On the Schur Indices of $SU_{l+1}(F_q)$ and $Spin_{2l}^-(F_q)$

Zyozyu OHMORI

Hokkaido University of Education (Communicated by T. Nagano)

Dedicated to Professor Tosiro Tsuzuku

Introduction.

Let G be a connected, reductive algebraic group defined over a finite field F_q with q elements of characteristic p and let F be the corresponding Frobenius endomorphism of G. As usual, G^F denotes the finite group of F-fixed points of G (G^F = the group of F_q -rational points). Let G be an G-stable Borel subgroup of G and G be its unipotent radical. Then G is also G-stable and G is a Sylow G-subgroup of G.

In [4] Gel'fand and Graev found that when $G = SL_n$ (or GL_n) any irreducible character of G^F occurs with non-zero multiplicity in some induced characters λ^{G^F} where λ runs over all the linear characters of U^F and if λ is "in general position" then λ^{G^F} is multiplicity-free. The latter "multiplicity-one theorem" holds for a general G (Yokonuma [19], Steinberg [16]) but the former fact does not hold for a general G (e.g. Sp_4). However it seems that almost all the irreducible characters of G^F occur in $\sum_{\lambda} \lambda^{G^F}$.

R. Gow has initiated to investigate the rationality-properties of the characters λ^{GF} in order to get informations about the Schur indices of the irreducible characters of G^F ([5, 6], also cf. [7]).

In the rest of this introduction we assume that p is not a bad prime for G for the sake of simplicity. In [13] we studied the rationality of the λ^{GF} generally and saw that any λ^{GF} takes values in $k = Q(\sqrt{(-1)^{(p-1)/2}p})$ (we assume that $p \neq 2$) and is realizable in k_v for any finite place v of k. From this it follows that if χ is an irreducible character of G^F such that $\langle \chi, \lambda^{GF} \rangle_{GF} = 1$ for some λ or $p \nmid \chi(1)$ then the Schur index $m_Q(\chi)$ of χ with respect to Q is at most two. In [14] we announced some more detailed results when G is a simple algebraic group. Main purpose of this paper is to give their proofs when G is a twisted group. For the sake of simplicity we shall assume that G is simply-connected. As the cases $G = {}^3D_4$, 2E_6 are treated in [13] we assume here that $G = SU_{l+1}$ or $Spin_{2l}^{-1}$.

First we give some sufficient conditions subject for that all the λ^{GF} are realizable in Q; Theorem 1 (in §5) is a consequence of these results. In some cases (e.g. q is square) all the λ^{GF} are realizable in Q_r for any prime number $r \neq p$. Theorem 2 is a consequence of this fact. A large part of Theorems 1, 2 are already proved in [13]. In Theorem 3 we treat the group $G^F = SU_{l+1}(F_q)$ when q is square.

Let G be general. As we have recalled above the Schur indices of many irreducible characters of G^F are at most two. (The author does not know examples of characters of G^F with the indices ≥ 3 .) In certain cases (e.g. $G = GL_n$, SL_{2n+1} , CSp_4 , SO_5 , G_2) all the indices are equal to one. But, generally, there are characters of the index equal to two (e.g. SL_2 , Sp_4 , U_n). In [6] Gow gave some sufficient conditions subject for the existence of characters of the Schur index equal to two when $G = SL_{2n}$. In Theorem 4 of our paper we shall give similar results when $G = SU_{l+1}$, $Spin_{2l}$. Our method is slightly different from Gow's one. Characters with the index equal to two will be found in some λ^{GF} where λ is in general position.

In §1 we compute the inner products $\langle \lambda^{GF}, \lambda^{GF} \rangle_{GF}$ where λ are in general position. The result will be used in the proof of Theorem 4. In §2, in order to study the rationality of the λ^{GF} we study the rationality of the λ^{BF} . Naturally we follow the method described in Yamada [18], §3. Then certain subgroups L, M of B^F will be introduced and the rationality of the λ^{BF} will be reduced to that of the λ^L . We have $L = MU^F$ (semidirect product). In §3, we determine the structure of M completely. In §4 we calculate the Hasse invariants of the Schur algebras associated with the irreducible components of λ^L . The main results (Theorems 1, 2, 3, 4) are stated and proved in §5.

I wish to thank Professor Takeyoshi Sato for his kind advice. I also wish to thank the referee for many kind advices to the original version of the paper. Finally, I wish to dedicate this paper to Professor Tosiro Tsuzuku.

§1. Gelfand-Graev characters.

Let K be an algebraically closed field of characteristic p>0. Let G be a simple algebraic group (over K) defined over F_q with the Frobenius endomorphism F. We fix an F-stable Borel subgroup B of G with the unipotent radical U and an F-stable maximal torus T of B. Let R, R^+ and Δ be respectively the set of roots of G with respect to T, the set of positive roots determined by B and the set of simple roots. For $\alpha \in R$, U_{α} denotes the root subgroup of G associated with α . Let ρ be the permutation on R defined by $FU_{\alpha} = U_{\rho\alpha}$ ($\alpha \in R$); then ρ fixes R^+ and Δ . Let I be the set of orbits of ρ on Δ . For each $i \in I$, let $U_i = \prod_{\alpha \in I} U_{\alpha}$ (direct product). Let U, be the normal subgroup of U generated by the U_{α} , $\alpha \in R^+ - \Delta$. Then we have $U^F/U^F = (U/U)^F = \prod_{i \in I} U^F_i$. For each $i \in I$, we fix a root γ_i in i and we put $q_i = q^{\lfloor i \rfloor}$. Then, for each i, there is an isomorphism ϕ_i of U^F_i with the additive group of F_{q_i} such that $\phi_i(tut^{-1}) = \gamma_i(t)\phi_i(u)$ for $t \in T^F$ and $u \in U^F_i$. Hence there is an isomorphism ϕ of $U^F/U^F = \prod_{i \in I} U^F_i$ with $\prod_{i \in I} F_{q_i}$ such that, for $u \in U^F/U^F$ and $t \in T^F$, we have

$$\phi(tut^{-1}) = (\gamma_i(t)\phi_i(u_i))_{i \in I} \qquad (u = (u_i)_{i \in I}, u_i \in U_i^F(i \in I)).$$

Now let Λ be the set of irreducible characters λ of U^F such that $\lambda | U^F_i = 1$ and let Λ_0 be the set of λ in Λ such that $\lambda | U^F_i \neq 1$ for all $i \in I$. For $\lambda \in \Lambda$, put $\Gamma_{\lambda} = \lambda^{G^F}$. Then the following lemma is well known:

LEMMA 1 (Gel'fand-Graev [4], Yokonuma [19], Steinberg [16]). If $\lambda \in \Lambda_0$, then Γ_{λ} is multiplicity-free.

Let us compute the inner products $\langle \Gamma_{\lambda}, \Gamma_{\lambda} \rangle_{G^F}$ for $\lambda \in \Lambda_0$. For a subset J of Δ , put

$$T_J = \bigcap_{\alpha \in J} \operatorname{Ker} \alpha$$

(we put $T_{\varnothing} = T$). If J is ρ -stable, then T_J is an F-stable subgroup of T (perhaps disconnected). By induction on |J|, we see that $\dim T_J = |\Delta| - |J|$. By a method similar to the proof of the main theorem of [19], we can prove:

LEMMA 2 (cf. Yokonuma [19], Steinberg [16]). If $\lambda \in \Lambda_0$, then there is a set S of ρ -stable subsets J of Δ such that

$$\langle \Gamma_{\lambda}, \Gamma_{\lambda} \rangle_{G^F} = \sum_{J \in S} |T_J^F|,$$

where S contains \emptyset and Δ .

Let Z be the centre of G and put $c = |Z^F|$. (Note: $Z = T_A$.)

PROPOSITION 1. If $\lambda \in \Lambda_0$, then we have

$$\langle \Gamma_{\lambda}, \Gamma_{\lambda} \rangle_{GF} = r(q-1) + c$$

for some positive integer r.

PROOF. It suffices to prove that if J is a ρ -stable subset of Δ and $J \neq \Delta$, then q-1 divides $|T_J^F|$. Let J be such a set, and let T_J^0 be the identity-component of T_J . Then T_J^0 is an F-stable subtorus of T and $\dim T_J^0 = |\Delta| - |J|$. Let $X = \operatorname{Mor}(T, K^{\times})$ and $X' = \operatorname{Mor}(T_J^0, K^{\times})$. Then we have an exact sequence of modules:

$$0 \longrightarrow X'' \longrightarrow X \xrightarrow{\text{res}} X' \longrightarrow 0,$$

$$\chi \longmapsto \chi | T_J^0$$

where res is the restriction map and X'' is the kernel of res. We note that J is contained in X''. From this sequence we get an exact sequence of vector spaces over R:

$$0 \to X'' \otimes \mathbf{R} \to X \otimes \mathbf{R} \to X' \otimes \mathbf{R} \to 0$$
.

Here we have $X \otimes R = \langle \Delta \rangle_R$ (the vector space over R spanned by Δ); and, as $\dim_R X'' \otimes R = \dim_R X \otimes R - \dim_R X' \otimes R = |\Delta| - (|\Delta| - |J|) = |J|$ and $J \subset X''$, we have

 $X'' \otimes R = \langle J \rangle_R$. F acts on X (resp. on X') by $F(\chi) = x \circ F$ for $\chi \in X$ (resp. for $\chi \in X'$); this action can be extended linearly to that of F on $X \otimes R$ (resp. on $X' \otimes R$). Then we have:

$$\begin{split} |(T_{J}^{0})^{F}| &= |\det_{X' \otimes R}(F-1)| = \frac{|\det_{X \otimes R}(F-1)|}{|\det_{X'' \otimes R}(F-1)|} \\ &= \frac{\prod_{i \in I} (q_{i}-1)}{\prod_{\substack{i \in I \\ i \in J}} (q_{i}-1)} \quad \text{(cf. [17], 11.10)} \\ &= \prod_{\substack{i \in I \\ i \in A-J}} (q_{i}-1) \, . \end{split}$$

Hence:

$$|T_J^F| = (T_J^F: (T_J^0)^F)|(T_J^0)^F| = (T_J^F: (T_J^0)^F) \prod_{i \in A-J} (q_i - 1).$$

Hence q-1 divides $|T_J^F|$ (cf. $J \neq \Delta$).

Let $\lambda \in \Lambda_0$. Let η_1, \dots, η_c be all the irreducible characters of Z^F . For $1 \le i \le c$, put $\Gamma_{\lambda,i} = \operatorname{Ind}_{Z^FU^F}^{G^F}(\eta_i \lambda)$. Then we have the following:

$$\Gamma_{\lambda} = \sum_{i=1}^{c} \Gamma_{\lambda,i} ,$$

$$\langle \Gamma_{\lambda,i}, \Gamma_{\lambda,j} \rangle_{GF} = \delta_{ij} \cdot \frac{1}{c} \cdot \langle \Gamma_{\lambda}, \Gamma_{\lambda} \rangle_{GF} = \delta_{ij} \left\{ \frac{r(q-1)}{c} + 1 \right\} \qquad (1 \leq i, j \leq c) .$$

§2. Schur algebras associated with Γ_{λ} .

First we quote from [18] some results concerning Schur algebras. We recall that a Schur algebra is a simple direct summand of the group algebra of a finite group over a field of characteristic zero.

Let H be a finite group and N be a normal subgroup of H. Let χ be an irreducible character of H which is induced by an irreducible character ψ of N. Let k be a field of characteristic zero. We assume that $k(\chi)=k$, where $k(\chi)$ is the field generated over k by the values of χ . Set $L=\{f\in H\mid \psi^f=\psi^{\tau(f)} \text{ for some } \tau(f)\in \operatorname{Gal}(k(\psi)/k)\}$. Let Nf_i $(i=0,1,\cdots,t-1;f_0=1)$ be all the distinct cosets of N in L, and set $\tau(f_i)=\tau_i$ $(\tau_0=1)$. Then $L/N\simeq\{\tau_0,\tau_1,\cdots,\tau_{t-1}\}=\operatorname{Gal}(k(\psi)/k)$ and $k(\psi^L)=k$ ([18], Prop. 3.4). Furthermore let $f_if_j=n_{ij}f_{\nu(i,j)},\ n_{ij}\in N,\ \nu(i,j)\in\{0,1,\cdots,t-1\}$. Suppose that ψ is a linear character of N. Put $\beta(\tau_i,\tau_j)=\psi(n_{ij})$ $(i,j=0,1,\cdots,t-1)$. Then β is a factor set of $\operatorname{Gal}(k(\psi)/k)$ consisting of roots of unity, and the Schur algebra $A(\psi^L,k)$ over k associated with ψ^L

is isomorphic over k to the cyclotomic algebra $B = (\beta(\tau_i, \tau_i), k(\psi)/k)$ over k:

$$B = \sum_{i=0}^{t-1} k(\psi) u_{\tau_i} \qquad \text{(direct sum)}$$

$$u_{\tau_i}u_{\tau_j} = \beta(\tau_i, \tau_j)u_{\tau_i\tau_j}, \qquad u_{\tau_i}x = x^{\tau_i}u_{\tau_i} \quad (x \in k(\psi))$$

([ibid.], Prop. 3.5).

Suppose that H/N is cyclic. Then L/N is cyclic and we can take $f_i = f^i$ $(i=0, 1, \dots, t-1; f=f_1)$. Then, putting $\tau = \tau(f)$, we have $\tau_i = \tau^i$ $(i=0, 1, \dots, t-1)$, and $f^i f^j = f^{i+j}$ if $i+j \le t-1$ and $f^i f^j = g f^{i+j-t}$ if $i+j \ge t$ $(g=f^i \in N)$. Thus $\beta(\tau_i, \tau_j) = 1$ if $i+j \le t-1$ and j=0 and j=0. Hence

$$B = \sum_{i=0}^{t-1} k(\psi)u^i \qquad (u = u_\tau) ,$$

$$u^{t} = \theta u_{0}$$
 $(u_{0} = u^{0} = 1)$, $ux = x^{t}u$ $(x \in k(\psi))$.

Therefore B is the cyclic algebra $(k(\psi)/k, \tau, \theta)$ over k.

Now we wish to investigate the rationality-properties of the characters Γ_{λ} , $\lambda \in \Lambda$, given in §1. If p=2, then U^F/U^F is an elementary abelian 2-group, so that any Γ_{λ} is realizable in Q. So from now on, we shall assume that $p \neq 2$.

Let ζ_p be a fixed primitive p-th root of unity in C and put $\Pi = \operatorname{Gal}(Q(\zeta_p)/Q)$. Put $\hat{F}_q = \operatorname{Hom}(F_q^+, C^\times)$, where F_q^+ is the additive group of F_q . As F_q^+ is an elementary abelian p-group, Π acts on \hat{F}_q naturally. Let us fix $\chi \in \hat{F}_q$, $\chi \neq 1$. For $\alpha \in F_q$, we define a character χ_q of F_q^+ by $\chi_q(x) = \chi(\alpha x)$ for $x \in F_q^+$. Then we have $\hat{F}_q = \{\chi_q \mid \alpha \in F_q\}$ and it is easy to see that

$$\{\chi^{\sigma} \mid \sigma \in \Pi\} = \{\chi_a \mid a \in F_p^{\times}\}$$
.

We define an action of B^F on Λ by $\lambda^b(u) = \lambda(bub^{-1})$ for $b \in B^F$, $\lambda \in \Lambda$, $u \in U^F$; if b = tu with $t \in T^F$ and $u \in U^F$, then $\lambda^b = \lambda^t$ for all $\lambda \in \Lambda$; B^F stabilizes Λ_0 . Via isomorphism ϕ in §1, Π also acts on Λ and Λ_0 . Let us fix $\lambda \in \Lambda_0$. Set:

$$L = \{b \in B^F \mid \lambda^b = \lambda^{\tau(b)} \text{ for some } \tau(b) \in \Pi\}$$
.

Then we have $L = MU^F$ with $M = L \cap T^F$. We have:

$$M = \{t \in T^F \mid \text{ for some } x \in F_p^\times : \alpha(t) = x \text{ for all } \alpha \in \Delta\}$$
.

This shows that the group L is independent of the choice of $\lambda \in \Lambda_0$. The mapping $b \to \tau(b)$ is a homomorphism of L into the cyclic group Π with kernel $Z^F U^F$ (cf. $Z = \bigcap_{\alpha \in A} \operatorname{Ker} \alpha$). Let f be an element of M such that $\langle fZ^F \rangle = M/Z^F$, i.e., $M = \langle f, Z^F \rangle$. Put $\sigma = \tau(f)$; $\langle \sigma \rangle = \tau(M)$. Put $h = (M : Z^F)$.

Let $\lambda \in \Lambda$, $\lambda \neq 1$. Let η_1, \dots, η_c be as in §1 all the irreducible characters of Z^F . For $i=1,\dots,c$, put

$$\mu_i = \operatorname{Ind}_{Z^F U^F}^L(\eta_i \lambda)$$
.

Then we see that μ_1, \dots, μ_c are mutually different irreducible characters of L and

$$\lambda^L = \mu_1 + \cdots + \mu_c.$$

We note that we have:

$$\lambda^{L}(u) = c \cdot \sum_{j=0}^{h-1} \lambda^{\sigma^{j}}(u) \qquad (u \in U^{F}),$$

$$\mu_i(zu) = \eta_i(z) \sum_{j=0}^{h-1} \lambda^{\sigma^j}(u) \qquad (z \in Z^F, u \in U^F).$$

Let:

$$k = \mathbf{Q}(\lambda^L) = \mathbf{Q}(\zeta_p)^{\langle \sigma \rangle}, \qquad k_i = \mathbf{Q}(\mu_i) = k(\eta_i) \quad (i = 1, \dots, c).$$

For $i=1, \dots, c$, let A_i be the simple direct summand of the group algebra $k_i[L]$ of L over k_i associated with μ_i ; let σ_i be the automorphism of $k_i(\zeta_p)$ over k_i such that $\sigma_i|Q(\zeta_p)=\sigma$ (cf. $k_i\cap Q(\zeta_p)=Q$); put $\theta_i=\eta_i(f^h)$ (cf. $f^h\in Z^F$). Then we see that for $i=1,\dots,c$, A_i is isomorphic over k_i to the cyclic algebra $B_i=(k_i(\zeta_p)/k_i,\sigma_i,\theta_i)$ over k_i .

§3. Calculation of M for SU_{l+1} and $Spin_{2l}^{-}$.

Let K, G, F, etc., be as in §1. We assume that G is simply-connected. Let $\Delta = \{\alpha_1, \dots, \alpha_l\}$ (as to the numbering of the simple roots, we follow that of [2]), and let $\alpha_1^{\vee}, \dots, \alpha_l^{\vee}$ be the corresponding simple coroots. As G is simply-connected, the mapping $h: (x_1, \dots, x_l) \to \prod_{i=1}^{l} \alpha_i^{\vee}(x_i)$ defines an isomorphism of $(K^{\times})^l$ with T. For $i=1, \dots, l$, we have

$$\alpha_i(h(x_1, \dots, x_l)) = \prod_{i=1}^l x_i^{\langle \alpha_i, \alpha_i^{\gamma} \rangle},$$

where $(\langle \alpha_i, \alpha_j^{\vee} \rangle)_{1 \leq i, j \leq l}$ is the Cartan matrix of G. We have

$$F \circ \alpha_i^{\vee} = q(\rho \alpha_i)^{\vee} \qquad (i = 1, \dots, l)$$

(see [15], 11.4.7). It follows that, for $s = h(x_1, \dots, x_l) \in T$, we have F(s) = s if and only if $x_j = x_i^q$ when $\rho \alpha_i = \alpha_j$. And we see that M consists of those elements $t = h(x_1, \dots, x_l)$ of T^F such that there is an element $\xi \in F_p^{\times}$ such that

$$(0)_{\xi} \qquad \prod_{i=1}^{l} x_{j}^{\langle \alpha_{i}, \alpha_{j}^{\gamma} \rangle} = \xi \qquad \text{for} \quad i = 1, \dots, l.$$

Here we treat the case where G is of type (^2A_l) or of type (^2D_l) . Thus $G^F = SU_{l+1}(F_q)$ or $G^F = Spin_{2l}^-(F_q)$.

In the following, for a positive integer n, n_2 is the 2-part of n and n_2 is the odd part of n; if $n_2 = 2^e$, we write ord₂n = e. For integers m, n, $m \mid n$ means that n is divisible

by m; (m, n) is the greatest common divisor of m, n. 2||n| means that $\operatorname{ord}_2 n = 1$. Let ω be a primitive element of F_{a^2} ; we put $v = \omega^{(q^2-1)/(p-1)}$ (a primitive element of F_n).

LEMMA 3. Assume that G is of type $({}^2A_l)$ $(p \neq 2)$. We have $Z^F = \{h(x, x^2, \cdots, x^l) \mid x^{(l+1,q+1)} = 1\} \simeq Z/(l+1,q+1)Z$. If $2 \mid l$, then we have $\tau(M) = \Pi$ and we can write as $M = \langle f \rangle \times Z^F$ with $f^{p-1} = 1$. Suppose $2 \nmid l$. Then the following holds: If q is square (i.e. an even power of p), then we have $\tau(M) = \Pi$ and we can write as $M = \langle f, Z^F \rangle$ with $|\langle f^{p-1} \rangle| = 2$. Suppose that q is non-square. Then, if $\operatorname{ord}_2(l+1) > \operatorname{ord}_2(q+1)$, we have $\tau(M) = \Pi$ and we can write as $M = \langle f, Z^F \rangle$ with $|\langle f^{p-1} \rangle| = c_2$; if $\operatorname{ord}_2(l+1) \leq \operatorname{ord}_2(q+1)$ and $p \equiv 1 \pmod{4}$, we have $(\Pi : \tau(M)) = 2$ and we can write as $M = \langle f, Z^F \rangle$ with $|\langle f^{(p-1)/2} \rangle| = 2$; if $\operatorname{ord}_2(l+1) \leq \operatorname{ord}_2(q+1)$ and $p \equiv -1 \pmod{4}$, we have $(\Pi : \tau(M)) = 2$ and we can write as $M = \langle f \rangle \times Z^F$ with $f^{(p-1)/2} = 1$.

PROOF. Let $s \in T$, $s = h(x_1, \dots, x_l)$. If l = 2m, then $s \in T^F$ if and only if s is of the form $h(x_1, \dots, x_m, x_m^q, \dots, x_1^q)$ with $x_1, \dots, x_m \in F_{q^2}^{\times}$. If l = 2m + 1, then $s \in T^F$ if and only if s is of the form $h(x_1, \dots, x_m, x_{m+1}, x_m^q, \dots, x_1^q)$ with $x_1, \dots, x_m \in F_{q^2}^{\times}$ and $x_{m+1} \in F_q^{\times}$. Then Cartan matrix of type (A_l) can be seen in [2], Appendix. In this case, the system of equations $(0)_{\varepsilon}$ reads as follows:

(1)_{\xi}
$$\begin{cases} x_1^2 x_2^{-1} = \xi, & x_1^{-1} x_2^2 x_3^{-1} = \xi, & x_2^{-1} x_3^2 x_4^{-1} = \xi, \\ & \cdots & \\ x_{l-2}^{-1} x_{l-1}^2 x_l^{-1} = \xi, & x_{l-1}^{-1} x_l^2 = \xi. \end{cases}$$

We must further consider the following condition:

$$x_{m+i} = x_{m-i+1}^q$$
 $(i=1, \dots, m)$

if l=2m;

$$(2)_{i} x_{m+i+1} = x_{m+1-i}^{q} (i=1, \dots, m)$$

and

$$(3) x_{m+1}^q = x_{m+1}$$

if l = 2m + 1.

We see that $(1)_{\xi} \Leftrightarrow (4)_{\xi,i} (i=1, \dots, l), (5)_{\xi}$, where

$$(4)_{\xi,i} x_i = \xi^{-i(i-1)/2} x_1^i (i=1, \dots, l)$$

and

$$(5)_{\xi} x_1^{l+1} = \xi^{l(l+1)/2}.$$

We remark also that, when l=2m+1, for x_i given by $(4)_{\xi,i}$ and $(5)_{\xi}$, the conditions $(2)_i$ and (3) are satisfied if and only if $(6)_{\xi}$ and (6)' are satisfied, where

$$(6)_{\xi} \qquad \qquad x_1^{q+1} = \xi^l,$$

and

$$(6)' x_1^{mq} = x_1^{m+1-q}.$$

First, let us calculate Z^F . Assume that l=2m+1. Since an element s of T^F lies in Z^F if and only if $\alpha_i(s) = 1$ for $i = 1, \dots, l$, it suffices to consider the conditions $(1)_1, (2)_i$ $(i=1, \dots, m)$, (3). Let $s=h(x_1, \dots, x_l)$. By the above remarks (q=odd) $s\in Z^F$ if and only if $s = h(x_1, x_1^2, \dots, x_1^l)$ with $x_1^{l+1} = x_1^{q+1} = 1$. Hence the assertion in the lemma holds. For the case l=2m, the proof is similar.

Next we calculate the group M. First, assume that 2|l. Put $f=h(x_1, \dots, x_l)$ where $x_i = v^{i(l-i+1)/2}$ $(i=1, \dots, l)$. Then we see that $f \in T^F$ and $\alpha_i(f) = v$ for $i=1, \dots, l$. Hence we have $\tau(M) = \Pi$ and $M = \langle f \rangle \times Z^F$ with $f^{p-1} = 1$. (This case is already treated in [13].) So, in the rest of this proof, we assume that l=2m+1 $(m \ge 0)$.

We show that the condition (6), implies that $x_1 \notin F_p^{\times}$. (This means that if $\tau(M) = \Pi$ and if we write as $M = \langle f, Z^F \rangle$, then we cannot have $f^{p-1} = 1$, that is, we cannot write as $M = \langle f \rangle \times Z^F$.) In fact, assuming (6), suppose $x_1 \in F_p^{\times}$. Then $x_1 = v^k$ for some integer k. Since l is odd, it is impossible.

Assume that q is square. Let ε be an element of F_q such that $\varepsilon^2 = v$. Put $f = h(x_1, \dots, x_l)$ where $x_i = \varepsilon^{i(l-i+1)}$ $(i=1, \dots, l)$. Then we see that x_1, \dots, x_l satisfy $(1)_v$, $(2)_i$ $(i=1,\dots,m)$ and (3). Hence we have $\tau(M)=\Pi$ and $M=\langle f,Z^F\rangle$. We have $f^{p-1} = h(-1, 1, -1, 1, \dots, -1)$. Hence $|\langle f^{p-1} \rangle| = 2$.

In the rest of this proof, we assume that q is non-square. Suppose that x_1, \dots, x_l satisfy $(1)_{\nu}$, $(2)_{i}$ $(i=1, \dots, m)$ and (3). Let $x_1 = \omega^k$. Then, by $(6)_{\nu}$, we have

(7)
$$k = \frac{q-1}{p-1}l + t(q-1)$$

for some integer t. Then, by $(5)_v$, we have

$$t(l+1) = \frac{l(l+1)}{2} \cdot \frac{q-1}{p-1} + v(q+1)$$

for some integer v. Put ((l+1)/2, q+1) = e and write: q+1 = ea, (l+1)/2 = eb, (a, b) = 1. Then:

$$2tb = lb \cdot \frac{q-1}{p-1} + va.$$

Then b|va, hence b|v as (a, b) = 1. So, putting v = bv', we get:

$$2t = l \cdot \frac{q-1}{p-1} + v'a.$$

As q is non-square, $\operatorname{ord}_2(q-1) = \operatorname{ord}_2(p-1)$, so $l \cdot (q-1)/(p-1)$ is odd. Thus v' and a must be odd. Hence $\operatorname{ord}_2(l+1)/2 \ge \operatorname{ord}_2(q+1)$. This shows that if $\operatorname{ord}_2(l+1) \le \operatorname{ord}_2(q+1)$, then no $f \in T^F$ satisfies that $\alpha_i(f) = v$ for $i = 1, \dots, l$ and we cannot have $\tau(M) = \Pi$.

Suppose $\operatorname{ord}_2(l+1) > \operatorname{ord}_2(q+1)$. Then $t = \{l(q-1)/(p-1) + v'a\}/2$ (v' odd), hence, by (7), we have:

(8)
$$k = \frac{q-1}{p-1} l + \frac{1}{2} \left(l \cdot \frac{q-1}{p-1} + v'a \right) (q-1) \qquad (v' \text{ odd}).$$

Conversely, if we put $x_1 = \omega^k$ where k is of the form (8) and $x_i = v^{-i(i-1)/2} x_1^i$ $(i=1, \cdots, l)$, then we see that x_1, \cdots, x_l satisfy $(1)_v$, $(2)_i$ $(i=1, \cdots, m)$ and (3). Therefore we have $\tau(M) = \Pi$. Put $f = h(x_1, \cdots, x_l)$ with the x_i being as above where we take $v' = ((l+1)/2, q+1)_2$. Then we have $M = \langle f, Z^F \rangle$ and $f^{p-1} = h(x_1^{p-1}, x_1^{2(p-1)}, \cdots, x_1^{l(p-1)})$. Let us compute the order of f^{p-1} . Clearly it suffices to compute the order of x_1^{p-1} . We have $x_1^{p-1} = -\omega^{v'a(p-1)(q-1)/2}$. As $\operatorname{ord}_2((l+1)/2) \ge \operatorname{ord}_2(q+1)$, we have $v'a = ((l+1)/2, q+1)_2 \cdot (q+1)/((l+1)/2, q+1) = (q+1)_2$. Suppose $p \equiv 1 \pmod 4$. Then $q \equiv 1 \pmod 4$ and $\operatorname{ord}_2(q+1) = 1$. As 2 |(p-1)/2, we have $q^2 - 1 |v'a(p-1)(q-1)/2$. Hence $x_1^{p-1} = -1$. Hence $|\langle f^{p-1} \rangle| = 2 = c_2$. Suppose $p \equiv -1 \pmod 4$. Then (p-1)/2 is odd. Since $\operatorname{ord}_2(l+1) > \operatorname{ord}_2(q+1)$ and c = (l+1, q+1), we have $c_2 = (q+1)_2$. Then we see that c_2 is the order of $x_1^{p-1} = -\omega^{(q+1)_2/(q-1)(p-1)/2}$.

Assume that $\operatorname{ord}_2(l+1) \leq \operatorname{ord}_2(q+1)$. We have seen above that $\tau(M) \neq \Pi$. But, by Lemma 2 of [13], we have $(\Pi : \tau(M)) = 2$. So let us consider the equations $(1)_{v^2}$, $(2)_i$ $(i=1, \dots, m)$ and the condition (3). Then we have $(6)_{v^2}$: $x_1^{q+1} = v^{2l}$. Put $x_1 = \omega^k$. Then $k \equiv 2l \cdot (q-1)/(p-1) \pmod{q-1}$, i.e.,

(9)
$$k = \frac{q-1}{p-1} 2l + t(q-1)$$

for some integer t. By $(5)_{v^2}$, we have

$$t(l+1) = \frac{q-1}{p-1} l(l+1) + s(q+1)$$

for some integer s. By the same argument as before $t = l \cdot (q-1)/(p-1) + s'a'$, where (l+1, q+1) = e', q+1=e'a', l+1=e'b' and s=b's'. Hence, by (9), we have $k = l \cdot (q^2-1)/(p-1) + s'a'(q-1)$. Hence $x_1 = v^l \omega^{s'a'(q-1)}$ and $x_i = v^{-i(i-1)}x_1^i$ $(i=1, \dots, 1)$ (cf. (4)_{v^2,i}). Put $f = h(x_1, \dots, x_l)$. Then $\tau(f)$ has order (p-1)/2 in Π and $f^{(p-1)/2} = h(x_1^{(p-1)/2}, (x_1^2)^{(p-1)/2}, \dots, (x_l^1)^{(p-1)/2})$. We have

$$x_1^{(p-1)/2} = -\omega^{s'a'(q-1)(p-1)/2}.$$

Now let us consider the problem: Is there an integer s' such that $\omega^{s'a'(q-1)(p-1)/2} = -1$, i.e.,

$$s'a'(q-1)(p-1)/2 \equiv (q^2-1)/2 \pmod{q^2-1}$$
?

This congruence relation can be rewritten as:

(10)
$$s'a' \cdot \frac{p-1}{2} \equiv \frac{q+1}{2} \pmod{q+1}$$
.

Suppose $p \equiv 1 \pmod{4}$. Then $2 \mid (p-1)/2 \pmod{2} \mid (q+1)/2$. Hence the answer is negative. Take: s' = 0. Then $x_1^{(p-1)/2} = -1$ and $|\langle f^{(p-1)/2} \rangle| = 2$ (we have $M = \langle f, Z^F \rangle$).

Suppose $p \equiv -1 \pmod{4}$. Then $2 \nmid (p-1)/2$ and ((p-1)/2, q+1) = 1. Hence there is an integer v such that $v \cdot (p-1)/2 \equiv 1 \pmod{q+1}$. By multiplying both hand sides of (10) by v, we get

(11)
$$s'a' \equiv \frac{q+1}{2} v \pmod{q+1}.$$

Here a' = (q+1)/(l+1, q+1). So $\operatorname{ord}_2 a' < \operatorname{ord}_2 (q+1)$, hence a' | (q+1)/2. Hence, from (11), we get

$$s' \equiv \frac{q+1}{2a'} v \qquad \left(\bmod \frac{q+1}{a'} \right).$$

Therefore the problem has a positive answer. That is, we have $\omega^{s'a'(q-1)(p-1)/2} = -1$ for some integer s'. By taking such s' in x_1 , we have $x_1^{(p-1)/2} = 1$ (cf. (*)). Thus we can write as $M = \langle f \rangle \times Z^F$ with $f^{(p-1)/2} = 1$. This completes the proof of Lemma 3.

LEMMA 4. Assume that G is of type (^2D_l) $(l \ge 3)$. We have $Z^F \simeq Z/4Z$ if $2 \nmid l$ and $4 \mid q+1$ and $Z^F = \langle h(1, \dots, 1, -1, -1) \rangle \simeq Z/2Z$ otherwise. If $4 \mid l(l-1)$, then we have $\tau(M) = \Pi$ and we can write as $M = \langle f \rangle \times Z^F$ with $f^{p-1} = 1$. If (a) $2 \parallel l$ or (b) $2 \parallel l-1$ and either (b₁) q is square or (b₂) q is non-square and $p \equiv 1 \pmod{4}$, then we have $\tau(M) = \Pi$ and we can write as $M = \langle f, Z^F \rangle$ with $|\langle f^{p-1} \rangle| = 2$. If $2 \parallel l-1$, q is non-square and $p \equiv -1 \pmod{4}$, then we have $(\Pi : \tau(M)) = 2$ and we can write as $M = \langle f \rangle \times Z^F$ with $f^{(p-1)/2} = 1$.

PROOF. Let $s \in T$, $s = h(x_1, \dots, x_l)$. Then $s \in T^F$ if and only if $x_1, \dots, x_{l-2} \in F_q^{\times}$, x_{l-1} , $x_l \in F_{q^2}^{\times}$ and $x_l = x_{l-1}^q$ (hence $x_{l-1} = x_l^q$). The Cartan matrix of type (D_l) can be seen in [2], Appendix. In this case the system of equations $(0)_{\xi}$ can be read as follows:

$$\begin{cases} x_1^2 x_2^{-1} = \xi, & x_1^{-1} x_2^2 x_3^{-1} = \xi, \\ & \dots \dots \\ x_{l-3}^{-1} x_{l-2}^2 x_{l-1}^{-1} x_l^{-1} = \xi, & x_{l-2}^{-1} x_{l-1}^2 = \xi, \end{cases}$$

$$(12)_{\xi}$$

The system of equations (12) ξ is equivalent to (13) ξ , (14) ξ , (15) ξ and (16) ξ , where

$$(13)_{\xi,i} x_i = \xi^{-i(i-1)/2} x_1^i (i=1, \dots, l-2),$$

$$(14)_{\xi} x_{l-1}x_{l} = \xi^{-(l-1)(l-2)/2}x_{1}^{l-1},$$

$$(15)_{\xi} x_{l-1}^2 = \xi^{-(l-1)(l-4)/2} x_1^{l-2},$$

$$(16)_{\xi} x_1^2 = \xi^{2l-2} .$$

Let us give several remarks. From $(14)_{\xi}$, $(15)_{\xi}$ and $(16)_{\xi}$, we have $x_{l}^{2} = x_{l-1}^{2}$. Moreover we can rewrite the above system as follows:

$$\begin{cases} x_{i} = \rho^{i} \xi^{i(l-1)} & (i=1, \dots, l-2; \rho = \pm 1), \\ x_{l-1}^{2} = \rho^{l-2} \xi^{l(l-1)/2}, \\ x_{l-1} x_{l} = \rho^{l-1} \xi^{l(l-1)/2}. \end{cases}$$

To construct an element of T^F , we must further consider the following condition:

$$(18) x_l = x_{l-1}^q .$$

Using (17)_{ξ} and (18), we can calculate the centre Z^F : we have $Z^F = \langle h(-1, \dots, -1, \omega^{(q^2-1)/4}, \omega^{q(q^2-1)/4}) \rangle \simeq \mathbb{Z}/4\mathbb{Z}$ if 2|l-1 and 4|q+1, and $Z^F = \langle h(1, \dots, 1, -1, -1) \rangle \simeq \mathbb{Z}/2\mathbb{Z}$ otherwise.

Let us calculate the group M. Assume that 4|l(l-1). Put $f=h(x_1, \dots, x_{l-2}, v^{l(l-1)/4}, v^{l(l-1)/4})$ where $x_i=v^{i(2l-i-1)/2}$ $(i=1, \dots, l-2)$. Then we see that $f \in T^F$ and $\alpha_i(f)=v$ for $i=1, \dots, l$. Hence we have $\tau(M)=\Pi$ and $M=\langle f \rangle \times Z^F$ with $f^{p-1}=1$. (This case is treated in Lemma 4 of [13].)

Assume that $4 \nmid l(l-1)$. Let $s = h(x_1, \dots, x_l)$ be an element of T^F . Suppose that x_1, \dots, x_l satisfy $(12)_v$. We show that $x_{l-1} \notin F_p^{\times}$. In fact, suppose that $x_{l-1} \in F_p^{\times}$. Then $x_l = x_{l-1}^q = x_{l-1} \in F_p^{\times}$. Then both of $x_{l-1}^2 = \rho^{l-2} v^{l(l-1)/2}$, $x_{l-1} x_l = \rho^{l-1} v^{l(l-1)/2}$ must belong to $(F_p^{\times})^2$. But it is impossible since l(l-1)/2 is odd. This means that if $\tau(M) = \Pi$, then we cannot write as $M = \langle f \rangle \times Z^F$ with $f^{p-1} = 1$.

Assume that q is square. Put $f=h(x_1, \dots, x_{l-2}, \varepsilon^{l(l-1)/2}, \varepsilon^{l(l-1)/2})$ where $x_i=\varepsilon^{i(2l-i-1)}$ for $i=1, \dots, l-2$. Then we see that $f\in T^F$ and $\alpha_i(f)=v$ for $i=1, \dots, l$. Hence we have $\tau(M)=\Pi$ and $M=\langle f,Z^F\rangle$. As $f^{p-1}=h(1, \dots, 1, -1, -1)$, we have $|\langle f^{p-1}\rangle|=2$. So, in the rest of this proof, we assume that q is non-square $(2\|l(l-1))$.

Suppose 2||l. Let ε be an element of F_{q^2} such that $\varepsilon^2 = v$. Put $f = h(x_1, \dots, x_{l-2}, \varepsilon^{l(l-1)/2}, \varepsilon^{(l(l-1)/2)q})$ where $x_1 = -v^{l-1}$ and $x_i = v^{-i(i-1)/2}x_1^i$ for $i = 1, \dots, l-2$. Then we see that $f \in T^F$ and $\alpha_i(f) = v$ for $i = 1, \dots, l$. Hence we have $\tau(M) = \Pi$ and $M = \langle f, Z^F \rangle$. As $f^{p-1} = h(1, \dots, 1, -1, -1)$, we have $|\langle f^{p-1} \rangle| = 2$.

Suppose 2||l-1. Let $s = h(x_1, \dots, x_l)$, $s \in T^F$. Suppose that x_1, \dots, x_l satisfy $(12)_v$. Then, by $(16)_v$, we have $x_1 = \pm v^{l-1}$. We first show that $x_1 = v^{l-1}$ is impossible.

In fact, suppose $x_1 = v^{l-1}$. Let ε be as above an element of F_{q^2} such that $\varepsilon^2 = v$. As q is non-square, $\varepsilon \notin F_q$ (this can be easily checked), so $\varepsilon^q \neq \varepsilon$, hence $\varepsilon^q = -\varepsilon$. By (17), (where $\rho = 1$), $x_{l-1}^2 = v^{l(l-1)/2} = \varepsilon^{l(l-1)}$ and $x_{l-1}x_l = v^{l(l-1)/2} = x_{l-1}^2$. Since $x_{l-1} = \eta \varepsilon^{l(l-1)/2}$ ($\eta = \pm 1$), $x_l = x_{l-1}^q = \eta^q (\varepsilon^{l(l-1)/2})^q = (-1)^{l(l-1)/2} x_{l-1} = -x_{l-1}$, which is a contradiction.

Thus $x_1 = -v^{l-1}$. Let μ be an element of F_{q^2} such that $\mu^2 = -1$. By $(17)_{\nu}$, $x_{l-1} = \eta \mu \epsilon^{l(l-1)/2}$ $(\eta = \pm 1)$. Then $x_l = x_{l-1}^q = \eta \mu^q (-1) \epsilon^{l(l-1)/2}$, and $x_{l-1} x_l = \mu^{1+q} (-1) \nu^{l(l-1)/2}$, which is equal to $\nu^{l(l-1)/2}$ by $(17)_{\nu}$. Hence, for the existence of solutions, it is necessary and sufficient that $\mu^{1+q} = -1$, i.e. (1+q)/2 is odd, i.e. $p \equiv 1 \pmod{4}$.

Suppose $p \equiv 1 \pmod{4}$. Put $f = h(x_1, \dots, x_l)$ where $x_1 = -v^{l-1}$, $x_i = v^{-i(i-1)/2}x_1^i$ $(i=2, \dots, l-2), x_{l-1} = \omega^{(q^2-1)/4 + ((q^2-1)/2(p-1))(l^2-l)/2}$ and $x_l = x_{l-1}^q$. Then we see that $f \in T^F$ and $\alpha_i(f) = v$ for $i = 1, \dots, l$. Hence we have $\tau(M) = \Pi$ and $M = \langle f, Z^F \rangle$. We have

 $f^{p-1} = h(1, \dots, 1, -1, -1)$, hence $|\langle f^{p-1} \rangle| = 2$.

Finally, suppose $p \equiv -1 \pmod 4$. Then we cannot have $\tau(M) = \Pi$. Put $f = h(x_1, \dots, x_l)$ where $x_1 = v^{2l-2}$, $x_i = v^{-i(i-1)}x_1^i$ $(i=1, \dots, l-2)$ and $x_{l-1} = x_l = v^{(l^2-l)/2+(p-1)/2}$. Then we see that $f \in T^F$ and $\alpha_i(f) = v^2$ for $i=1, \dots, l$ and $f^{(p-1)/2} = 1$. Hence we have $(\Pi : \tau(M)) = 2$ and $M = \langle f \rangle \times Z^F$. This completes the proof of Lemma 4.

§4. Schur indices of the μ_i .

In the following, if χ is an irreducible character of a finite group and E is a field of characteristic zero, then $m_E(\chi)$ is the Schur index of χ with respect to E.

In this section we determine local Schur indices of the irreducible characters μ_1, \dots, μ_c of L (see §2) for $G = SU_{l+1}$, $Spin_{2l}^-$.

First we assume that $G = SU_{l+1}$. Let $\lambda \in \Lambda$, $\lambda \neq 1$. By Lemma 3, we have $Z^F = \langle z \rangle$, $z = h(\omega^k, \omega^{2k}, \dots, \omega^{lk})$, $k = (q^2 - 1)/(l+1, q+1)$. Let ζ_c be a fixed primitive c-th root of unity. We arrange the characters η_1, \dots, η_c so that $\eta_i(z) = \zeta_c^i$ ($i = 1, \dots, c$). Let f be an element of M described in Lemma 3. For $i = 1, \dots, c$, let A_i be the Schur algebra associated with μ_i (see §2). Then

$$A_i = (k_i(\zeta_p)/k_i, \sigma_i, \theta_i), \quad \theta_i = \eta_i(f^h) \qquad (i = 1, \dots, c),$$

where h = p - 1 or (p - 1)/2.

Suppose 2|l. Then, by Lemma 3, we have $\tau(M) = \Pi$ and $M = \langle f \rangle \times Z^F$ with $f^{p-1} = 1$ (hence h = p - 1). Hence k = Q, $k_i = Q(\eta_i) = Q(\zeta_c^i)$ and $\theta_i = 1$ $(i = 1, \dots, c)$. Hence, for $i = 1, \dots, c$, A_i splits over k_i and $m_Q(\mu_i) = 1$. Hence, by a theorem of Schur (see, e.g., [3], p. 479, Exercise 2), $\lambda^L = \mu_1 + \dots + \mu_c$ is realizable in Q. Hence $\Gamma_{\lambda} = (\lambda^L)^{G^F}$ is realizable in Q.

Suppose that $2 \nmid l$ and q is square. Then, by Lemma 3, we have $\tau(M) = \Pi$ and $M = \langle f, Z^F \rangle$ with $f^{p-1} = h(-1, 1, -1, 1, \dots, -1) = z^{c/2} (h = p - 1)$. Hence we have k = Q and $k_i = Q(\eta_i) = Q(\zeta_c^i)$ $(i = 1, \dots, c)$. And:

$$\theta_i = \eta_i(f^{p-1}) = \eta_i(z^{c/2}) = \eta_i(z)^{c/2} = \zeta_c^{i \cdot c/2} = (-1)^i$$

 $(i=1, \cdots, c)$. Thus:

$$A_i = (\mathbf{Q}(\zeta_c^i)(\zeta_p)/\mathbf{Q}(\zeta_c^i), \, \sigma_i, \, (-1)^i) \qquad (i = 1, \, \cdots, \, c) .$$

If *i* is even, then A_i splits and we have $m_{\mathbf{Q}}(\mu_i) = 1$. Suppose that *i* is odd. If *v* is a finite place of k_i such that $v \nmid p$, then *v* is unramified in $k_i(\zeta_p)/k_i$, so that the Hasse invariant of A_i at *v* is $\equiv 0 \pmod{1}$. Hence we have $m_{\mathbf{Q}_r}(\mu_i) = 1$ for any prime number $r \neq p$. Let i = c/2 (cf. $2 \parallel c$). Then $A_i = A_{c/2} = (\mathbf{Q}(\zeta_p)/\mathbf{Q}, \sigma, -1)$. $A_{c/2}$ has the invariants $1/2 \pmod{1}$ at ∞ , *p* (see [10]). Hence we have $m_{\mathbf{R}}(\mu_{c/2}) = m_{\mathbf{Q}_p}(\mu_{c/2}) = 2$. [For other odd *i*, we have $A_i = A_{c/2} \otimes_{\mathbf{Q}}/\mathbf{Q}(\zeta_c^i)$, and, for any place *v* of k_i over *p*, the invariant of A_i at *v* is $\equiv \frac{1}{2} [\mathbf{Q}_p(\zeta_c^i) : \mathbf{Q}_p] \pmod{1}$, and $[\mathbf{Q}_p(\zeta_c^i) : \mathbf{Q}_p]$ is equal to the least positive integer *s* such

that $p^s \equiv 1 \pmod{c/(i, c)}$.] Thus Γ_{λ} is realizable in Q_r for any prime number $r \neq p$ and, for some i, we have $m_{\mathbf{Q}}(\mu_i) = m_{\mathbf{R}}(\mu_i) = m_{\mathbf{Q}_p}(\mu_i) = 2$.

Suppose that $2 \nmid l$, q is non-square and $\operatorname{ord}_2(l+1) > \operatorname{ord}_2(q+1)$. Then, by Lemma 3, we have $\tau(M) = \Pi$ and $M = \langle f, Z^F \rangle$ with $|\langle f^{p-1} \rangle| = c_2$. So k = Q and $k_i = Q(\eta_i) = Q(\zeta_c^i)$ ($i = 1, \dots, c$). And we have $f^{p-1} = z^{c_2 \cdot u}$ for some odd integer u. Hence, for $i = 1, \dots, c$, we have

$$\theta_i = \eta_i(f^{p-1}) = \eta_i(z^{c_2,u}) = \zeta_c^{ic_2,u} = \zeta_c^i$$

for some primitive c_2 th root of unity ζ_{c_2} . Hence

$$A_i = (\mathbf{Q}(\zeta_c^i)(\zeta_p)/\mathbf{Q}(\zeta_c^i), \, \sigma_i, \, \zeta_c^i) \qquad (i = 1, \, \cdots, \, c) .$$

Let us fix i. If v is a finite place of k_i such that $v \nmid p$, then v is unramified in $k_i(\zeta_p)/k_i$, so that the invariant of A_i at v is $\equiv 0 \pmod{1}$. Hence we have $m_{\mathbf{Q}_r}(\mu_i) = 1$ for any prime number $r \neq p$. Let i = c/2. Then $A_i = A_{c/2} = (\mathbf{Q}(\zeta_p)/\mathbf{Q}, \sigma, -1)$. Hence we have $m_{\mathbf{Q}}(\mu_{c/2}) = m_{\mathbf{R}}(\mu_{c/2}) = m_{\mathbf{Q}_p}(\mu_{c/2}) = 2$. [Let i be another. Let v be a place of k_i above p. Let s be the least positive integer such that $p^s \equiv 1 \pmod{c/(i, c)}$. Then we see that A_i splits over $(k_i)_v$ if and only if $\operatorname{ord}_2(p^s - 1) - \operatorname{ord}_2(p - 1) - \operatorname{ord}_2 c_2/(i, c_2) \geq 0$.] Thus Γ_λ is realizable in \mathbf{Q}_r for any prime number $r \neq p$ and, for some i, we have $m_{\mathbf{Q}}(\mu_i) = m_{\mathbf{R}}(\mu_i) = m_{\mathbf{Q}_p}(\mu_i) = 2$.

Suppose that $2 \nmid l$, q is non-square, $\operatorname{ord}_2(l+1) \leq \operatorname{ord}_2(q+1)$ and $p \equiv 1 \pmod 4$. Then, by Lemma 3, we have $(\Pi : \tau(M)) = 2$ and $M = \langle f, Z^F \rangle$ with $f^{(p-1)/2} = h(-1, 1, -1, 1, \dots, -1) = z^{c/2}$. Hence h = (p-1)/2, and we have $k = Q(\sqrt{p})$ and $k_i = Q(\sqrt{p})(\zeta_c^i)$ $(i=1, \dots, c)$. And we have $\theta_i = (-1)^i$ $(i=1, \dots, c)$. Thus:

$$A_{i} = (\mathbf{Q}(\sqrt{p}, \zeta_{c}^{i})(\zeta_{p})/\mathbf{Q}(\sqrt{p}, \zeta_{c}^{i}), \sigma_{i}, (-1)^{i})$$

$$= (\mathbf{Q}(\sqrt{p})(\zeta_{p})/\mathbf{Q}(\sqrt{p}), \sigma', (-1)^{i}) \otimes_{\mathbf{Q}(\sqrt{p})} \mathbf{Q}(\sqrt{p}, \zeta_{c}^{i}) \qquad (i = 1, \dots, c),$$

where σ' is a certain automorphism of $Q(\sqrt{p}, \zeta_p)$ over $Q(\sqrt{p})$. If i is even, then A_i splits over k_i and we have $m_{Q(\sqrt{p})}(\mu_i) = 1$. Suppose that i is odd. Put $B = (Q(\sqrt{p})(\zeta_p)/Q(\sqrt{p}), \sigma', -1)$. Then, by [10], B has non-zero invariants ($\equiv 1/2 \mod 1$) only at two real places of $Q(\sqrt{p})$. Thus we have $m_{Q_r}(\mu_i) = 1$ for any prime number r. For i = c/2 (which is odd since $2\|q+1$), we have $A_i = B$. So we have $m_{Q(\sqrt{p})}(\mu_{c/2}) = m_R(\mu_{c/2}) = 2$. Thus Γ_{λ} is realizable in $Q(\sqrt{p})_v$ for any finite place v of $Q(\sqrt{p})$.

Finally, suppose that $2 \nmid l$, q is non-square, $\operatorname{ord}_2(l+1) \leq \operatorname{ord}_2(q+1)$ and $p \equiv -1 \pmod{4}$. Then, by Lemma 3, we have $(\Pi : \tau(M)) = 2$ and $M = \langle f \rangle \times Z^F$ with $f^{(p-1)/2} = 1$. Hence $k = Q(\sqrt{-p})$ and $k_i = Q(\sqrt{-p})(\zeta_c^i)$ $(i=1, \dots, c)$. As $f^{(p-1)/2} = 1$, we have $\theta_i = 1$ $(i=1, \dots, c)$. Thus each A_i splits over k_i and we have $m_{Q(\sqrt{-p})}(\mu_i) = 1$ $(i=1, \dots, c)$. Hence Γ_{λ} is realizable in $Q(\sqrt{-p})$.

Thus we have

PROPOSITION 2. Let $G = SU_{l+1}$. Let $\lambda \in \Lambda$, $\lambda \neq 1$. Then: If 2|l, Γ_{λ} is realizable in Q. Suppose $2\nmid l$. If q is square, or, q is non-square and $\operatorname{ord}_2(l+1) > \operatorname{ord}_2(q+1)$, then Γ_{λ} is

realizable in \mathbf{Q}_r for any prime number $r \neq p$ and, for some i, we have $m_{\mathbf{Q}}(\mu_i) = m_{\mathbf{R}}(\mu_i) = m_{\mathbf{Q}_p}(\mu_i) = 2$. If q is non-square, $\operatorname{ord}_2(l+1) \leq \operatorname{ord}_2(q+1)$ and $p \equiv 1 \pmod 4$, then Γ_λ is realizable in $\mathbf{Q}(\sqrt{p})_v$ for any finite place v of $\mathbf{Q}(\sqrt{p})$ and, for some i, we have $m_{\mathbf{Q}(\sqrt{p})}(\mu_i) = m_{\mathbf{R}}(\mu_i) = 2$. If q is non-square, $\operatorname{ord}_2(l+1) \leq \operatorname{ord}_2(q+1)$ and $p \equiv -1 \pmod 4$, then Γ_λ is realizable in $\mathbf{Q}(\sqrt{-p})$.

Next we assume that $G = Spin_{2l}^ (l \ge 3)$. Let $\lambda \in \Lambda$, $\lambda \ne 1$. Suppose 4|l(l-1). Then, by Lemma 4, we have $\tau(M) = \Pi$ and $M = \langle f \rangle \times Z^F$ with $f^{p-1} = 1$. Hence, by the argument in the case that $G = SU_{l+1}$, we see that Γ_{λ} is realizable in Q.

Suppose that 2||l| or that 2||l-1| and q is square or that 2||l-1|, q is non-square and $p \equiv 1 \pmod 4$. Put $z = h(1, \dots, 1, -1, -1)$. Then, by Lemma 4, $Z^F = \langle z \rangle \simeq \mathbb{Z}/2\mathbb{Z}$ and we have $\tau(M) = \Pi$ and $M = \langle f, Z^F \rangle$ with $f^{p-1} = z$. We arrange η_1 , η_2 so that $\eta_i(z) = (-1)^i$ (i = 1, 2). Then $k = k_i = \mathbb{Q}$ (i = 1, 2) and $\theta_i = (-1)^i$ (i = 1, 2). Thus:

$$A_i = (Q(\zeta_p)/Q, \sigma, (-1)^i)$$
 $(i = 1, 2)$.

Hence Γ_{λ} is realizable in Q_r for any prime number $r \neq p$ and we have $m_{Q}(\mu_1) = m_{Q_n}(\mu_1) = 2$.

Suppose that 2|l-1, q is non-square and $p \equiv -1 \pmod{4}$. Then, by Lemma 4, we have $(\Pi : \tau(M)) = 2$ and $M = \langle f \rangle \times Z^F$ with $f^{(p-1)/2} = 1$. Hence $k = Q(\sqrt{-p})$ and $\theta_i = 1$ (i = 1, 2, 3, 4). Hence, by the argument in the case that $G = SU_{l+1}$, we see that Γ_{λ} is realizable in $Q(\sqrt{-p})$.

Thus we get:

PROPOSITION 3. Assume that $G = Spin_{2l}^ (l \ge 3)$. Let $\lambda \in \Lambda$, $\lambda \ne 1$. Then: If 4|l(l-1), then Γ_{λ} is realizable in \mathbf{Q} . Suppose that 2||l(l-1). If 2||l, or, 2||l-1 and q is square, or, 2||l-1 and q is non-square and $p \equiv 1 \pmod{4}$, then Γ_{λ} is realizable in \mathbf{Q}_r for any prime number $r \ne p$ and, for some i, we have $m_{\mathbf{Q}}(\mu_i) = m_{\mathbf{R}}(\mu_i) = m_{\mathbf{Q}_p}(\mu_i) = 2$. If 2||l-1, q is non-square and $p \equiv -1 \pmod{4}$, then Γ_{λ} is realizable in $\mathbf{Q}(\sqrt{-p})$.

§5. Main results.

LEMMA 5. Let G be as in §1. Let E be a field of characteristic 0. Assume that, for any $\lambda \in \Lambda$, Γ_{λ} is realizable in E. Then, if χ is an irreducible character of G^F such that $\langle \chi, \Gamma_{\lambda} \rangle_{G^F} = 1$ for some $\lambda \in \Lambda$ or (when p is good for G) $p \nmid \chi(1)$, then $m_E(\chi) = 1$.

PROOF. If $\langle \chi, \Gamma_{\lambda} \rangle_{GF} = 1$ for some λ , then the assertion follows from the theorem of Schur. Assume that p is a good prime for G and $p \nmid \chi(1)$. Then the assertion can be proved by a method similar to the proof of Corollary 4 to Proposition 1 of [13].

A large part of the following two theorems is contained in [13].

THEOREM 1. Let $G = SU_{l+1}$ or $Spin_{2l}^-$ (in either case $p \neq 2$). Let χ be an irreducible character of G^F such that $\langle \chi, \Gamma_{\lambda} \rangle_{G^F} = 1$ for some $\lambda \in \Lambda$ or $p \nmid \chi(1)$. Then, in any one of the

following cases, we have $m_{\mathbf{Q}}(\chi) = 1$: $SU_{l+1}(2|l)$; $Spin_{2l}^{-}(4|l(l+1))$.

PROOF. By Propositions 2, 3, we see that in any one of the cases above any Γ_{λ} is realizable in Q. Hence the assertion follows from Lemma 5.

THEOREM 2. Let $G = SU_{l+1}$ or $Spin_{2l}^-$ (in either case $p \neq 2$). Let χ be an irreducible character of G^F such that $\langle \chi, \Gamma_{\lambda} \rangle_{G^F} = 1$ for some $\lambda \in \Lambda$ or $p \nmid \chi(1)$. Then in any one of the following cases we have $m_{\mathbf{o}_r}(\chi) = 1$ for any prime number $r \neq p$:

 SU_{l+1} : q is square; q is non-square and $ord_2(l+1) > ord_2(q+1)$;

 $Spin_{2l}^-$: 2||l; 2||l-1 and q is square; 2||l-1, q| is non-square and $p \equiv 1 \pmod{4}$.

PROOF. By Propositions 2, 3, we see that in any one of the cases above, for any prime number $r \neq p$, and Γ_{λ} is realizable in Q_r . Hence the assertion follows from Lemma 5.

The following theorem is announced in [14].

THEOREM 3. Assume that q is an even power of $p \neq 2$. Let χ be an irreducible character of $SU_{l+1}(F_q)$. Then, for any prime number $r \neq p$, we have $m_{\mathbf{Q}_r}(\chi) = 1$.

REMARK. Let q be an arbitrary power of $p \neq 2$. Then it is known that the Schurindex (over Q) of any irreducible character of $SU_{l+1}(F_q)$ is at most two (Gow [6]). One can prove that, for $l+1\neq 2$, 4, $SU_{l+1}(F_q)$ has a rational-valued unipotent character χ such that $m_Q(\chi) = m_R(\chi) = m_{Q_p}(\chi) = 2$ and $m_{Q_r}(\chi) = 1$ for any prime number $r \neq p$. (Also see Theorem 4 below.)

LEMMA 6. Let the situations be as in Theorem 3. Then, for any unipotent element u of $SU_{l+1}(F_q)$, $\chi(u)$ is a rational integer and, for any prime number $r \neq p$, $m_{\mathbf{Q}_r}(\chi)|\chi(u)$.

PROOF. Let $G = SL_{l+1}(K)$ and $G_1 = GL_{l+1}(K)$, and let F be the endomorphism of G_1 defined by $F((x_{ij})) = {}^t(x_{ij}^q)^{-1}$ (tA is the transpose of a matrix A). Then $G^F = SU_{l+1}(F_q)$ and $G_1^F = U_{l+1}(F_q)$.

Let u by any unipotent element of G^F . Then $u \in G_1^F$ ($\subset GL_{l+1}(F_{q^2})$). Let u_{μ} be a Jordan canonical form of u in G_1 , where $\mu = (\mu_1, \dots, \mu_r)$ is a certain partition of l+1:

Then u and u_{μ} are conjugate in $GL_{l+1}(F_{q^2})$. Let:

$$L_{\mu} = \left\{ \begin{pmatrix} A_1 & 0 \\ A_2 & \\ 0 & A_r \end{pmatrix} \middle| A_i \in GL_{\mu_i}(K), i = 1, \dots, r \right\}.$$

Then L_{μ} is an F-stable reductive subgroup of G_1 and is isomorphic to $GL_{\mu_1}(K) \times \cdots \times GL_{\mu_r}(K)$. Clearly u_{μ} is a regular unipotent element of L_{μ} . Let u_0 be a regular unipotent element of L_{μ} contained in L_{μ}^F ($\subset GL_{l+1}(F_{q^2})$). Then u_{μ} and u_0 are conjugate in $L_{\mu}^{F^2} = GL_{\mu_1}(F_{q^2}) \times \cdots \times GL_{\mu_r}(F_{q^2})$, hence conjugate in $GL_{l+1}(F_{q^2})$. Hence u and u_0 are conjugate in $GL_{l+1}(F_{q^2})$. As $u, u_0 \in G_1^F = U_{l+1}(F_q)$, by a result of Ennola ([1], E-11, I, 3.5), u and u_0 are conjugate in G_1^F . Hence there is an element $g \in G_1^F$ such that $u = gu_0g^{-1}$. We note that $u_0 \in G^F$.

Let χ be an irreducible character of G^F . Let χ^g be the character of G^F defined by $\chi^g(x) = \chi(gxg^{-1})$ for $x \in G^F$. Then $\chi(u) = \chi(gu_0g^{-1}) = \chi^g(u_0)$. As u_0 is unipotent, u_0 belongs to $(L'_{\mu})^F = SU_{\mu_1}(F_q) \times \cdots \times SU_{\mu_r}(F_q)$ (L_{μ} denotes the derived group of L_{μ}). So we can write as $u_0 = (u_1, \dots, u_r)$ with $u_i \in SU_{\mu_i}(F_q)$ ($i = 1, \dots, r$). Clearly, for $i = 1, \dots, r$, u_i is a regular unipotent element of SU_{μ_i} ($= SU_{\mu_i}(K)$) with Frobenius map F).

For $i=1, \dots, r$, let U_i be the unipotent radical of the Borel subgroup B_i of SU_{μ_i} containing u_i ; as $F(u_i)=u_i$ and such B_i is unique, B_i is F-stable; thus U_i is also F-stable and $u_i \in U_i^F$. Put $H=U_1^F\times \cdots \times U_r^F$; we consider H as a subgroup of G^F . Let Λ_{μ} and N_{μ} be respectively the set of linear characters of H and the set of non-linear irreducible characters of H. Then we have

$$\chi^{g} | H = \sum_{\lambda \in A_{\mu}} a_{\lambda} \lambda + \sum_{\rho \in N_{\mu}} b_{\rho} \rho ,$$

where $a_{\lambda} = \langle \chi^{g} | H, \lambda \rangle_{H}$ for $\lambda \in \Lambda_{\mu}$ and $b_{\rho} = \langle \chi^{g} | H, \rho \rangle_{H}$ for $\rho \in N_{\rho}$. As $U_{1} \times \cdots \times U_{r}$ is a maximal unipotent subgroup of $L'_{\mu} = SU_{\mu_{1}} \times \cdots \times SU_{\mu_{r}}$ and u_{0} is a regular unipotent element of L'_{μ} in $H = U_{1}^{F} \times \cdots \times U_{r}^{F}$, by a result of Lehrer [11], we have $\rho(u_{0}) = 0$ for all ρ in N_{μ} . Hence we have:

$$\chi^{g}(u_0) = \sum_{\lambda \in \Lambda_{\mu}} a_{\lambda} \lambda(u_0) .$$

Let $\lambda \in \Lambda_{\mu}$. Then we can write as $\lambda = \lambda_1 \cdot \cdots \cdot \lambda_r$, where, for $i = 1, \dots, r, \lambda_i$ is a linear character of U_i^F . Hence, by Theorem (43.2) of [3], p. 316, we have:

$$\lambda^{(L'_{\mu})^F} = \lambda_1^{SU_{\mu_1}(F_q)} \sharp \cdots \sharp \lambda_r^{SU_{\mu_r}(F_q)} ,$$

where # denotes the outer tensor product of characters. Let t be any prime number $\neq p$. As q is square, by Proposition 2 (or Proposition 1, (ii) of [13]), each $\lambda_i^{SU_{\mu i}(F_q)}$ is realizable in Q_t . Hence $\lambda^{(L'_{\mu})F}$ is realizable in Q_t , and so is λ^{GF} . Hence, by the theorem of Schur, $m_{Q_t}(\chi^g)|a_{\lambda}$. As $m_{Q_t}(\chi) = m_{Q_t}(\chi^g)$, $m_{Q_t}(\chi)|a_{\lambda}$.

For $i=1, \dots, r$, let T_i be an F-stable maximal torus of B_i and let f_i be an element

of T_i^F described in Lemma 3, i.e., $\lambda_i^{f_i} = \lambda_i^{\sigma}$ for any linear character λ_i of U_i^F , where σ is a certain generator of $\Pi = \operatorname{Gal}(\mathbf{Q}(\zeta_p)/\mathbf{Q})$. Let $f = (f_1, \dots, f_r)$ (an element of $(L'_{\mu})^F$). As $f \in G^F$, $(\chi^g)^f = \chi^g$ and f interchanges the characters in Λ_{μ} . Thus we have:

$$\chi^{g}(u_0) = (\chi^{g})^{f}(u_0) = \sum_{\lambda \in \Lambda_{\mu}} a_{\lambda} \lambda^{f}(u_0) = \sum_{\lambda \in \Lambda_{\mu}} a_{\lambda} \lambda^{f_1}(u_1) \cdot \cdots \cdot \lambda^{f_r}(u_r)$$
$$= \sum_{\lambda \in \Lambda_{\mu}} a_{\lambda} \lambda^{\sigma}_1(u_1) \cdot \cdots \cdot \lambda^{\sigma}_r(u_r) = (\chi^{g}(u_0))^{\sigma}.$$

As σ is a generator of Π , this shows that $\chi^{g}(u_0)$ lies in Q. Hence $\chi(u) = \chi^{g}(u_0)$ is a rational integer. Put $m = m_{Q}(\chi)$. Then we have an expression:

$$\chi^{g}(u_0)/m = \sum_{\lambda \in A_u} (a_{\lambda}/m)\lambda(u_0)$$
.

As we have seen above, m divides each a_{λ} , hence the right hand side of this expression is an algebraic integer. As $\chi^{g}(u_{0})/m$ is a rational number, we conclude that $\chi^{g}(u_{0})/m$ is a rational integer. Hence $m|\chi^{g}(u_{0})$. Hence $m|\chi(u)$. This completes the proof of Lemma 6.

PROOF OF THEOREM 3. Let G, G_1 and F be as in the proof of Lemma 6. Let χ be an irreducible character of G^F . Let $\chi^{(1)}$, \cdots , $\chi^{(s)}$ be the G_1^F -conjugates of χ . Then, by Clifford theory, there is an irreducible character χ_1 of G_1^F such that

$$\chi_1 | G^F = \chi^{(1)} + \cdots + \chi^{(s)}$$
.

Then, by Theorem C of [12] and by the Ennola conjecture ([18], [9]), there is a unipotent element u of G_1^F such that $\chi_1(u) = \pm p$ -power. As u is unipotent, $u \in G^F$. Let r be any prime number $\neq p$, and put $m = m_{Q_r}(\chi) = m_{Q_r}(\chi^{(i)})$ ($i = 1, \dots, s$). By Lemma 6, for $i = 1, \dots, s$, $\chi^{(i)}(u)$ is a rational integer and $m \mid \chi^{(i)}(u)$. Thus we have an expression:

$$\chi_1(u)/m = (\chi^{(1)}(u)/m) + \cdots + (\chi^{(s)}(u)/m) \in \mathbb{Z}$$
.

Hence m divides a power of p. But, by the result of Gow [6], we have $m \le 2$. Hence m = 1 (cf. $p \ne 2$). This completes the proof of Theorem 3.

THEOREM 4. Let $G = SU_{l+1}$ or $Spin_{2l}^-$ (in either case $p \neq 2$). Then in any one of the following cases G^F has an irreducible character χ such that $m_0(\chi) = 2$:

 SU_{l+1} : $2 \nmid l$ and q is square; $2 \nmid l$, $q \equiv 1 \pmod{4}$, q is non-square and $\operatorname{ord}_2(l+1) > \operatorname{ord}_2(q+1)$; $2 \nmid l$, q is non-square, $\operatorname{ord}_2(l+1) \leq \operatorname{ord}_2(q+1)$ and $p \equiv 1 \pmod{4}$;

 $Spin_{2l}^-$: 2||l| and $q \equiv 1 \pmod{4}$; 2||l-1| and q is square; 2||l-1|, q is non-square and $p \equiv 1 \pmod{4}$.

PROOF. The following proof was inspired by [6]. Let $\lambda \in \Lambda_0$. By Propositions 2, 3, Lemmas 3, 4 and Proposition 1, we find that, in any one of the cases in the theorem, there is an irreducible character μ_i such that $m_{k_i}(\mu_i) = 2$ and $\langle \Gamma_{\lambda,i}, \Gamma_{\lambda,i} \rangle_{G^F}$ is odd. By [13], the Schur index (over Q) of any irreducible component of $\Gamma_{\lambda,i}$ is at most two. We

note that the character $\Gamma_{\lambda,i}$ takes its values in k_i . Suppose that all the irreducible components of $\Gamma_{\lambda,i}$ have the index 1 over k_i . Let A be the set of irreducible components of $\Gamma_{\lambda,i}$. Let $\overline{k_i}$ be an algebraic closure of k_i . Then $\operatorname{Gal}(\overline{k_i}/k_i)$ acts on A, and we have a decomposition $A = A_1 \cup \cdots \cup A_t$, where A_1, \cdots, A_t are the orbits under the action of $\operatorname{Gal}(\overline{k_i}/k_i)$. For $j=1, \cdots, t$, put $\phi_j = \sum_{\chi \in A_j} \chi$. Then, by the theorem of Schur, ϕ_1, \cdots, ϕ_t are realizable in k_i . Hence $\Gamma_{\lambda,i} = \phi_i + \cdots + \phi_t$ are realizable in k_i . Hence, by the theorem of Schur, $2 = m_{k_i}(\mu_i)$ must divide $\langle \mu_i, \Gamma_{\lambda,i} | L \rangle_L = \langle \Gamma_{\lambda,i}, \Gamma_{\lambda,i} \rangle_{G^F}$, which is odd. This is a contradiction. Therefore $\Gamma_{\lambda,i}$ must contain some irreducible character χ such that $m_{k_i}(\chi) = 2$. We note that if $\Gamma_{\lambda,i}$ is realizable in $(k_i)_v$, then we have $m_{(k_i)_v}(\chi) = 1$. Such v can be easily determined by Propositions 2, 3.

Since $Q(\Gamma_{\lambda}) \neq Q$ generally, our method is not sufficient to determine the Schur indices over Q. We hope to find other general methods to determine $m_0(\chi)$.

References

- [1] A. BOREL et al., Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Math. 131 (1970), Springer.
- [2] N. BOURBAKI, Groupes et Algèbres de Lie, Chaps. 4, 5, 6, Hermann (1968).
- [3] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, John Wiley (1962).
- [4] I. M. GELFAND and M. I. GRAEV, Constructions of irreducible representations of simple algebraic groups over a finite field, Soviet Math. Dokl. 3 (1962), 1646–1649, (Doklady 147 (1962), 529–532.)
- [5] R. Gow, Schur indices of some groups of Lie type, J. Algebra 42 (1976), 102-120.
- [6] R. Gow, On the Schur indices of characters of finite classical groups, J. London Math. Soc. (2) 24 (1981), 135–147.
- [7] A. Helversen-Pasotto, Sur l'indice de Schur des représentations de $GL(n, F_q)$, C. R. Acad. Sci. Paris Sér. A 283 (1976), 233–235.
- [8] R. HOTTA and T. A. SPRINGER, A specialization theorem for certain Weyl group representations and application to the Green polynomials of unitary groups, Invent. Math. 41 (1977), 113–127.
- [9] N. KAWANAKA, Generalized Gelfand-Graev representations and Ennola-duality, *Algebraic Groups and Related Topics* (ed. by R. Hotta), Adv. Studies in Pure Math. 6 (1985), Kinokuniya, 175–206.
- [10] G. J. Janusz, Simple components of Q[SL(2, q)], Comm. Algebra 1 (1974), 1–22.
- [11] G. I. Lehrer, Adjoint groups, regular unipotent elements and discrete series characters, Trans. Amer. Math. Soc. 214 (1975), 240-260.
- [12] Z. Ohmori, On the Schur indices of GL(n, q) and SL(2n+1, q), J. Math. Soc. Japan 29 (1977), 693–707.
- [13] Z. Ohmori, On the Schur indices of certain irreducible characters of reductive groups over finite fields, Osaka J. Math. 25 (1988), 149–159.
- [14] Z. Ohmori, On the Schur indices of certain irreducible characters of simple algebraic groups over finite fields, Proc. Japan Acad. Ser. A 64 (1988), 253–255.
- [15] T. A. Springer, Linear Algebraic Groups, Birkhäuser (1981).
- [16] R. Steinberg, Lectures on Chevalley Groups, Yale Univ. (1967).
- [17] R. STEINBERG, Endomorphisms of Linear Algebraic Groups, Mem. Amer. Math. Soc. 80 (1968).
- [18] T. YAMADA, Schur Subgroup of the Brauer Group, Lecture Notes in Math. 397 (1974), Springer.

[19] T. YOKONUMA, Sur le commutant d'une représentation d'un groupe de Chevalley fini, J. Fac. Sci. Univ. Tokyo 15 (1968), 115–129.

Present Address:

IWAMIZAWA COLLEGE, HOKKAIDO UNIVERSITY OF EDUCATION, MIDORIGAOKA, IWAMIZAWA, HOKKAIDO, 068 JAPAN.