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1. Introduction.

Let $M$ be a Riemann surface, and $P$ be a principal bundle over $M$ with structure
group $U(n)$ . For every connection $A$ on $P$ we can associate $\partial_{A}$-operator as follows. We
denote by $\Omega_{C}^{1}(M, ad(P))$ the complex vector space of l-forms over $M$ valued on $ad(P)$ .
In parallel with the decomposition of this vector space:

$\Omega_{C}^{1}(M, ad(P))=\Omega^{1,O}(M, ad(P))\oplus\Omega^{O,1}(M, ad(P))$ ,

the covariant derivative $d_{A}$ decomposes into $\partial_{A}$ and $\partial_{4A}$ :
$d_{A}=\partial_{A}+\partial_{A}$ ,

$\partial_{A}$ : $\Omega_{C}^{0}(M, ad(P))\rightarrow\Omega^{1,0}(M, ad(P))$ ,

$\partial_{A}$ ; $\Omega_{C}^{0}(M, ad(P))\rightarrow\Omega^{0,1}(M, ad(P))$ .
Hence the Cauchy-Riemann operator $\partial_{A}$ is associated to each connection $A$ . We have
therefore a family of Fredholm operators $\{\partial_{A}\}_{A\in d}$ parametrize by $\mathscr{A}$ :

$\mathscr{A}\ni A\mapsto\partial_{A}$ .
Let $\mathscr{G}$ denote the gauge transformation group. Due to the gauge invariance of

$\{\partial_{A}\}_{A\in d}$ , if we take as a parameter space the quotient space $\mathscr{A}/\mathscr{G}$ instead of $\mathscr{A}$ , then
we see that th\’e above association can be reduced to $\mathscr{A}/\mathscr{G}$ . Thus we get a new family
of operators

$\mathscr{A}/\mathscr{G}\ni[A]\mapsto\partial_{[.4]}$ .
This defines an element of k-theory over $\mathscr{A}/\mathscr{G}$ (see [2], [5], [10]).

These correspondences among operators $\{\partial_{A}\},$ $\{\partial_{[A]}\}$ and parameter spaces $\mathscr{A},$ $d/\mathscr{G}$

are easily generalized to a general situation, i.e., a correspondence with Fredholm
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operators and infinite dimensional parameter spaces. Let $X$ be an infinite dimensional
paracompact spaoe, and let $\mathscr{F}=\{\mathscr{F}_{x}\},$ $x\in X$ be a set of Fredholm operators acting on
a fixed Hilbert space $E$ :

$X\ni x\mapsto \mathscr{F}_{x}$ , $\mathscr{F}_{x}$ : $E\rightarrow E$ .
The space $X$ will be called the parameter space of this family. In the case of
Cauchy-Riemann operators above, the parameter spaoe is

$X=d/\mathscr{G}=\{[A]\}$ ,

the family of operators is a collection $\{\mathscr{F}_{x}\}$ of

$\mathscr{F}_{x}=\mathscr{F}_{[A]}=\partial_{[A]}$ .

This general situation is studied in [10], where an infinite dimensional cycle theory
is exhibited. We will recall some results obtained in that paper. If we are given a
family of Fredholm operators:

$X\ni x\mapsto \mathscr{F}_{x}$ ,

then we obtain some series of infinite dimensional cycles in $X$, which are classified into
three types. These three types ofcycles afe denoted, respectively, by $\chi_{p,q}(\mathscr{F}),$ $\kappa_{p,q}^{r.s}(Ker(\mathscr{F}))$

and $\psi_{p.q}^{r,s}(Ind(\mathscr{F}))$ .
The first type of cycles $\chi_{p.q}(\mathscr{F})$ are defined by

$\chi_{q,p}^{*}(\mathscr{F})=\chi_{p,q}(\mathscr{F}^{*})=\{x\in X:\dim(\mathscr{F}_{x}^{*})\geq p\}$ ,

where $p-q=k$, and $k$ is the numerical index of $\mathscr{F}$ (cf. U. Koshorke [5]).
The second type of cycles $\kappa_{p.q}^{r.s}(Ker(\mathscr{F}))$ , called solution-cycles, represents a global

structure of the family of kemels of $\mathscr{F}$ . These cycles are defined by conditions based
on some degeneracy of kemels $\mathscr{F}_{x}$ with respect to a filtration of the trivial bundle
$E\otimes X\rightarrow X$. Precisely speaking these cycles are defined as follows:

$\kappa_{p.q}^{r.s}(Ker(\mathscr{F}))=\{x\in\chi_{p.q}^{*}(\mathscr{F});\dim(ker(\mathscr{F}_{x})\cap E^{\infty-s})\geq\dim(ker(\mathscr{F}_{x}))-s+r\}$ ,

where $\{E_{i}\}$ and $\{E^{\infty-i}\}(i=1,2, \ldots)$ are filtrations of the bundle $E\otimes X\rightarrow X$, such that
$E_{i}$ and $E^{\infty-i}$ are subbundles of $E\otimes X\rightarrow X$ for any $i$ with

$ E_{1}\subset E_{2}\subset\cdots$ ,

$ E^{\infty-1}\supset E^{\infty-2}\supset\cdots$ ,

$E_{i}\oplus E^{\infty-i}=E\otimes X$ .
The global cohomological meanings of these solution cycles in the parameter space $X$

(i.e., the dual cohomology classes of these cycles in $H^{*}(X)$) were calculated in [10],
and is given by a polynomial of the characteristic classes of the bundle $K$ which consists
of kemels of $\mathscr{F}_{x},$ $x\in X$. The polynomial is the Hankel determinant of $C_{*}(K)$ :
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$(-1)^{pq}\left|\begin{array}{lll}C_{p-s+r}(K) & \cdots & C_{p-s+2r-l}(K)\\| & \ddots & |\\C_{p-s+1}(K) & \cdots & C_{p-s+r}(K)\end{array}\right|$ .

The third type of cycles $\psi_{p,q}^{r,s}(Ind(\mathscr{F}))$ , called index-cycles, were constructed to
estimate solution-cycles. The solution cycles $\kappa_{p,q}^{r,s}(Ker(\mathscr{F}))$ are interesting in their nature,
but they lack invariance (in the sense of global topological meaning). Therefore we need
other cycles with good invariance relating to solution cycles. The index cycles were
invented to meet this need. The index cycles represent the invariant part of the solutipn
cycles. In this context we have:

$|\kappa|_{p.q}^{r,s}(Ker(\mathscr{F}))\supset|\psi|_{p,q}^{r,s}(Ind(\mathscr{F}))$ ,

$here|*|$ denotes a carrier of a $cycle*$ . These index cycles are invariant in the sense that
their cohomological meanings (i.e., the dual cohomology classes) are determined by the
index (as a family) of $\mathscr{F}$ . We see that the cohomology classes of $\psi_{p.q}^{r.s}(Ind(\mathscr{F}))$ are
polynomials of $C_{*}(Ind(\mathscr{F}))$ (the characteristic classes ofthe index (as a family) $of\mathscr{F}$):

$(-1)^{pq+\langle p+r)(q-s+r)}|_{(-1)^{p+q+1}C_{p-q+1}(Ind(\mathscr{F}))(}^{(-1)^{p}C_{p}(Ind(\mathscr{F})).....\cdot.\cdot\cdot.\cdot\cdot.\cdot(-.1)^{p}}:_{1)^{p}C_{p}(Ind(\mathscr{F}))}^{+1}C_{p.,..+q+1}(Ind(\mathscr{F}))|$

$\times|_{(-1)^{p+q+s+1}C_{p-q+s+1}(Ind(\mathscr{F}))(-1)^{p+r}C_{p+r}(Ind(\mathscr{F}))}^{(-1)^{p+r}C_{p+r}(Ind(\mathscr{F}))......\cdot..\cdot..\cdot.(-1)^{p.+q+s+1}C_{p+q+2r-s-1}(Ind(\mathscr{F}))}|$ .

The construction of these index cycles was carried out in [10], using the geometry
of infinite dimensional Grassmannian manifolds. The models of index cycles are
subvarieties in the intersections of Schubert varieties of infinite dimensional Grass-
mannian manifolds. (See [10] for the precise proof of the existence of index cycles.)

For a family of coupled Dirac operators over $S^{n}$ , we calculated the value of these
cohomology classes, and deduced non-triviality of these cycles (see [10] for details).

The present paper exhibits one of the applications of this general theory of infinite
dimensional cycles to a variational problem, i.e., the Yang-Mills Gauge Field theory
over Riemann surfaces. An application to other variational problem of this theory was
found with respect to the problem of characteristic orbits (the orbits of Reeb field),
conceming to Weinstein Conjecture in [9], where the theory was used to encounter the
failure of the Palais-Smale condition.

The aim of the present paper is to find an invariant infinite dimensional cycle via
the gradient flow of the Yang-Mills action over Riemann surfaces, other than stable
(or unstable) manifolds, as an application of the above general theory of infinite
dimensional cycles. In this paper, we attempt to discover an invariant cycle which is
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cobordant, in the space $\mathscr{A}/\mathscr{G}$ , to a (non-invariant) cycle derived from operators
$\{\partial_{[44]}\}_{[A]\in d\prime l}$ .

We exploit, for this purpose, a symplectic structure over the connection space $d$ .
In the process of the proof of our main theorem, we discover a symplectic geometrical
relationship between the Yang-Mills energy function and the infinite dimensional cycles
associated to $\{\partial_{[A]}\}$ . The author believes that this insight goes back to T. Frankel [3].

Let us explain this role of symplectic geometry, since this is one of key points in
our work. T. Frankel [3] studied the fixed points ofa l-parameter group ofholomorphic
isometries on a K\"ahler manifold. He used the equation

$ JX=grad\phi$ ,

where $J$ is the complex structure, $X$ is the vector field caused by a l-parameter holo-
morphic transformation and $\phi$ is an integral of l-form $ i(X)\omega$ . From this equation we
know that the fixed set of the l-parameter group coincides with the critical set of $\phi$ .
Thus the study of fixed points was deduced from Morse theory of $\phi$ . We go conversely,
and start with a Morse function (a Yang-Mills functional in our situation). Instead of
the above equation, we show in \S 3

$grad_{A}(L)=-*X_{A}(L)$ ,

where $L$ is a Yang-Mills functional, $X$ is a Hamiltonian vector field with respect to a
symplectic structure on the connection spaoe, $and*is$ the $Hodge*$-operator.

By means of this symplectic geometrical relation, we reduce the invarianoe for the
gradient field to the invariance $for*$-operator and the Hamiltonian vector field. Thus
we can find the invariant cycles (via the Yang-Mills gradient flow) in the same cobordism
class as the given cycle (derived from the operators $\{\partial_{[A]}\}_{[A]\in d’ l}$). This relation is, in
its essence, quite similar to the $\infty rrespondence$ between the Birkhoff decomposition
and unstable (or stable) manifolds in loop groups.

The symplectic structure which we will use in order to find a relation between the
cycles associated to $\{\partial_{[A]}\},$ $A\in \mathscr{A}/\mathscr{G}$ and the Yang-Mills energy function over Riemann
surfaces, comes from the K\"ahler metric on the space of Cauchy-Riemann operators $=$

There is a standard K\"ahler metric on the space of the Cauchy-Riemann operators on
$P$ (cf., D. G. Quillen [12]). We note that the imaginary part of this K\"ahler metric
defines a symplectic structure on $\mathscr{A}$ .

Main Theorem will be presented in \S 2, the proof of which will be given in \S 3.

2. Invariant cycles and $\partial$-operators.

There are various ways of defining the symplectic structure over the connection
space which are essentially the same. Though the symplectic structure we will adopt
here may be interpreted as the imaginary part of the K\"ahler metric, or can be defined
using $\zeta$-function corresponding to the determinant bundle over $d$ , we will give an
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alternative, straightforward definition for the later purpose, using $Hodge*$-operator.
Recall first that the connection space $\mathscr{A}$ is an affine space with model $\Omega^{1}(M, ad(P))$ .

We denote its natural inner product by $B(x, y),$ $x,$ $y\in\Omega^{1}(M, ad(P))$ . $Let*denote$ the
$Hodge*$-operator over $\Omega^{1}(M, ad(P))$ . We set, for any $x,$ $y\in T_{A}(\mathscr{A})(\simeq\Omega^{1}(M, ad(P)))$ ,

$S(x, y)=-B(x, *(y))$ .

The form $S(x, y)$ defines a two-form on the connection space $\mathscr{A}$ , and it is easily checked
to be non-degenerate. Therefore this gives rise to a symplectic structure on $\mathscr{A}$ . (Our
symplectic structure $S(x, y)$ is equivalent to the imaginary part of Quillen’s metric which
was determined by the curvature derived from $\zeta^{\prime}(0)$ on the determinant bundle).

We will consider a Hamiltonian vector field over $\mathscr{A}$ corresponding to a functional
over $\mathscr{A}$ , using the above symplectic structure. Let $L$ be the Yang-Mills functional over
$\mathscr{A}$ ;

$L(A)=\int_{M}\Vert F(A)\Vert^{2}dv$ , $A\in \mathscr{A}$ .

The Hamiltonian vector field which is associated to the above Yang-Mills functional
with respect to the symplectic structure $S(x, y)$ will be denoted by $X(L)$ :

$X(L)$ : $\mathscr{A}\ni A\mapsto X_{A}(L)$ .
We will apply our infinite dimensional cycle theory to the family of Fredholm

operators $\{\partial_{A}\}_{A\in d}$ (parametrized by the space $\mathscr{A}$),

$\partial_{A}$ : $\Omega_{C}^{0}(M, ad(P))\rightarrow\Omega^{0.1}(M, ad(P))$ , $A\in \mathscr{A}$ .
In order to state our Main Theorem we need a notion of complementaryfiltrations.

Let $\overline{E}=\Omega^{0}(M, ad(P))\otimes \mathscr{A}$ be a trivial vector bundle over $\mathscr{A}$ with fibre $\Omega^{0}(M, ad(P))$ .
Take two filtrations of $\overline{E}$,

$\overline{E}_{1}\subset\overline{E}_{2}\subset\cdots$ ,

$\overline{E}^{\infty-1}\supset\overline{E}^{\infty-2}\supset\cdots$ ,

which are consisting of subbundles of $\overline{E}$ and satisfy, for any $n$ ,

$\overline{E}=\overline{E}_{n}\oplus\overline{E}^{\infty-n}$

We call this set of filtrations a complementary filtration of $\overline{E}$.
We notice that we can choose a particular filtration of the bundle $B$ which is

invariant with respect to the Hamiltonian vector field $X(L)$ . This fact follows from the
fact that $X(L)$ is tangent to the orbits of gauge transformation group. The integrability
of fields which are tangent to each orbit of the gauge transformation group comes from
Freed-Uhlenbeck [4]. Then we have:

LEMMA. There exists a complementary filtration of $\overline{E}=\Omega^{0}(M, ad(P))\otimes \mathscr{A}$ which
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is invariant by the action of the Hamiltonian vectorfield $X(L)$ .
The proof of this lemma will be given in the next section in the process of the

proof of our Main Theorem. In this lemma, the action caused by $X(L)$ is extended to
the bundle $\overline{E}$ in a trivial way.

Hereafter we will take as a family of operators, $\mathscr{D}=\{\partial_{[A]}\},$ $[A]\in d/g$ , and simply
write the solution cycle and the index cycle associated to this family as $\kappa_{0}$ , and $\psi_{0}$

respectively, instead ofwriting $\kappa_{p.q}^{r.s}(\mathscr{D})$ or $\psi_{p.q}^{r,s}(\mathcal{D})$ (fixing arbitrary non-negative integers
$p,$ $q,$ $r$ and $s$).

REMARK. We will see in the proof of Main Theorem that the cycles $\chi_{p.q}$ and $\kappa_{O}$

are already invariant via the gradient flow. On the contrary the cycle $\psi_{0}$ is not invariant.
The problem is to deform the cycle $\psi_{0}$ and to find an invariant cycle $\psi$ among the
cobordism class of $\psi_{0}$ in $d/\mathscr{G}$ .

We will get the following solution of our problem, the proof ofwhich will be given
in the next section.

MAIN THEOREM. Let $\mathscr{D}=\{\partial_{[A]}\}([A]\in d/\mathscr{G})$ be the family of operators of $\partial_{[A]}$ ,
and let $\kappa_{0}$ and $\psi_{0}$ be a solution-cycle and an index-cycle of $\mathscr{D}$ respectively. Then we
have:

(a) The cycle $\kappa_{0}$ is invariant under the gradient vector field of the Yang-Mills
functional $L$ .

(b) There exis $ts$ a cycle $\psi$ among the cobordism class of the cycle $\psi_{0}$ which is
invariant under the gradient vectorfield of the functional $L$ .

3. Proof of Main Theorem.

The proof of Main Theorem is based on a relation between the energy function
and cycles. We can describe this relation precisely using the symplectic structure defined
in the previous section, $S(x, y),$ $x,$ $y\in T_{4}4d(\simeq\Omega^{1}(M, ad(P))$ which was defined on the
connection space $d$ . We begin by investigating a relation among the Hamiltonian vector
fields and tangent spaces of orbits of the gauge transformation group $\mathscr{G}$ .

As in the previous section we will denote by

$X(L)$ : $d\ni A\mapsto X_{14}(L)$ ,

the Hamiltonian vector field which corresponds to the Yang-Mills functional $L$ with
respect to the symplectic structure $S(x, y)$ . We will show later that the Hamiltonian
vector field $X(L)$ is tangent to $\mathscr{G}$-orbit (here $\mathscr{G}$ is the gauge transformation group). If
we restrict the Hamiltonian vector field $X(L)$ over each $\mathscr{G}$-orbit, then $X(L)$ can be
regarded as a vector field on $\mathscr{G}$-orbit itself. It follows that $X(L)$ is integrable on each
orbit (cf. Freed and Uhlenbeck [4]).

Let us construct a gauge-invariant filtration in Lemma in the previous section. Let
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$\mathscr{A}\rightarrow \mathscr{A}/X(L)$ be the fibration ofA via orbits of $X(L)$ . (This fibration makes sense because
$X(L)$ is integrable). Because $\mathscr{A}$ is contractible, there is a lift of $\mathscr{A}/X(L)$ into $\mathscr{A}$ . (This
follows, for example, from the fact that $H^{2}(\mathscr{A}/X(L), Z)=0$ in case $X(L)\neq 0.)$ Take a
filtration $\{\overline{E}_{n}\},$ $\{\overline{E}^{\infty-n}\}(n=1,2, \ldots)$ of $\overline{E}=\Omega^{0}(M, ad(P))\otimes \mathscr{A}$ (restricted to the lift) at
each point $A$ e.sl which is included in the image of the lift. Denote the projections of
this filtration by $\pi_{i}$ : $\overline{E}\mapsto\overline{E}_{i}$ . Extend them to the whole $\mathscr{A}$ by

$g^{-1}\circ\pi_{i}\circ g$ , $g\in \mathscr{G}$ ,

at an arbitrary point $A\in \mathscr{A}$ with $g(A)=A_{0},$ $[A]=[A_{0}]\in A/X(L)$ . This gives a filtration
which is invariant by the action caused by the Hamiltonian vector field $X(L)$ . (This proves
the lemma in the previous section). Hereafter we will fix this filtration.

We now calculate the Hamiltonian vector field $X(L)$ as follows. Take $ X\in$

$T_{44}\mathscr{A}\simeq\Omega^{1}(M, ad(P))$ . Then we have:

$dL(X)\frac{d}{dt}|_{t=0}\int_{M}\Vert*F(A+tX)\Vert^{2}dv$

$=\frac{d}{dt}|_{t=0}\int_{M}\Vert*\{F(A)+td_{A}X+t^{2}[X, X]\}\Vert^{2}dv$

$=(2d_{A}X, F)=2(X, d_{A}*F)=-2(X, *d_{A}*F)=2S(X, d_{A}*F)$ .
This yields:

$X.(L)=d.(*2F)$ .

Therefore we have:

$X_{A}(L)\in\{d_{A}\alpha\in\Omega^{1}(M, ad(P));\alpha\in\Omega^{0}(M, ad(P))\}$ .
Consequently we see that the vector field $X(L)$ is tangent to the orbits of the gauge
transformation group $\mathscr{G}$ .

We proceed to show the invariance of infinite dimensional cycles. Recall that we
have set,

$\mathscr{D}=\{\partial_{[A]}\}$

$\kappa_{0}=\kappa_{p.q}^{r.s}(\mathcal{D})$ , $\psi_{0}=\psi_{p.q}^{r,s}(\mathscr{D})$ .
Since $\mathcal{D}$ is the quotient of $\{\partial_{A}\}_{A\in d}$ , we will pull up everything upstairs (i.e., on $\mathscr{A}$),

and set

$\tilde{\mathscr{D}}=\{\partial_{A}\}$

$\tilde{\kappa}_{0}=\kappa_{p.q}^{r.s}(\tilde{\mathcal{D}})$ , $\tilde{\psi}_{0}=\psi_{p.q}^{r.s}(\tilde{\mathcal{D}})$ .

Because of the invariance of these cycles and filtrations via the gauge transformation
group, it suffices to prove the assertions of Main Theorem for cycles $\tilde{\kappa}_{0}$ and $\tilde{\psi}_{0}$ instead
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of $\kappa_{O}$ and $\psi_{0}$ . We will begin with the investigation of the cycle $\chi_{p.q}(\tilde{\mathcal{D}})$ .
We will show that the cycle $\chi_{p.q}(\tilde{\mathcal{D}})$ for the family of operators $\tilde{\mathscr{D}}=\{\partial_{A}\}_{\langle A\in d)}$ is

invariant under the gradient flow of the Yang-Mills functional $L$ .
First we observe;

$grad_{A}(L)=-2*(d_{A}*F)=*(d_{A}*(-2F))=-*X_{A}4(L)$ ,

here $grad_{A}(L)$ denotes the gradient vector field at $A\in d$ of the functional $L$ . Recall that
the cycle $\chi_{p,q}(\tilde{\mathcal{D}})$ is defined only by the condition on the dimension of the kemels of
$\partial_{A}$ . Therefore the cycle $\chi_{p,q}(\tilde{\mathscr{D}})$ is invariant by the gauge transformation group, and
hence invariant under the Hamiltonian vector field $X(L)$ . Moreover we notice that
$\chi_{p,q}(\tilde{\mathcal{D}})$ is invariant under the $Hodge*$-operator (here, the action is considered on the
tangent spaces). In view of these, we see that $\chi_{p.q}(\tilde{\mathscr{D}})$ is invariant with respect to the
vector field $-*X_{A}(L)$ . Therefore it follows, from the above equation, that the cycle
$\chi_{p,q}(\tilde{\mathscr{D}})$ is invariant under the gradient vector field $grad_{A}(L)$ (cf., T. Frankel [3]).

We proceed to prove the invariance of the kemel cycle $\tilde{\kappa}_{0}$ . The problem here is
the fact that the cycle $\tilde{\kappa}_{0}$ is not $n\propto essarily$ invariant under the action of the vector field
$X(L)$ . Recall that we have chosen the complementary filtration, $\{\overline{E}_{n}\},$ $\{\overline{E}^{\infty-n}\}$

$(n=1,2, \ldots.)$ which are invariant by the action of the vector field $X(L)$ (the existence
of which has been proven already). Therefore we can apply the same argument as
the case of the cycle $\chi_{p.q}(\tilde{\mathscr{D}})$ to the case of the cycle $\tilde{\kappa}_{O}$ . This proves the first assertion
(a) of Main Theorem.

Let us now proceed to prove the existence of an invariant cycle $\tilde{\psi}$ (among the
cobordism class of the cycle $\tilde{\psi}_{0}$) which is invariant under the gradient flow.

So far we have been discussing the family of Fredholm operators with parameter
space $d$,

$d\ni A\mapsto\partial_{44}\in Fred(\Omega^{0}(M, ad(P)),$ $\Omega^{0.1}(M, ad(P)))$ .
In order to prove the part (b) of Main Theorem, we will deal with a deformation of
another family of operators restricted over the subset $|\chi_{p.q}(\tilde{\mathscr{D}})|$ (the carrier of the cycle
$\chi_{p.q}(\tilde{\mathscr{D}}))$ .

Let $\pi^{\infty-*}$ denote the projection of $\overline{E}=\Omega^{O}(M, ad(P))\otimes d$ into $\overline{E}^{\infty-n}$ . First, let us
consider a family of operators which associates, for each $A\in|\chi_{p.q}(\tilde{\mathscr{D}})|$ , the operator
$\pi^{\infty-n}\circ\partial_{4A}$ . We will denote this new family of operators $\{\pi^{\infty-n}\circ\partial_{A}\},$ $A\in|\chi_{p,q}(\tilde{\mathscr{D}})|$ with
parameter space $|\chi_{p.q}(\tilde{\mathscr{D}})|$ by $\ovalbox{\tt\small REJECT}_{\chi}$ :

$\ovalbox{\tt\small REJECT}_{z}$ : $|\chi_{p.q}(\tilde{\mathscr{D}})|\ni A\mapsto\pi^{\infty-n}\circ\partial_{A}$ .
Secondly, we will consider the following continuous deformation of the family of

operators $\ovalbox{\tt\small REJECT}_{\chi}$ . The invariant cycle $\tilde{\psi}$ will be given as an intersection of an infinite
dimensional cycles derived from a deformation family of Fredholm operators $\ovalbox{\tt\small REJECT}_{\chi}$ .

For any infinite matrix $\epsilon=(\epsilon_{j}^{\prime}),$ $\epsilon_{j}^{r}\in R,$ $r,j=1,2,$ $\ldots$ , we will define a family of
operators $\ovalbox{\tt\small REJECT}_{\chi}^{e}$ as a deformation of $\ovalbox{\tt\small REJECT}_{\chi}$ as follows. Let $\overline{\pi}_{j}(j=1,2, \ldots.)$ denote the
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projection of $\overline{E}=\Omega^{0}(M, ad(P))\otimes|\chi_{p,q}(\tilde{\mathscr{D}})|$ onto $\overline{E}_{j}/\overline{E}_{j-1}$ , the complement space of $\overline{E}_{j-1}$

in $\overline{E}_{j}$ :
$\overline{\pi}_{j}$ : $\overline{E}=\Omega^{0}(M, ad(P))\otimes|\chi_{p,q}(\Phi)|\rightarrow\overline{E}_{j}/\overline{E}_{j-1}$ .

For given $\epsilon=(\epsilon_{j}^{r})$ and $A\in|\chi_{p.q}(\tilde{\mathcal{D}})|$ , we can find an operator $\ovalbox{\tt\small REJECT}_{\chi,A}^{e}$ which satisfies the
conditions:

$\overline{\pi}_{r}[\ovalbox{\tt\small REJECT}_{\chi,A}^{\epsilon}]=\overline{\pi}_{r}[\pi^{\infty-r}\partial_{A}]+\sum_{1\leq j<\infty}\epsilon_{j}^{\prime}\overline{\pi}_{j}[\partial_{A}]$ ,

for $r=1,2,$ $\ldots$ , if we take sufficiently small $\epsilon_{j}^{r}$ . This defines a family of operators with
the parameter space $|\chi_{p,q}(\tilde{\mathscr{D}})|$ associated to matrix $\epsilon=(\epsilon_{j}^{r})$ . The matrix $\epsilon$ is regarded as
a parameter of deformation.

Let $\psi_{\chi}^{\epsilon}$ denote the index cycle associated to the family of operators $\ovalbox{\tt\small REJECT}_{\chi}^{\epsilon}$ . Since the
Hamiltonian vector field $X_{A}(L)$ is integrable, there exists, for every $A_{0}\in|\chi_{p,q}(\tilde{\mathscr{D}})|$ , the
orbit of $X_{A}(L)$ , denoted by $g_{t}(A_{0}),$ $t\in R$ . Then it is easy to see:

$g_{t}^{-1}[\ovalbox{\tt\small REJECT}_{\chi.g_{t}\langle A_{O})}^{\epsilon}]g_{t}=\ovalbox{\tt\small REJECT}_{\chi.A_{O}}^{\epsilon}$ .
Therefore we see that the index cycle $\psi_{\chi}^{\epsilon}$ , is invariant via the Hamiltonian vector field
$X(L)$ .

Following the approximation method in [6], we will show that there exists some
$\epsilon$ such that the corresponding cycle

$\tilde{\psi}^{\epsilon}=\psi_{p.q}^{r,s}(\ovalbox{\tt\small REJECT}_{\chi}^{\epsilon})$

is invariant with respect to the gradient vector field of the Yang-Mills functional.
The approximation method given in [6] is aimed to deform holomorphic maps to

satisfy a transversality condition with varieties in the Grassmannian manifold. We can
extend this method to our symplectic category, because all the equations which de-
termines $\ovalbox{\tt\small REJECT}_{\chi}^{\epsilon}$ are invariant with respect to Hodge $*$-operator. Moreover, we can see
that the index cycle $\tilde{\psi}^{\epsilon}$ corresponding to $\ovalbox{\tt\small REJECT}_{\chi}^{e}$ is $X(L)$-invariant for any $\epsilon$ . (In other words,
all the invariance we need are being kept during the deformation). It follows that there
exists a matrix $\epsilon$ such that $\ovalbox{\tt\small REJECT}_{\chi}^{\epsilon}$ satisfies the transversality condition with Koschorke
varieties [5] and such that the corresponding index cycle $\tilde{\psi}_{\chi}^{\epsilon}$ is invariant with respect
to the gradient vector field of the Yang-Mills functional. Note that $\tilde{\psi}_{\chi}^{\epsilon}$ is the intersection
of $\chi_{p,q}(\tilde{\mathscr{D}})$ and one of Koschorke varieties [5]. (See for details [6] and [10].)

We can also extend the complex analytic cobordism theory of [10] to symplectic
category in a similar way as above. We see finally that the cycle $\tilde{\psi}=\tilde{\psi}_{\chi}^{1}$ is cobordant
to the index cycle $\tilde{\psi}_{0}$ in the connection space $\mathscr{A}$ . Noticing that all the cycles constructed
above are gauge-invariant, this completes the proof of Main Theorem.
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