated with
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is isomorphic over k to the cyclotomic algebra B=(f(;, t;), k(y)/k) over k:
t—1
B=Y k(y)u,  (direct sum)
i=0

u‘l.'iu‘lj = B(Tis Tj)ufitj ’ unx = xﬂu“ (x € k('/’))

([ibid.], Prop. 3.5).

Suppose that H/N is cyclic. Then L/N is cyclic and we can take fi=f
(i=0,1, —1; f=f,). Then, putting 7=1(f), we have 7;,=1' (i=0, 1, —1), and
ffl—f“” 1f i+j<t—1 and fifi=gfiti=tif i+j=1t (g-/‘eN) Thus ﬂ(‘tl, 7;)=1 if
i+j<t—1and =0=y(g) if i+j=t. Hence

B=T k' =),

W=0u, (uoy=u’=1), ux=xu (xek(y)).

Therefore B is the cyclic algebra (k(y)/k, T, 0) over k.

Now we wish to investigate the rationality-properties of the characters I';, A€ A,
given in §1. If p=2, then UF/U¥ is an elementary abelian 2-group, so that any I, is
realizable in Q. So from now on, we shall assume that p #2. '

Let {, be a fixed primitive p-th root of unity in C and put IT=Gal(Q({,)/Q). Put
F,=Hom(F}, C*), where F; is the additive group of F,. As F; is an elementary abelian
p-group, IT acts on F, naturally. Let us fix y€ F,, x#1. For ae F,, we define a character
X of F} by x,(x)=yx(ax) for xe F} . Then we have F,={y, | ae F,} and itis easy to see that

{x°|cem}={y, | acF;}

We define an action of BF on A by Ab(u)= A(bub~?) for be BF, ke A, ue UF;if b=tu
with te TF and ue U7, then A°= 4’ for all 1€ A; BF stabilizes A,. Via isomorphism ¢
in §1, IT also acts on A and A,. Let us fix Ae 4,. Set:

L={beBF | 2*=2® for some t(b)eIl} .
Then we have L=MU¥ with M=L n TF. We have:
M={teT" | for some xe F) : a(t)=x for all ac 4} .

This shows that the group L is independent of the choice of 1€ A,. The mapping b—t())
is a homomorphism of L into the cyclic group IT with kernel ZFU¥ (cf. Z=",_,Kera).
Let f be an element of M such that (fZF>=M/ZF, ie., M={f, ZF). Put o =1(f);
{6)=1(M). Put h=(M : ZF).

Let leA, A#1. Let 5, - - -, . be as in §1 all the irreducible characters of Z¥. For
i=1, ---, c, put

sy =1IndZeyr(n;4) .
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Then we see that u,, - - -, u. are mutually different irreducible characters of L and
M=pit+- ..

We note that we have:

Mu=c- hil W) (weUh),
j=0

wo=m(D) T 270 (zeZF,ueUP).
j=0

Let:

k=glL)=Q(Cp)<a> ’ kl=Q(ﬂx)=k('h) (l=1’ Y C) .

For i=1, - - -, ¢, let A, be the simple direct summand of the group algebra k;[L] of L
over k; associated with y; let o; be the automorphism of k;({,) over k; such that
o:|0()=0 (cf. k;nO¢)=0); put 0;=n{f" (cf. f*eZF). Then we see that for
i=1, ---, ¢, A; is isomorphic over k; to the cyclic algebra B;=(k;({,)/k;, g;, 0;) over k,.

§3. Calculation of M for SU,,, and Spin,,.

Let K, G, F, etc., be as in §1. We assume that G is simply-connected. Let
A={a,, - -, 0} (as to the numbering of the simple roots, we follow that of [2]), and
let «y, - -+, a be the corresponding simple coroots. As G is simply-connected, the
mapping h: (x, ", x,)—+ﬂ§=la,-"(xi) defines an isomorphism of (K*)' with T. For
i=1,---,1, we have

1
o (h(xy, - -, X)) =[] xf*2,
i=1

where ({a;, @} D); <i, j<: is the Cartan matrix of G. We have

Fooy =qlpo;)”  (i=1,---,1)

(see [15], 11.4.7). It follows that, for s=h(x,, - - -, x;)€ T, we have F{s)=s if and only
if x;=x¢ when pa;=a;. And we see that M consists of those elements t=h(x,, - - -, x;)
of TF such that there is an element £€ F, such that

1
(0); H xfwed=¢  for i=1,---,1.

Here we treat the case where G is of type (4,) or of type (3D;). Thus GF=SU,,,(F))
or GF = Spin;(F,).

In the following, for a positive integer n, n, is the 2-part of n and n,. is the odd
part of n; if n,=2¢, we write ord,n=e. For integers m, n, m|n means that » is divisible
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by m; (m, n) is the greatest common divisor of m, n. 2||n means that ord,n=1. Let w
be a primitive element of F,,; we put v=w@ ~Y/®~1 (a primitive element of F,).

LEMMA 3. Assume that G is of type (*A,) (p#2). We have Z*={h(x, x?, - - -,
xh) | x¢*La* D=1} > Z)(1+ 1, g+ 1)Z. If 2|1, then we have t(M)=II and we can write as
M={f)xZF with fP~'=1. Suppose 2{ . Then the following holds: If q is square (i.e.
an even power of p), then we have t(M)=1II and we can write as M={f, ZF) with
| <fP~1>|=2. Suppose that q is non-square. Then, if ord,(I+1)>ord,(g+1), we have
WM)=1I and we can write as M= f, Z"» with | {fP~ 1) |=c,; if ord,(I+ 1)< ord,(g+ 1)
and p=1 (mod4), we have (Il : t(M))=2 and we can write as M={f, ZF> with
| <f®~V2%|=2; if ord,(I+1)<ord,(g+1) and p=—1 (mod 4), we have (IT : t(M))=2
and we can write as M={f) x ZF with f®~V2=1,

PROOF. Let seT, s=h(x,, -+, x;). If I=2m, then se TF if and only if s is of the
form h(x,, - - *, Xp, X3, =+ +, xP) With xy, - - -, x,,€ F2. If I=2m + 1, then se T¥ if and only
if s is of the form h(x;, * - -, Xp, X4 1, X%, -+, x9) With x;, - - -, x,€ F2 and x,,,, € F’.
Then Cartan matrix of type (4,) can be seen in [2], Appendix. In this case, the system
of equations (0), reads as follows:

xfxzt=&, xyixixyl=&, xylxixgl=l,

m: 1 e

-1.2 .—1_ -1 .2 __
Xi_aXi—1 % - =¢, xpoyxi=¢.

We must further consider the following condition:

Xm+i=Xm—i+ 1 =1, m
if /=2m;
@) Xmtit1=Xm+1—-i i=1,---,m
and |
1) Xm+1=Xm+1
if I=2m+1.
We see that (1), <>(4),; (i=1, - - -, 1), (5);, where
De,i x;=ET T2y (i=1,---,1)
and
(3): Cxlrtogernz

We remark also that, when /=2m+ 1, for x; given by (4),; and (5),, the conditions
(2); and (3) are satisfied if and only if (6), and (6) are satisfied, where

(6)§ xil+1=£ls
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and
© xpa=xp e,

First, let us calculate Z¥. Assume that /=2m+ 1. Since an element s of TF lies in
ZF if and only if afs)=1 for i=1, - - -, I, it suffices to consider the conditions (1),, (2);
(i=1, - -+, m),(3). Let s=h(xy, - - -, x;). By the above remarks (g =odd) se Z* if and only
if s=h(x,, x2, -+ -, x}) with x}*1=x¢*'=1. Hence the assertion in the lemma holds.
For the case /=2m, the proof is similar.

Next we calculate the group M. First, assume that 2|I. Put f=h(x,, - -, x;) where
x; =V 12 (j=1, - - - I). Then we see that fe TF and a{f)=v fori=1, - - -, [. Hence
we have t(M)=IT1 and M={f)x ZF with f P=1_1, (This case is already treated in
[13].) So, in the rest of this proof, we assume that / =2m+1 (mz=0).

We show that the condition (6), implies that x, ¢ F, . (This means that if t(M)=1I
and if we write as M={f, ZF), then we cannot have f?~!'=1, that is, we cannot
write as M ={f) x ZF.) In fact, assuming (6),, suppose x, eF, . Then x, =v* for some
integer k. Since / is odd, it is impossible.

Assume that g is square. Let ¢ be an element of F, such that g2=v. Put
f=h(x,, - - -, x;) where x; ="+ D (i=1, - - -, I). Then we see that x,, - - -, x, satisfy (1),,
(2); (i=1,---,m) and (3). Hence we have (M)=I1 and M={f,ZF). We have
fPi=p(—1,1, —1,1, ---, —1). Hence | {fP~ 1> |=2.

In the rest of this proof, we assume that g is non-square. Suppose that x,, - -, X,
satisfy (1), (2); (i=1, - - -, m) and (3). Let x, =w*. Then, by (6),, we have

-1
Q) k=2""14+Hg—1)
p—1
for some integer ¢. Then, by (5),, we have
l+1 —1
W+1)= ¢+ . 4 +v(g+1)
2 p—1

for some integer v. Put ((/+1)/2, g+ 1)=e and write: g+ 1=ea, (/+1)/2=eb, (a,b)=1.
Then:

2tb=1Ib- a—! .
p—1

Then b|va, hence b|v as (a, b)=1. So, putting v=bv’, we get:
2t=I- q9—1 +v'a.
p—1

As g is non-square, ord,(g—1)=ord,(p—1), so I (g—1)/(p—1) is odd. Thus v’ and a
must be odd. Hence ord,(/+ 1)/2 = ord (g + 1). This shows that if ord,(/+ 1) = ord,(¢ + 1),
then no feTF satisfies that af)=v for i=1, ---,l and we cannot have ®(M)=1II.
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Suppose ord,(/+1)>ord,(g+1). Then t={lg—1)/(p—1)+v'a}/2 (v’ odd), hence, by
(7), we have:

— 1 -1
8) k=—q——1 I+— (1' 9 +v’a)(q— 1) (v’ odd).
p—1 2 p—1
Conversely, if we put x, =w"* where & is of the form (8) and x;=v~ ¢~ V2xi (i=1, - - -, 1),
then we see that x,, - - -, x, satisfy (1),, (2); (i=1, - - -, m) and (3). Therefore we have

®(M)=1II. Put S=h(xy, ---,x;) with the x; being as above where we take
v'=(l+1)/2,q+1),. Then we have M=_f,Z") and fP-'=h(xP~?!, x2-V ...
x17~ V). Let us compute the order of f?~1. Clearly it suffices to compute the order of
xf7!. We have xP l=—@"e®~D@-1/2  As ord,(I+1)/2)=ord,(g+1), we have
v'a=((+1)/2,q+1), *(g+ 1)/(1+1)/2,q+1)=(q+1),.. Suppose p=1 (mod 4). Then
g=1(mod4) and ord,(q+1)=1. As 2|(p—1)/2, we have g*>—1|v’a(p — 1)g— 1)/2. Hence
x{~'=—1. Hence |{f?"')|=2=c,. Suppose p= —1 (mod 4). Then (p—1)/2 is odd.
Since ord,(/+ 1)>ord,(g+ 1) and c=(I+1, g+ 1), we have ¢, =(g+ 1),. Then we see that
c, is the order of xf 1= — @+ V2@-D@-1/2

Assume that ord,(I+1)<ord,(¢+1). We have seen above that ©(M)#1II. But, by
Lemma 2 of [13], we have (IT: 7(M))=2. So let us consider the equations (1),:, (2);
(i=1, - -+, m) and the condition (3). Then we have (6),2: x{*!=v2. Put x; =w*. Then
k=2l-(g—1)/(p—1) (mod g—1), i.e., '

-1

) k=1"" 2141 49-1)
p—1

for some integer ¢. By (5),2, we have

qg—1

t(l+ 1)=———1— I(l+1)+s(g+1)

for some integer s. By the same argument as before t=1/+(q—1)/(p—1)+s’a’, where
(I+1,9g+1)=e,q+1=e'a’,lI+1=e’b’ and s=b's’. Hence, by (9), we have k=

I+(g*>~1)/(p—1)+5s'a’(g—1). Hence x,=v'w**@ D and x;=y~ - Uxi (i=1,---,1)
(cf. 4),2,). Put f=h(x,, ---, x;). Then 7(f) has order (p—1)/2 in IT and fC¢~V/2=

h(xP~V2 (xZ)P=1/2 ... (x})P=1)/2) We have
(%) xPV2 = _psa@-De-12
Now let us consider the problem: Is there an integer s’ such that ¥4 @~ De-V/12= _] je.

s'a’(qg—1p—1)/2=(q*—1)/2  (mod ¢*>—1)?

This congruence relation can be rewritten as:

- 1
(10) sa -2 1_a+

= mod g+1) .
> 5 (mod g+1)
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Suppose p=1(mod 4). Then 2]( p—1)/2and 2{ (g + 1)/2. Hence the answer is negative.
Take: s'=0. Then x{?"V2=_1 and | {f®P~ V2> | =2 (we have M={f, ZF)).

Suppose p= —1 (mod 4). Then 2)( (p—1)/2 and ((p—1)/2, g+ 1)=1. Hence there is
an integer v such that v+ (p—1)/2=1 (mod ¢+ 1). By multiplying both hand sides of
(10) by v, we get

_4q+1

11 s'a’
(11) 5

v (mod g+1).

Herea’'=(q+1)/(I+1, g+1). So ord,a’ <ord,(q+ 1), hence a’|(q + 1)/2. Hence, from (11),
we get

1
s'= + v (mod q+l>.
2a’ a’
Therefore the problem has a positive answer. That is, we have @*¥@ V-2 _1

for some integer s’. By taking such s’ in x;, we have x{?~1/2=1 (cf. (»)). Thus we can
write as M ={f) x ZF with f®»~Y/2=1, This completes the proof of Lemma 3.

LEMMA 4. Assume that G is of type (*D)) (I23). We have Z*~Z|AZ if 2{] and
4|q+1 and Z¥F=<{h(Q1, - --,1, —1, —1))~2Z/2Z otherwise. If 4|l(l——1), then we have
©(M)=1II and we can write as M={f) x ZF with fr~'=1. If (a) 2||l or (b) 2||l—1 and
either (b,) q is square or (b,) q is non-square and p=1 (mod 4), then we have t(M)=1II
and we can write as M= f, ZF) with | {f?~ ') |=2. If 2|l—1, q is non-square and p= — 1
(mod 4), then we have (IT : 1(M))=2 and we can writeas M = { ) x ZF with f®?~V/2=1,

PrOOF. Let seT, s=h(x,, - -, x;). Then se T* if and only if x,, - -, x;_, € F,,
x;_y , x€ Fz and x,=x{_, (hence x;_, = x{). The Cartan matrix of type (D,) can be seen
in [2], Appendix. In this case the system of equations (0), can be read as follows:

x%x;l=és xl—lx%x3_1=€a

a2, {1 e
xihxtoxihxrt=E, xihxi =&, xGx}P=¢.

The system of equations (12), is equivalent to (13),;, (14),, (15); and (16),, where

(13);; x;= EIG= D12y (=1, --,1-2),
(14), X = &G DA-D2NI-1
(15), x2  =E0-D0-d/2,0-2

(16), x2=¢2-2

Let us give several remarks. From (14),, (15), and (16),, we have x? =x?_,. Moreover
we can rewrite the above system as follows:
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x=plED (=1, =2 p= £ 1),
A7), xf =p'T2gH-D2,
Xy = plmlEG- 2

To construct an element of TF, we must further consider the following condition:
(18) xp=x{_y.

Using (17); and (18), we can calculate the centre Z*: we have ZF=(h(—1, -- -,
—1, 0@ VA U@ VYN~ ZI4Z if 2|I—1 and 4|g+1, and ZF=C(A(, -, 1, —1,
— 1)) ~Z/2Z otherwise.

Let us calculate the group M. Assume that 4|(/—1). Put f=h(x,, -, x;_,,
I DI yl=DI4) where x,=v*2~1=1/2 (j=1, - - .-, [—2). Then we see that fe TF and
@ (f)=v for i=1, - - -, l. Hence we have t(M)=IT and M={f) x ZF with fPi=1.
(This case is treated in Lemma 4 of [13].) ,

Assume that 41’ I(1—1). Let s=h(x,, -+, x;) be an element of TF. Suppose that
X1, * 5 % satisfy (12),. We show that x,_, ¢ F). In fact, suppose that x;_1€F; . Then
xyj=x{_y=x;_,€F,. Then both of x? ,=p!"ZyM-2 »  x,=p!~1yld-1/2 mus
belong to (F))>. But it is impossible since I(1—1)/2 is odd. This means that if 7(M)=11,
then we cannot write as M ={f) x ZF with fP~1=1.

Assume that g is square. Put f=h(x,, - - -, x,_,, ¢"V2 gl0-1/2) where x,=
gi@=i= for j=1,---,1-2. Then we see that feT* and o,(f)=v for i=1, ---,1.
Hence we have o(M)=1II and M={f,ZF). As fP~'=n(l, -+, 1, —1, —1), we have
I<f?~1>|=2. So, in the rest of this proof, we assume that ¢ is non-square (2|/i(I— 1)).

Suppose 2|/. Let ¢ be an element of F,; such that e2=v. Put f=h(x,, - - -, x,_,,
gt~ /2, g(U=1/29) where x, = —v'~! and x;=v~"~D/2xi for j=1, - -+, ]—2. Then we
see that fe TF and o;(f)=v for i=1, - - -, l. Hence we have (M)=1II and M={f, ZF>.
As fP71=n(, ---, 1, —1, —1), we have | {f? 1> |=2.

Suppose 2||l—1. Let s=h(x,, - - -, x;), s€ T*. Suppose that x,, - - -, x; satisfy (12),.
Then, by (16),, we have x, = +v'~!. We first show that x, =v'~! is impossible.

In fact, suppose x, =v'~'. Let & be as above an element of F,. such that 2=v. As
g is non-square, ¢¢ F, (this can be easily checked), so ¢?#¢, hence e?= —e¢. By (17),
(Where p=1), x{_; =v"D2=¢l0~D and x,_,x,=v¢"D2=x2 Since x,_, =ne'0~ /2
(m==%1), x;)=xf_; =09~ V2)=(—1)¢~V2x,_ = —x,_,, which is a contradiction.

Thus x, = —v'~%. Let u be an element of F,. such that u>= —1. By (17),, X_,=
nue'~ D2 (n=+1). Then x,=xf_, =nu¥—1)e"*~ V72, and Xp- 1 X =pt (= Iy D2)
which is equal to v'¢~1/2 by (17),. Hence, for the existence of solutions, it is necessary
and sufficient that u!*9= —1, i.e. (14¢)/2 is odd, i.e. p=1 (mod 4).

Suppose p=1 (mod 4). Put f=h(x,, - - -, x;) where x,=—v'~1, x; =y = D2xd
(=2, -, 1=2), x| =@~ VA+@-D20-1-D/2 gnd x,=x9_,. Then we see that
feTF and o;(f)=v fori=1, - -+, 1. Hence we have t(M)=11 and M= {f, ZF>. We have
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fPl=hQ, ---,1, —1, —1), hence | {fP~1)|=2.

Finally, suppose p=—1 (mod4). Then we cannot have t(M)=II. Put
f=h(xy, -+, x;) where x;=v%"2 x;=v " Ux{ (i=1,---,1-2) and x,_;=x,=
y®#-b/2+(®-1)2 Then we see that fe TF and a,(f)=v? for i=1, ---,land f®?~V/2=1.
Hence we have (IT : t(M))=2 and M={f) x ZF. This completes the proof of Lemma
4.

§4. Schur indices of the y;.

In the following, if y is an irreducible character of a finite group and E is a field
of characteristic zero, then mg(y) is the Schur index of y with respect to E.

In this section we determine local Schur indices of the irreducible characters
Uy, * 5 M of L (see §2) for G=SU,.,,, Spin,. '

First we assume that G=SU,,,. Let Ae 4, A#1. By Lemma 3, we have ZF =(z),
z=h(w*, w2, - -, 0%), k=(q2—1)/(I+1, g+1). Let {_ be a fixed primitive c-th root of
unity. We arrange the characters #,, - - -, 71, so that n(z)={! (i=1, - - -, ¢). Let f be an
element of M described in Lemma 3. For i=1, ---,c, let 4; be the Schur algebra
associated with y; (see §2). Then

Ai=(ki(Cp)/ki’ 6, 0), 0i='li(.fh) @i=1---,0,

where h=p—1 or (p—1)/2.

Suppose 2|/. Then, by Lemma 3, we have t(M)=1IT and M={f) x ZF with f?~ =1
(hence h=p—1). Hence k=0, k;=0n,)=0() and 6,=1 (i=1, - --, ¢). Hence, for
i=1, - -, c, A, splits over k; and mg(y;)=1. Hence, by a theorem of Schur (see, e.g.,
[3], p. 479, Exercise 2), AL =y, + - - - + . is realizable in Q. Hence I', = (AL)°" is realizable
in Q.

Suppose that 2{ ! and q is square. Then, by Lemma 3, we have 1(M)=1II and
M={f, ZFy with f?"'=h(—1,1, —1,1, - -+, —1)=z?(h=p—1). Hence we have k= Q
and k;=0(n,)=0() (i=1, - - -, ¢). And:

0;=n,(f?" ) =n(z"?)=n@* = =(~1)
@i=1, ---,¢). Thus:

A|=(QC:'XCp)/Q(C::)9 Op\— l)i) (l= ls Y C) .

If i is even, then A4, splits and we have mg(i;)=1. Suppose that i is odd. If v is a finite
place of k; such that v{p, then v is unramified in k;({,)/k;, so that the Hasse invariant
of A; at v is =0 (mod 1). Hence we have mg (4;)=1 for any prime number r#p. Let
i=c/2 (cf. 2|lc). Then 4;= A, =(Q(,)/Q, 6, —1). A, has the invariants 1/2 mod 1 at
0o, p (see [10]). Hence we have mg(u.5)=mg (12)=2. [For other odd i, we have
A=A, ®o/O)), and, for any place v of k; over p, the invariant of 4, at v is
=3[0, : Q,] (mod 1), and [Q,( 9 : Q,] is equal to the least positive integer s such
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that p*=1 (mod c/(i, ¢)).] Thus I', is realizable in @, for any prime number r#p and,
for some i, we have mg(u;) =mpg(;)=mg (1;)=2.

Suppose that 2’( l, q is non-square and ord,(/+ 1)>ord,(¢+1). Then, by Lemma 3,
we have t(M)=1IT and M=, ZF) with | {f?~ 1> |=c,. So k=0 and k;=Q(n;)= O}
(i=1, - - -, c). And we have f?~!=z" for some odd integer u. Hence, for i=1, - - -, c,
we have

0, =n.(f""Y)=n>") ==,

for some primitive c,th root of unity {,.,. Hence

_'(Q(C )(Cp)/Q(C ) Oy ) (l= 1’ Y C) .

Let us fix i. If v is a finite place of k; such that v{ p, then v is unramified in k;({,)/k;, so
that the invariant of 4; at v is =0 (mod 1). Hence we have my (1;)=1 for any prime
number r#p. Let i=c¢/2. Then A;=A4.,=(Q(,)/Q,05, —1). Hence we have
mo(Ue12) =Ml ) =mg (H2) =2. [Let i be another. Let v be a place of k; above p. Let
s be the least positive integer such that p*=1 (mod c/(i, ¢)). Then we see that 4; splits
over (k;), if and only if ord,(p* — 1) —ord,(p — 1)—ord, ¢, /(i, ¢;) = 0.] Thus I is realizable
in Q, for any prime number r #p and, for some i, we have mg(i;) = mg(p;) =mg (p;)=2.

Suppose that 2{/, g is non-square, ord,(/+1)<ord,(g+ 1) and p=1 (mod 4). Then,
by Lemma 3, we have (IT: 1(M))=2 and M=<{f, ZF) with f®~V2=p(—1,1, —1,

—1) =22, Hence h=(p—1)/2, and we have k=0(/p) and k;= Q(J_ (4]
(i= -, ¢). And we have 6,=(—1) (i=1, - - -, ¢). Thus:

A4,=(QW/P, YCNOWP > 1D, 0 (— 1))
=(@/PXE)IQWP). o', (—1)®y -,0/P . 1) (i=1,--,0),

where ¢’ is a certain automorphism of Q(/p , {,) over O(/p). If i is even, then 4, splits
over k; and we have m, —(u;)=1. Suppose that i is odd. Put B=(0(/P X¢)/OW/P)
o’, —1). Then, by [10], B has non-zero invariants (=1/2mod 1) only at two real places
of Q(ﬁ ). Thus we have mg (4;)=1 for any prime number r. For i=c/2 (which is odd
since 2||q+ 1), we have 4;,= B. So we have m o J;)(uc,z) =mpg(u.2)=2. Thus I', is realizable
in Q(,/p), for any finite place v of Q(/p).

Finally, suppose that 2{/, ¢ is non-square, ord,(/+1)<ord,(¢g+1) and p=—1
(mod 4). Then, by Lemma 3, we have (I : t(M))=2 and M ={f) x ZF with fP-V/2=1,

~ Hence k=0Q(,/—p) and ki=0G/—pXC) (i=1,---,c). As fP~V2=1, we have 0,=1

(i=1, - - -, ¢). Thus each 4, splits over k; and we have m

I'; is realizable in Q(/—p).

Thus we have

o) =1(@=1, - -+, c). Hence

PROPOSITION 2. Let G=SU,, ;. Let Ae A, A#1. Then: If2|l, I, is realizable in Q.
Suppose 21’ l. & q is square, or, q is non-square and ord,(I+1)>ord,(q+ 1), then I'; is
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realizable in Q, for any prime number r+#p and, for some i, we have mg(u;) =
mg(p;)=mg (u;)=2. If q is non-square, ord,(I+1)<ord,(g+1) and p=1 (mod 4), then
I, is realizable in Q(\/; ), for any finite place v of Q(\/; ) and, for some i, we have
m, J;)(ui)=mn(y.,-)=2. If q is non-square, ord,(I+1)<ord,(g+1) and p= —1 (mod 4),
then I', is realizable in Q(\/:E).

Next we assume that G = Spin;, (/=23). Let 1€ A, A+ 1. Suppose 4|i(/—1). Then, by
Lemma 4, we have t(M)=1II and M={f) x ZF with fP~!=1. Hence, by the argument
in the case that G=SU,, ,, we see that I', is realizable in Q.

Suppose that 2||/ or that 2||/—1 and q is square or that 2|/—1, q is non-square
and p=1 (mod 4). Put z=h(1, ---,1, —1, —1). Then, by Lemma 4, ZF=(>~2Z2Z
and we have t(M)=1II and M=_f, ZF) with f?~!=z. We arrange #,, 5, so that
n:(z)=(—1)' (i=1, 2). Then k=k;=Q (i=1, 2) and ;=(—1)’ (i=1, 2). Thus:

4,=(Q¢)/Q 0, (—1)) (i=1,2).
Hence I'; is realizable in Q, for any prime number r#p and we have me(py)=
mR(ﬂ1)=me(ﬂ1)=2'
Suppose that 2|//—1, ¢ is non-square and p= — 1 (mod 4). Then, by Lemma 4, we
have (IT : t(M))=2 and M={f)> x ZF with f®~1/2=1. Hence k=Q(,/—p) and 6,=1
(1=1,2, 3, 4). Hence, by the argument in the case that G=SU,,,, we see that I' 2 I8

realizable in O(,/—p).
Thus we get:

PROPOSITION 3. Assume that G=Spin;, (123). Let Ae A, A# 1. Then: If 4|I(l —-1),
then I, is realizable in Q. Suppose that 2||(I—1). If 2||I, or, 2||l—1 and q is square, or,
2|I—1 and q is non-square and p=1 (mod 4), then I'; is realizable in Q, for any prime
number r#p and, for some i, we have mo(;ti)=mx(pi)=mcp(yi)=2. If 2|l-1, q is
non-square and p= — 1 (mod 4), then I, is realizable in Q(H).

§5. Main resulits.

LEMMA 5. Let G be as in §1. Let E be a field of characteristic 0. Assume that, for
any A€ A, I'; is realizable in E. Then, if y is an irreducible character of G¥ such that
x> I';>gr=1 for some A€ A or (when p is good for G) p{'x(l), then mg(y)=1.

ProoF. If {x, I';>gr=1 for some 4, then the assertion follows from the theorem
of Schur. Assume that p is a good prime for G and p)( x(1). Then the assertion can be
proved by a method similar to the proof of Corollary 4 to Proposition 1 of [13].

A large part of the following two theorems is contained in [13].

THEOREM 1. Let G=SU,,, or Spin;, (in either case p+#2). Let y be an irreducible
character of G¥ such that {x, I';>gr=1 for some L€ A or pf x(1). Then, in any one of the
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following cases, we have my(y)=1: SU,,, (2|l); Spiny, (4|l(l +1)).

Proor. By Propositions 2, 3, we see that in any one of the cases above any I,
is realizable in Q. Hence the assertion follows from Lemma 5.

THEOREM 2. Let G=SU,, or Spins, (in either case p+#2). Let y be an irreducible
character of G* such that {y, I';>gr=1 for some Ae A or pll’ x(1). Then in any one of the
Sollowing cases we have mgy (x)=1 for any prime number r+ p:

SU,+1:  q is square; q is non-square and ord,(I+ 1)>ord,(q+1);

Spiny;:  2||; 2||1—1 and q is square; 2||l—1, q is non-square and p=1 (mod 4).

Proor. By Propositons 2, 3, we see that in any one of the cases above, for any
prime number r #p, and I', is realizable in Q,. Hence the assertion follows from Lemma 5.

The following theorem is announced in [14].

THEOREM 3. Assume that q is an even power of p#2. Let y be an irreducible
character of SU,.,(F,). Then, for any prime number r+p, we have mg ()=1.

REMARK. Let g be an arbitrary power of p#2. Then it is known that the Schur
index (over Q) of any irreducible character of SU, ., 1(F,) is at most two (Gow [6]). One
can prove that, for /+1#£2, 4, SU,, ,(F,) has a rational-valued unipotent character y
such that mg(x) =mg(x)=mg (x)=2 and mgy (x)=1 for any prime number r#p. (Also
see Theorem 4 below.)

LEMMA 6. Let the situations be as in Theorem 3. Then, for any unipotent element
u of SU,,1(F,), x(u) is a rational integer and, for any prime number r+#p, mQr(x)I x(w).

ProOF. Let G=SL;,,(K)and G,=GL,, (K), and let F be the endomorphism of
G, defined by F((x;;))="(x{;)™ ' (‘4 is the transpose of a matrix 4). Then GF=SU,,,(F)
and G{=U,, (F).

Let u by any unipotent element of GF. Then ue G¥f (=GL,, ((F,)). Let u, be a
Jordan canonical form of u in G, where u=(u,, - - -, i,) is a certain partition of /+1:

11 ‘

( 1 - 0
1

221 1

| Lo
\ R

Then u and u, are conjugate in GL,, 1(F,2). Let:
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A, 0
L,= = A,eGL,(K),i=1, -7

0 .'A,

Then L, is an F-stable reductive subgroup of G, and is isomorphic to GL, (K)x

- xGL, (K). Clearly u, is a regular unipotent element of L,. Let u, be a regular
unipotent elment of L, contained in Lf (= GL;,(F;)). Then u, and u, are conjugate
in LE*=GL, (Fp)x - - - x GL, (F,), hence conjugate in GL,+1( 2)- Hence u and u,
are conjugate in GL,, ,(F,). As u, ug€ Gf =U,, (F,), by a result of Ennola ([1], E-11, 1,
3.5), u and u, are conjugate in Gf. Hence there is an element ge G{ such that u=
guog 1. We note that u,e GF.

Let y be an irreducible character of GF. Let x? be the character of GF deﬁned by
x9(x)=x(gxg ') for xe G¥. Then y(u) = x(guog ~ ') = x(uo). As u, is unipotent, u, belongs
to (L)'=8SU, (F)x --- xSU,(F) (L, denotes the derived group of L,). So we can
write as ug=(u,, * - -, #,) with ;e SU,(F)) (i=1, - - -, r). Clearly, for i=1, ---,r, y;is a
regular unipotent element of SU,, (=SU,(K) with Frobenius map F).

For i=1, - -+, r, let U; be the unipotent radical of the Borel subgroup B; of SU,,,
containing u;; as F{lu;)=u; and such B; is unique, B; is F-stable; thus U; is also F-stable
and ;e UF. Put H=U% x - - - x UF; we consider H as a subgroup of G*. Let 4, and
N, be respectively the set of linear characters of H and the set of non-linear irreducible
characters of H. Then we have

"IH—- a A+ Z b,p,
AeAd, peN,
where a,=(x°|H, Ayy for Ae A, and b,={x°|H, p>g for peN,. As U; x - - x U, is a
maximal unipotent subgroup of L,=SU, x - xSU, and u, is a regular unipotent
element of L, in H=U{ x - - - x U7, by a result of Lehrer [11], we have p(u,)=0 for
all p in N,. Hence we have:

x(uo)= Z a,Mug) -

AeAd,

Let Ae A,. Then we can writeas A=4;* - - A,, where, fori=1, - - -, r, 4;1is a linear
character of U¥F. Hence, by Theorem (43.2) of [3], p. 316, we have:

AL = JSUkF g . . . 4 15U (Fo) |

where # denotes the outer tensor product of characters. Let ¢ be any prime number
#p. As ¢ is square, by Proposition 2 (or Proposition 1, (i) of [13]), each A7V«(F4 js
realizable in Q,. Hence %" is realizable in Q,, and so is A°". Hence, by the theorem
of Schur, mg (x%)|a;. As mg (x)=mg(x?), Mmg(x)|as.

For i=1, - - -, r, let T; be an F-stable maximal torus of B; and let f; be an element
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of TT described in Lemma 3, i.e., A/:=A? for any linear character A; of U, where ¢
is a certain generator of IT=Gal(Q({,)/Q). Let f=(f}, - - -, f,) (an element of (L,)F). As
feGF, (x?y =y? and f interchanges the characters in A,. Thus we have:

)= ()= Y. a:if(wo)= Y, a;d{*(uy)- -+ 4w

Aed, AeAy,

=;Z a A(uy) - - A7 (uy) = (X *(uo))” -

€Ay,

As o is a generator of I1, this shows that y9(u,) lies in Q. Hence y(u) = x%(u,) is a rational
integer. Put m=myg (x). Then we have an expression:

x%(uo)fm= AZ/‘,I (az/m)Aluo) -

As we have seen above, m divides each a,, hence the right hand side of this expression
is an algebraic integer. As y%u,)/m is a rational number, we conclude that y%u,)/m is
a rational integer. Hence mlx"(uo). Hence m|y(x). This completes the proof of Lemma 6.-

ProoOF OF THEOREM 3. Let G, G, and F be as in the proof of Lemma 6. Let x be
an irreducible character of GF. Let y), - - -, x® be the G{-conjugates of y. Then, by
Clifford theory, there is an irreducible character y, of G} such that

1|GF=x @+ 49

Then, by Theorem C of [12] and by the Ennola conjecture ([18], [9]), there is a
unipotent element u of G} such that y,(x)= + p-power. As u is unipotent, ue G¥. Let r
be any prime number #p, and put m=mg, (x)=mqy () (i=1, - - -, 5). By Lemma 6, for
i=1, ---,s, xP(u) is a rational integer and m|yP(«). Thus we have an expression:

210)/m=P)/m)+ - +((P)m)e Z .

Hence m divides a power of p. But, by the result of Gow [6], we have m<2. Hence
m=1 (cf. p#2). This completes the proof of Theorem 3.

THEOREM 4. Let G=SU, ., or Spiny; (in either case p+#2). Then in any one of the
following cases G¥ has an irreducible character y such that mg(x)=2:

SU;+q: 2{’ | and q is square; 21’ I, q=1 (mod 4), q is non-square and ord,(I+1)>
ord,(qg+1); 2}( l, q is non-square, ord,(I+ 1)<ord,(g+ 1) and p=1 (mod 4);

Spiny;: 2||l and g=1 (mod 4); 2||/—1 and q is square; 2||l—1, q is non-square and
p=1 (mod 4).

Proor. The following proof was inspired by [6]. Let Ae A,. By Propositions 2,
3, Lemmas 3, 4 and Proposition 1, we find that, in any one of the cases in the theorem,
there is an irreducible character y; such that m, (u;)=2 and <I'; ;, I'; ;> is odd. By
[13], the Schur index (over Q) of any irreducible component of I', ; is at most two. We
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note that the character I';; takes its values in k;. Suppose that all the irreducible
components of I'; ; have the index 1 over k;. Let 4 be the set of irreducible components
of I',; ;. Let k; be an algebraic closure of k;. Then Gal(k;/k;) acts on 4, and we have a
decomposition A=A, U - -- U A4,, where 4,, - - -, A, are the orbits under the action of
Gal(k/k;). For j=1, - - -, t, put ¢;=3 _, x- Then, by the theorem of Schur, ¢,, - - -, ¢,
are realizable in k;. Hence I'; ;= ¢;+ - - - + ¢, are realizable in k;. Hence, by the theorem
of Schur, 2=m, (1;) must divide {g;, I'; ;|L>,=<T3;, I'; Dgr, which is odd. This is a
contradiction. Therefore I';; must contain some irreducible character y such that
my (x)=2. We note that if I';; is realizable in (k;),, then we have m, (x)=1. Such v
can be easily determined by Propositions 2, 3.

Since Q(I';)# Q generally, our method is not sufficient to determine the Schur
indices over Q. We hope to find other general methods to determine mg(y).
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